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Abstract troller. In our approach, an online identification method is

developed to estimate the target system dynamic model and
Visual servoing, or the control of motion on the basis this model is used in a Kalman filter for tracking.
of image analysis in a closed loop, is more and more rec- The proposed scheme consists of a 2-phase process. The
ognhized as an important tool in modern robotics. In this first phase deals with target detection. One of the major
paper, we present a new model-driven approach to derive problems arising here is the effect of an ever-changing illu
a description of the motion of a target object. This method mination, as a change in illumination will also change the
can be subdivided into an illumination invariant target de- perceived colors - or more generally the perceived image
tection stage and a servoing process which uses an adaptive of the environment. The presented classification algo-
Kalman filter to update the model of the nonlinear system. rithm doesn’t take into account any other parameters (eg.
This technique can be applied to any pan-tilt-zoom camerashape or texture) than the color attributes like other astho
mounted on a mobile vehicle as well as to a static camerahave done [10], so illumination changes risk to be a prob-
tracking moving environmental features. lem. To counter this, we developed a color constancy ap-
proach to improve the classification capabilities of thecol
target-tracking algorithm. Color constancy, as defined in
1 Introduction [8], is the ability to recover a surface description of color
independent of the illumination. Numerous attempts have

The implementation of a system capable of performing @lréady been made to solve this problem. Land and Mc-
visual servoing in everyday environments requires careful Caan were the first to tackle the problem with their retinex

consideration of the mechanical, control and vision issuest€0ry [7]. Others relied on finite-dimensional linear mod-
involved in the closed-loop sensing system. The primary els [_2]’ while also neural nets have b_een prop_osed to sqlve
elements are the detection of objects of interest moving in the issue [3]. However, these techniques typically require
the scene and their subsequent analysis during tracking ovel0Urs Of calculation time to process one non-synthetic im-
time. Mechanically, this requires a pan-tilt camera platfo age, making the.m totaI.Iy unfit for rgal-ume and real-world
The visual servoing approach is based on an informationViSIon tasks, as in the field of robotics. Here, we propose a
feedback loop, which determines an error vector defined in €0IOr constancy technique used for real-time target idlenti

the vision space. This vector is updated after every imagecation under varying iIIu_mination C(_)nditions. In_the sedon
acquisition. In a target tracking scheme, the error vector Phase, the one of the visual servoing, the motion model of

is defined as a measure, at a given time, of the distance irfhe target object is retrieved. This movement is not known

image coordinates between the target position and the im-2-Priori and the perspective projection relationship isa-n
linear one, so we have a nonlinear time-variant system. We

age center. This error serves to determine the control pa- , X i : .
rameters of the pan-tilt platform (camera). Several regear 2PProximate this system as a linear time variant one and
works have been done in this area, among which we can cite!se an observer-based full-state feedback control to imple

the work of Yoshimi and Allen [13] for target tracking and ment the tracking function. From the online identification
object alignment. In their approach the visual servoing is W€ ¢an solve the system-modeling problem. The method

calibrated during operation using dedicated controlled mo ©f the observer-based full-state feedback control guaesnt
tion of the robots end-effector. Zhang [14] and Corke [1] the System stability. The camera control exploits the detec
use calibrated cameras, with an initialization phase fer th 10N in conjunction with an affine fit between two consecu-
definition of a dynamic model leading to a predictive con- V€ images. After the affine fit has been made, the camera



control parameters are estimated. To make the visual con-

trol loop compatible with the real-time constraint, a win-
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dowing technique was used for the image processing taskin [5], Gevers and Smeulders prove that according to the
only a window around the detected object is processed. Angichromatic reflection theory, this space is invariant ghhi

Extended Kalman Filter is then used to predict the future
size and position of the window in the image plane.

The rest of this paper is organized as follows: in section
2, the color-based classification process is describedewhi

section 3 explains the used camera control strategy. The pa-
per ends by showing some experimental results and drawing

some conclusions about the presented work.

