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Abstract

Visual servoing, or the control of motion on the basis
of image analysis in a closed loop, is more and more rec-
ognized as an important tool in modern robotics. In this
paper, we present a new model-driven approach to derive
a description of the motion of a target object. This method
can be subdivided into an illumination invariant target de-
tection stage and a servoing process which uses an adaptive
Kalman filter to update the model of the nonlinear system.
This technique can be applied to any pan-tilt-zoom camera
mounted on a mobile vehicle as well as to a static camera
tracking moving environmental features.

1 Introduction

The implementation of a system capable of performing
visual servoing in everyday environments requires careful
consideration of the mechanical, control and vision issues
involved in the closed-loop sensing system. The primary
elements are the detection of objects of interest moving in
the scene and their subsequent analysis during tracking over
time. Mechanically, this requires a pan-tilt camera platform.
The visual servoing approach is based on an information
feedback loop, which determines an error vector defined in
the vision space. This vector is updated after every image
acquisition. In a target tracking scheme, the error vector
is defined as a measure, at a given time, of the distance in
image coordinates between the target position and the im-
age center. This error serves to determine the control pa-
rameters of the pan-tilt platform (camera). Several research
works have been done in this area, among which we can cite
the work of Yoshimi and Allen [13] for target tracking and
object alignment. In their approach the visual servoing is
calibrated during operation using dedicated controlled mo-
tion of the robots end-effector. Zhang [14] and Corke [1]
use calibrated cameras, with an initialization phase for the
definition of a dynamic model leading to a predictive con-

troller. In our approach, an online identification method is
developed to estimate the target system dynamic model and
this model is used in a Kalman filter for tracking.
The proposed scheme consists of a 2-phase process. The
first phase deals with target detection. One of the major
problems arising here is the effect of an ever-changing illu-
mination, as a change in illumination will also change the
perceived colors - or more generally the perceived image
- of the environment. The presented classification algo-
rithm doesn’t take into account any other parameters (eg.
shape or texture) than the color attributes like other authors
have done [10], so illumination changes risk to be a prob-
lem. To counter this, we developed a color constancy ap-
proach to improve the classification capabilities of the color
target-tracking algorithm. Color constancy, as defined in
[8], is the ability to recover a surface description of color,
independent of the illumination. Numerous attempts have
already been made to solve this problem. Land and Mc-
Caan were the first to tackle the problem with their retinex
theory [7]. Others relied on finite-dimensional linear mod-
els [2], while also neural nets have been proposed to solve
the issue [3]. However, these techniques typically require
hours of calculation time to process one non-synthetic im-
age, making them totally unfit for real-time and real-world
vision tasks, as in the field of robotics. Here, we propose a
color constancy technique used for real-time target identifi-
cation under varying illumination conditions. In the second
phase, the one of the visual servoing, the motion model of
the target object is retrieved. This movement is not known
a-priori and the perspective projection relationship is a non-
linear one, so we have a nonlinear time-variant system. We
approximate this system as a linear time variant one and
use an observer-based full-state feedback control to imple-
ment the tracking function. From the online identification
we can solve the system-modeling problem. The method
of the observer-based full-state feedback control guarantees
the system stability. The camera control exploits the detec-
tion in conjunction with an affine fit between two consecu-
tive images. After the affine fit has been made, the camera



control parameters are estimated. To make the visual con-
trol loop compatible with the real-time constraint, a win-
dowing technique was used for the image processing task:
only a window around the detected object is processed. An
Extended Kalman Filter is then used to predict the future
size and position of the window in the image plane.
The rest of this paper is organized as follows: in section
2, the color-based classification process is described, while
section 3 explains the used camera control strategy. The pa-
per ends by showing some experimental results and drawing
some conclusions about the presented work.

2 Illumination invariant classification

2.1 Modellization

2.1.1 The color reflection model

The main problem for the correct interpretation of a camera
image is that the measured intensities are function of a large
number of parameters and most of them cannot be retrieved
due to their strong interconnectivity. The color of an object
in the image must be considered as an appearance rather
than as a real material property. Nevertheless, color can be
used to identify objects as long as the parameters which in-
fluence the formation of the perceived color are taken into
account. To do so, we make use of the dichromatic reflec-
tion model, which was first introduced by Shafer in [11]:

ρc = kb.

∫

λ

e(λ).fc(λ).rb(λ).dλ

+ ks.

∫

λ

e(λ).fc(λ).rs(λ).dλ (1)

Whereρc is the measured intensity of channelc, e(λ) is the
normalized light spectrum,fc(λ) is thecth channel sensor
response function,rb(λ) is the body reflectance function,
rs(λ) is the surface reflectance function,kb is the attenu-
ation factor for the body reflectance andks is the surface
reflectance attenuation factor.

2.1.2 Color spaces

Among the different color spaces, our choice went out to
thel1-l2-l3-space, a color space which was originally intro-
duced by Gevers and Smeulders in [4]. It poses an attrac-
tive alternative to the HSI space due to its computational
simplicity. The space can be formulated as follows:

l1 =
|R − G|

|R − G| + |R − B| + |G − B|

l2 =
|R − B|

|R − G| + |R − B| + |G − B|
(2)

l3 =
|G − B|

|R − G| + |R − B| + |G − B|

In [5], Gevers and Smeulders prove that according to the
dichromatic reflection theory, this space is invariant to high-
lights, viewing direction, surface orientation and illumina-
tion direction. This means that we can work with a simpli-
fied form of equation 1:

Hl1−l2−l3(x, t) =

∫

λ

e(λ, t).fc(λ).rb(λ, x).dλ (3)

2.1.3 Discretization

Equation 3 can be discretized by sampling over a number
of wavelength bands. We chose to use a finite dimensional
linear model with a limited amount of parameters and using
10 basis functions:

e(λ, t) = Be.qe

rb(λ, x) = Br.qr
(4)

The columns of theN × Ne Be matrix and those of the
N×Nr Br matrix represent the basis functions for the light
and the reflectance spectrum respectively. TheNe element
qe vector and theNr elementqr vector describe respectively
the illuminant and the body reflectance spectrum. IfD(fc)
is theN ×N diagonal matrix withfc as diagonal elements,
we get by inserting equations 4 in equation 3:

hc = qT
e .BT

e .D(fc).Br.qr (5)

The problem with this representation is that the basis and
sensor sensitivity functions are not well known. To avoid
this difficulty, we use an approach similar to the one de-
scribed in [12], which introduced a lighting and reflectance
matrix, parameterized using4×Ne variables in a manner in-
dependent of basis functions and sensitivity functions. The
idea is to write the vectorBT

e .D(fc).Br.qr asσc, which is
an alternative descriptive function for the body reflectance
function and which can be used to discriminate between ob-
served materials. This leads to a general equation:

hT = qT
e .σ (6)

With hT the color triplet in thel1-l2-l3 color-space andσ an
Ne × 3 matrix holding all the reflection characteristics in-
dependently of the illumination. This matrix needs to be es-
timated and based upon this estimate the classification pro-
cess can be performed.

2.2 Bayesian Color Classification

2.2.1 Learning

In a learning phase, the algorithm learns the reflection char-
acteristics of the object to be tracked. Small patches of im-
ages are accumulated over time while the material in ques-
tion is subjected to a varying illumination. All intensity



measurementsh are combined in anf × 3.p color measure-
ment matrixH, while p is the number of pixels in the scene
patch andf the number of frames sampled. If we sample for
long enough, then eventuallyf will grow larger thanp and
the light spectrum matrixQ and the reflection characteris-
tics matrixS can be recovered by applying singular value
decomposition onH, while H = Q.S.

H =




h(x1, t1)

T ... h(xp, t1)
T

... ... ...

h(x1, tf )T ... h(xp, tf )T





Q =
[

q(t1)
T ... q(tf )T

]T

S =
[

σ(x1) ... σ(xp)
]

(7)

At this moment,p(qe|l) or the light spectrum distribution
if the illuminant l is known, can be calculated. This can
be done becauseQ is independent of the material. We use
an Expectation Maximization (EM) clustering method to
derive the reflection distributions. This algorithm applies
multivariate Gaussian mixture modeling with an unknown
number of mixture components, which makes the classifi-
cation very flexible. The EM algorithm adds clusters until
the added model compliance becomes lower than a preset
treshold. As the log-likelihood for adding a new cluster de-
creases drastically once there are more clusters than illumi-
nation conditions, the algorithm generally succeeds in dis-
criminating the illumination conditions and creates clusters
accordingly. The result of this calculation is anNLS × Ne

light spectrum matrixL, with NLS the number of illumi-
nant spectra distinguished:

L =
[

qT
e (1) ... qT

e (n) ... qT
e (NLS)

]T
(8)

Together with the calculation ofL, the nominal color for
each of the clustered lighting conditions is calculated and
stored in anNLS × 3 color measurement matrixHN . With
this knowledge, we can calculate the inverse of theNe × 3
reflectance spectrum matrixR:

R−1 = H−1
N .L (9)

2.2.2 Pixel Classification

Having the reflectance spectrum of the target object and
the obtained illuminant spectra corresponding to different
lighting conditions, we can correctly classify newly pre-
sented pixels as belonging to the target object or not, while
keeping track of newly arising lighting conditions. We
present a Bayesian solution to solve these problems. New
scene properties are brought into the model based upon the
Maximum A Posteriori (MAP) estimate of these parame-
ters given the color measurements. When applying this

classification, we search for the conditions that maximize
p(o = oTarget, l, qe, σ|h) for any values of the lighting con-
dition l, the illuminant spectrumqe and the reflectance spec-
trum of the target objectσ, given the color measurement
triplet h.