2 lllumination invariant classification
2.1 Modellization

2.1.1 The color reflection model

The main problem for the correct interpretation of a camera

image is that the measured intensities are function of & larg
number of parameters and most of them cannot be retrieve
due to their strong interconnectivity. The color of an objec

in the image must be considered as an appearance rathe(f

lights, viewing direction, surface orientation and illurat
tion direction. This means that we can work with a simpli-
fied form of equation 1:

Hy iy (.0) = [0 LV )dh ()

A

2.1.3 Discretization

Equation 3 can be discretized by sampling over a number
of wavelength bands. We chose to use a finite dimensional
linear model with a limited amount of parameters and using
10 basis functions:
6(>‘at) = Bc.qe
Tb(>‘a (E) = B;.q, (4)

The columns of theV x N, B. matrix and those of the

dy « N, B, matrix represent the basis functions for the light

and the reflectance spectrum respectively. Meslement
vector and theV,. elemeny,. vector describe respectively

than as a real material property. Nevertheless, color can b&pq illuminant and the body reflectance spectrumD(ff.)

used to identify objects as long as the parameters which in-
fluence the formation of the perceived color are taken into
account. To do so, we make use of the dichromatic reflec-

tion model, which was first introduced by Shafer in [11]:

Pe kb./e()\).fc()\).rb()\).d)\
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Wherep, is the measured intensity of changé()\) is the
normalized light spectrumyf,.()\) is thect” channel sensor
response function;, () is the body reflectance function,
rs(A) is the surface reflectance functioky, is the attenu-
ation factor for the body reflectance akhd is the surface
reflectance attenuation factor.

2.1.2 Color spaces

Among the different color spaces, our choice went out to
thel,-l5-I3-space, a color space which was originally intro-

duced by Gevers and Smeulders in [4]. It poses an attrac-
tive alternative to the HSI space due to its computational

simplicity. The space can be formulated as follows:
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isthe N x N diagonal matrix withf. as diagonal elements,
we get by inserting equations 4 in equation 3:

he = q*.BY.D(f.).B,.q- (5)

The problem with this representation is that the basis and
sensor sensitivity functions are not well known. To avoid
this difficulty, we use an approach similar to the one de-
scribed in [12], which introduced a lighting and reflectance
matrix, parameterized usirig< N, variables in a manner in-
dependent of basis functions and sensitivity functionse Th
idea is to write the vectoB!.D(f.).B,.q, aso., which is

an alternative descriptive function for the body refleceanc
function and which can be used to discriminate between ob-
served materials. This leads to a general equation:

' =q¢to (6)

With AT the color triplet in thé,-I5-I5 color-space ane an

N, x 3 matrix holding all the reflection characteristics in-
dependently of the illumination. This matrix needs to be es-
timated and based upon this estimate the classification pro-
cess can be performed.

2.2 Bayesian Color Classification

2.2.1 Learning

In a learning phase, the algorithm learns the reflection-char
acteristics of the object to be tracked. Small patches of im-
ages are accumulated over time while the material in ques-
tion is subjected to a varying illumination. All intensity



measurements are combined in aif x 3.p color measure-  classification, we search for the conditions that maximize
ment matrixH, while p is the number of pixels in the scene  p(o = orarget, !, ge, o|h) for any values of the lighting con-
patch andf the number of frames sampled. If we sample for dition, the illuminant spectrum,. and the reflectance spec-
long enough, then eventuallywill grow larger thanp and trum of the target object, given the color measurement
the light spectrum matrix) and the reflection characteris- triplet h.
tics matrix.S can be recovered by applying singular value

~

decomposition ot , while H = Q.S. 0,1, Gc] = W[gm]afﬂp(@ I, qe,0|h) (10)
l,qe
T T
. hza,t)" - bz, ) Using Bayes' rule, it can be shown that:
N\T , T . .
h(zi,tp)" . h(zp,ty) @ p(0,1, ge, olh) x p(h|ge,d).p(ge|l).p(l).p(0) (11)
Q=1 qt)" .. q(tp)T ]T To calculatep(h|q., o), we suppose that the measurements
are corrupted by Gaussian noise:
S = [ o(z1) ... o(zp) } 3 S
p(mq o) = (27”)_2 e—Hh, —q! 'Uth (12)
At this moment,p(q.|l) or the light spectrum distribution e 2] :

if the illuminant{ is known, can be calculated. This can
be done becausg is independent of the material. We use
an Expectation Maximization (EM) clustering method to

derive the reflection distributions. This algorithm apglie ) o
multivariate Gaussian mixture modeling with an unknown The measurement covariance matrix is calculated together

number of mixture components, which makes the classifi- with the color measurement itself. To calculate the fagator i

cation very flexible. The EM algorithm adds clusters until the €xponent, we record the nominal color valtigsof the
the added model compliance becomes lower than a presepercewed illuminants and these values are used to cadculat

treshold. As the log-likelihood for adding a new cluster de- the Mahalanobis distance to the current color triplet.
creases drastically once there are more clusters thariillum 1n€ second factor in equation 11 represents the prior proba-

nation conditions, the algorithm generally succeeds in dis Pility density of observing a certain illuminant spectrgm
criminating the illumination conditions and creates atust ~ 9iven the lighting conditior. This is calculated during the
accordingly. The result of this calculation is Af.s x N, Expectation Maximization phase of the learning process.

light spectrum matrixZ, with Ny s the number of illumi- The third factor in equation 1/(1) describes the prior prob-
nant spectra distinguished: ability of observing a certain illumination condition on a

given point in the scene. There is no a priori knowledge
I — [ C1) .. qT(n) .. ¢T(Nps) ]T @) about this, yet over time, it is .pos.sible.to b_uild up some
knowledge about the different lighting situations at diffe
Together with the calculation af, the nominal color for ~ €nt points in the scene and this information can be used to
each of the clustered lighting conditions is calculated and derive a probability for the occurrence of lighting condi-
stored in anN7 s x 3 color measurement matriél . With tions in novel scenes. To do this, an illumination map of

WhereY, is the measurement covariance mattfix,| de-
notes the determinant anid |, is the Mahalanobis dis-
tance:||ally, = aT. X7

this knowledge, we can calculate the inverse of Ahex 3 the surroundings of the target object is recorded. The val-

reflectance spectrum matrix: ues recorded in this map represent for each of the different
possible illumination conditions, the probability thaeyh

R'=H'L (9)  would occur. These probabilities are calculated during the

classification process using a voting system: a positive cla
sification for a pixel given a lighting condition increaske t
probability for this lighting condition at this pixel pogn,
Having the reflectance spectrum of the target object andwhile decreasing all other probabilities.

the obtained illuminant spectra corresponding to differen The last factor in equation 1b(o), representing the prior
lighting conditions, we can correctly classify newly pre- probability of observing the target object in the scenesis e
sented pixels as belonging to the target object or not, whiletimated by dividing the number of pixels belonging to the
keeping track of newly arising lighting conditions. We target object, estimated at the previous time-instancthdy
present a Bayesian solution to solve these problems. Newtotal number of pixels in the image window.

scene properties are brought into the model based upon thé&Jsing these considerations, the pixel classification proce
Maximum A Posteriori (MAP) estimate of these parame- dure calculates the probability for each pixel and labeds th
ters given the color measurements. When applying thispixel as belonging to the target object or not based upon the

2.2.2 Pixel Classification



model if necessary. So, the first step in this process is to ob-
tain a patch from the target object. For this, we cannot rely
on the pixel classification process to tell us where the ball
is, as in this case no new information would be added to the
existing illumination model. The strategy here is to apply
a circle or ellipse fitting upon the classified pixels and then
to randomly select a patch within this circle or ellipse. The
model updating algorithm doesn’t need to run completely at
every iteration, since there won't be a new illumination-con
Figure 1. Image & Probability Distribution dition with every new frame and only noteworthy changes in
illumination will result in the model being updated. These
exit conditions test the physical possibility of the propos
result. Figure 1 shows an example of a probability distri- model update considering the reflection characteristics of
bution for object presence calculated during the pixel-clas the target object, the change in illumination and the cevari
sification process. The circular target object can cleagly b ance on the measurements. The calculation of the new illu-
identified when observing this distribution, while the st mination condition itself can happen very rapidly, since we
pixels can be considered as false classifications. Usisg thi already know the reflectance spectrum matrix. After acquir-

classmcatmn_ theorem, the pixel clas_smcatlon is no Iangg ing a nominal color triplet measuremeny;, we can write:
performed directly based upon the pixels color value, as is

classically done, but based upon the derived reflection char qe(Nnew) = hy R (13)
acteristics, which makes the detection process very robust
This can also be observed by analyzing figure 2 which rep-
resents the unclassified pixels in grey and the classified pix

Where R~! is the pseudo-inverse of the reflectance spec-
trum matrix acquired during learning and, ., is the in-
dex of the rarest illumination condition within tHematrix,
which will thus be replaced by the new lighting condition.
The performance of this model updating process is illus-
trated in figure 3. Figure @3 shows the initial probabil-
ity distribution for target object presence, while figure 3
shows the same distribution at a later time instance. This
illustrates how the update step improves the Bayesian re-
flection model, such that the target object can be classified
more clearly. In figures @and 2, the initially classified
pixels are represented in black and the unclassified pirels i
11, 15, 138 RG B space grey, respectively in thé, — I, — I3 and theRG B-space,
while figures 3 and 3f show the same at a later time. These
two time instances are separated by a change in illumination
els in black, both in thé, — I, — I3 and in theRG B-space. ~ conditions and as one can observe, the cluster of classified

This figure shows that the applied classification strategy al Pixels has moved too in the color space. _
lows a large flexibility in the definition of the target objsct  1he preceding discussion shows how we can acquire a de-

color domain, as the classified pixels account for a consid-Scription for the color of an object which is quite indepen-
erable volume in both of the color spaces. dent of the illumination conditions. Now, the object can be

identified reliably and tracked in a following stage, as we’l
explain in the next paragraph.

Figure 2. Classification in

2.2.3 Model Updating

During the actual tracking phase, the illumination model 3 Camera Control for Target Tracking

is continually updated using Bayesian reasoning. In this

model updating stage, estimates for new lighting condition We use the pinhole camera model and map the 3D world
and their corresponding illuminant spectra are calculdted coordinates onto the image plane using the perspective pro-
is this procedure that ensures the adaptive nature of tieé pix jection. Now, let us consider a poit in the world coor-
classification process within the general target-trachirg dinate system and its projection in the imageas shown
gram. The philosophy of this procedure is that we take ain figure 4. The poinp is given by(u,v). The reciprocal
small patch from the target object (shown on figure 9 as values of pixel sizéd,, d, ), the camera focal lengtfiand

the small square), try to recover the spectrum of the illumi- the principal poin{o,,, o} ) are known from the camera cal-
nant shining on this part of the target object and update ouribration step.



Our aim is to keep the target center coincident with the im-
age center, thua andg will define the panftilt control pa-
rameters of the camera. We define the servomotor-target-
camera system as our plant. The above defined angles are
used for camera control and target tracking. The plant is
considered as a time variant system due to the unknown mo-
tion of the target. The target movement is estimated in real-
time and considered in our system as the plant state transi-
tion of free response. In order to meet the system dynamic
characteristic requirements, a two phase control strategy
was implemented with a separate initialization phase and
an observer based full state feedback control phase. During
the system initialization phase a Proportional and Integra
regulator is used to track the target. At the same time, the
plant input and output data are collected to identify thapla
model and to train the state observer and the adaptive filters
used in the system. The plant model is used in state ob-
servation and state feedback control. After a certain derio
of time, the system control strategy is switched from phase
one into phase two: the full state feedback control state.

3.1 Target Tracking during Initialization

During the initialization phase, the system (camera) is
controlled by a PI regulator designed for target tracking.
The system is considered as a time invariant one and the tar-
) _ get movement is considered as an environment disturbance
Figure 3. Effects of Model Updating to the system. The block diagram of the control system for

this phase is given in figure 5. We represent the image cen-
ter aso, v is the target movement, is the noise caused by
A » the target movement in perspective view andl¢y) is the
’ transfer function, representing the relationship between
/ andn, e is the signal errory is the output of the regulator,
¢ m is the camera optical axis movement anis the cam-
X era’s output, i.e. the new target image center. Using this

»
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In figure 4 we define two angles:
a = Locx; (14) Figure 5. Initialization System Block Diagram
8= Locy, (15)

control method, the camera can start tracking right away,

« and3 represent the difference in orientation between the While the modelis being built up from zero.

optical axis and the linepP and can be calculated by: 32 Plant Model Identification

— U — 0;1, . . .
a=tan"! ( 7d ) (16) The dynamic properties of our system can be described
’ by the following set of nonlinear differential equation$:[9

({0, —v )
B =tan~! ( i dy) a7 Z(t) = f(Z(t),d(t),t) (18)



WhereZ(t) € R" is the state vectofj(t) € R™ is the input _ 1 (k)
vector andf is a mappingr™ x £™ — R" defined as: z2 (k)

fL(E(t), a@(t), t) (z1,22) is the state vector corresponding to one of
S o . : the camera angles (pan or tilt) and angular velocities.
@), at),t) = . : . (19) (a0, a1, bo, by) are the system parameters to be estimated.
fulE(t), (), t) We use a Least-Mean-Square (LMB)-order adaptive fil-

To establish a practically useful plant model we must apply ter as plant pqrameter estimator [6]. The; same structure for
a linearization around the equilibrium poifity, @) where the_ LM_S filter is use_d for both pan and tilt plant parameter

both #, and, are zero. The control strategy consists of estimation. T_he estimator works in two stt_aps., First, it uses
keeping the target center and the image center coincident!n® Updated input data, output data and filter's tap weights
so we can always linearize the nonlinear dynamic systemto estimate the system current output value. In the second
around this equilibrium point and use a linear model to ap- step, ituses the ypdated input data, output data and the erro
proximate the plant dynamics. For a discrete time system,be“"’een the estimated current output and the real output of

the corresponding function can be written as: the system to modify the tap weight§k) of the filter. The
updated tap weights are our plant parameters’ estimates:

Zk+1)~A-Z(k)+B-uk) (20) -
w(k) =[ —ai(k) —ao(k) bi(k) bo(k) ]  (25)
After estimating the plant parameters, the matrices of the
Plant state space model from instariceo &+ 1 can be estimated:
Robot Target _ 0 1
System A(k + 1; k) - |: 7&:0(]{) *dl(k) :| (26)
u lJr Camera Optical ¥ B(]f + 1 k) = 0 (27)
'y Canézﬁuiirg;;gfr:or * — Sensor System — ’ - 1

Clk+1,k) = [ bo(k) bi(k) ] (28)

i _ 3.3 Full State Feedback Control
Figure 6. Dynamic System Model

The second phase control strategy consists of an
X(k+1) = A(k).X (k) + B(k).u(k) + W(k)  (21) observer-based full-state-feedback control strategyoin
y(k) = C(k).X (k) + v(k) (22) line identification method identifis in real-time the plant

This can be observed on figure 6 and equations 21 and ZénOdeI and applies_ the ide_ntified model in the Kalman ob-

whereX (k) represents the system state vector consisting Ofser\ée: to tehmph|a3|tzet t?e m:‘_luer:_ce OL:TE changet_of plfrl]nt
the angular position and angular speed of the target image,mo_ €l on the piant state estimation. € same ime, the
y(k) is the system output representing the difference be- estimated state models are used for the state feedback strat

tween the camera principal point and the target image posi—egy calculation to emphasi.ze the time v ariant property of
tion, A(k) is the plant system matrix (k) is the plantinput the control system. The main tasks of this phase are observ-

matrix, C'(k) is the plant output matrixiy’ (k) is the model ing the plant states, calculating the feedback controlevalu

noise vectorp(k) is the measurement noise variable and and identifying the plant model, as shown_ n flg_ure 5
u(k) is the system input, which is in our case the center of Now that the plant model has been identified, its state vec-

the image plane. The matricdsand B are time-dependent, ]tc_cl)tr IS est;(mated using Talgwan flltetnnkg [6].' tThe KaIn:a:E
so the corresponding linear system is a time variant one. LT Works as a current observer, taking nto account the

We simplified the plant model by considering a second or- dynamics of the target's movement by using the time vari-

der difference model in order to reduce the calculation bur- 2Nt Plant model. It reduces the influence of noise coming
den. The parameters of the plant state space function anérom the megsurement inaccuracy and the model Inaccu-
the plant output function can then be written as: racy. From figure 8, we can see that the observer Isa dy-
namic system. It takes the plant input and output as its input
[ z1 (k+1) ] B { 0 1 ] [ z1 (k) :|Jr[ 0 ]u(k) and the estimated plant states as its output. The observer is
2o (k+1) | | —ap —-a1 xa (k) 1 a negative feedback subsystem and it guarantees the conver-
(23) gence of the observation.
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Fk+1) = A(k+1,k)- (k) + B(k + 1, k) - (k) + 7 (k)
(29)
Jlk) = Clk + 1, k) - Z(k) + Ba(k) (30)

In figure 8 and equations 29 and 30represents the plant
input signal (pan or tilt control signal); is the plant out-
put signal (the angle estimated from the image)s the
estimated plant state vectot(k + 1, k) is the plant system
transition matrix from instart to instantc + 1, B(k+1, k)

is the plant control input matrix from instattto instant
k+1, C(k+ 1, k) is the plant output matrix from instakht
to instantk + 1, ¢ (k) is the system process noise ahdk)
the observation noise vector at instéantThe pole assign-

h=Cy-pl+2-¢ (32)

whereC; and(C> are scale factors andis a tolerance.

The prediction of the search window position and size are
made during the tracking process. Therefore, the time-
variant characteristics of the system and the cameratyctivi
are taken into account. The structures of the adaptive LMS
filters which are used for this purpose for the prediction of
the search window position and size are identical. The dif-
ference between the filters lies in the fact that the first one
uses the window position and the camera control signal as
inputs to return a new window position estimate, while the
second one uses the second order moments as inputs to cal-
culate the window size. The predictor works in two steps.
First, it uses the old input data and the current desired out-
put data to train the filter; that is, to update the filter tap
weights. In the second step, it uses the updated input data
and tap weights to estimate a prediction for the real output.
We define the prediction error as:

e(k) = d(k) - y(k) (33)

whered(k) is the desired output at the instanendy (k)
is the predicted output at the insta@ntThe cost function is

defined as: )
(k) = 5 B le(k) ] (34)

The filter minimizesJ(k), thereby estimating the search
window parameters. Experimentally2a? order filter was
selected, because it proved to allow fast and stable trgckin

4 Experimental Results

Figure 9 shows the strength of the color constancy al-
gorithm by comparing two pictures shot during the same
indoor testing sequence, but with a difference in illumina-
tion conditions (lights turned off). As you can observe by
noticing the whitened pixels which mean that a target has
been found here, the algorithm succeeds in recognizing and

ment method is used to design the state feedback controllerclassifying the searched object.

3.4 Windowed Tracking

Figure 10 shows the tracking error in tté direction and
demonstrates the tracking ability of this system. Notiee th
little increment when the target moves closer to the camera;

In order to increase the tracking sampling rate and theit decreases when the target moves away from the camera.
signal-to-noise ratio of the camera control, a bounding box Concerning the real-time capabilities, the target tragkin
(search window/region of interest) around the target imageprogram is able to run at about 10fps on a PC equipped
is defined. An LMS filter is used to estimate and to pre- with an 1.7GHz PIV processor, which is adequate for most

dict the position £ ,5 ) and size { ,h) of the defined search

window, taking into account the activity of the camera. The

every-day target tracking tasks.

window size is calculated by using the second order mo-5  conclusions

ments of the detected target boundany (4:), following
the equations 31 and 32:

1=Cy-p2+2-¢ (31)

We have shown a powerful set of algorithms, which were
combined to form a universally useable system for auto-



Figure 10. Tracking Error in Pixels

mated target detection, tracking and position estimatien,

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

ing a single and fairly simple pan/tilt camera. The Bayesian [11]
based color constancy approach which was used ensures

that this system can keep working, even in harsh illumi-
nation conditions. This research was specifically aimed at
applicability in the field of robotics, yet due to its general [

structure it can also be used for a range of applications.
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