[ô, l̂, q̂e] = argmax
[l,qe]

p(o, l, qe, σ|ĥ) (10)

Using Bayes’ rule, it can be shown that:

p(o, l, qe, σ|ĥ) ∝ p(ĥ|qe, σ).p(qe|l).p(l).p(o) (11)

To calculatep(ĥ|qe, σ), we suppose that the measurements
are corrupted by Gaussian noise:

p(ĥ|qe, σ) =
(

2.π
|Σh|

)−
3
2

.e
−
∥∥ĥT −qT

e
.σ

∥∥
Σh (12)

WhereΣh is the measurement covariance matrix,| | de-
notes the determinant and‖ ‖Σh

is the Mahalanobis dis-
tance:‖a‖Σ = aT .Σ−1.a

The measurement covariance matrix is calculated together
with the color measurement itself. To calculate the factor in
the exponent, we record the nominal color valueshN of the
perceived illuminants and these values are used to calculate
the Mahalanobis distance to the current color triplet.
The second factor in equation 11 represents the prior proba-
bility density of observing a certain illuminant spectrumqe,
given the lighting conditionl. This is calculated during the
Expectation Maximization phase of the learning process.
The third factor in equation 11p(l) describes the prior prob-
ability of observing a certain illumination condition on a
given point in the scene. There is no a priori knowledge
about this, yet over time, it is possible to build up some
knowledge about the different lighting situations at differ-
ent points in the scene and this information can be used to
derive a probability for the occurrence of lighting condi-
tions in novel scenes. To do this, an illumination map of
the surroundings of the target object is recorded. The val-
ues recorded in this map represent for each of the different
possible illumination conditions, the probability that they
would occur. These probabilities are calculated during the
classification process using a voting system: a positive clas-
sification for a pixel given a lighting condition increases the
probability for this lighting condition at this pixel position,
while decreasing all other probabilities.
The last factor in equation 11,p(o), representing the prior
probability of observing the target object in the scene, is es-
timated by dividing the number of pixels belonging to the
target object, estimated at the previous time-instance, bythe
total number of pixels in the image window.
Using these considerations, the pixel classification proce-
dure calculates the probability for each pixel and labels the
pixel as belonging to the target object or not based upon the



Figure 1. Image & Probability Distribution

result. Figure 1 shows an example of a probability distri-
bution for object presence calculated during the pixel clas-
sification process. The circular target object can clearly be
identified when observing this distribution, while the outlier
pixels can be considered as false classifications. Using this
classification theorem, the pixel classification is no longer
performed directly based upon the pixels color value, as is
classically done, but based upon the derived reflection char-
acteristics, which makes the detection process very robust.
This can also be observed by analyzing figure 2 which rep-
resents the unclassified pixels in grey and the classified pix-

Figure 2. Classification in l1, l2, l3&RGB space

els in black, both in thel1 − l2 − l3 and in theRGB-space.
This figure shows that the applied classification strategy al-
lows a large flexibility in the definition of the target objects
color domain, as the classified pixels account for a consid-
erable volume in both of the color spaces.

2.2.3 Model Updating

During the actual tracking phase, the illumination model
is continually updated using Bayesian reasoning. In this
model updating stage, estimates for new lighting conditions
and their corresponding illuminant spectra are calculated. It
is this procedure that ensures the adaptive nature of the pixel
classification process within the general target-trackingpro-
gram. The philosophy of this procedure is that we take a
small patch from the target object (shown on figure 9 as
the small square), try to recover the spectrum of the illumi-
nant shining on this part of the target object and update our

model if necessary. So, the first step in this process is to ob-
tain a patch from the target object. For this, we cannot rely
on the pixel classification process to tell us where the ball
is, as in this case no new information would be added to the
existing illumination model. The strategy here is to apply
a circle or ellipse fitting upon the classified pixels and then
to randomly select a patch within this circle or ellipse. The
model updating algorithm doesn’t need to run completely at
every iteration, since there won’t be a new illumination con-
dition with every new frame and only noteworthy changes in
illumination will result in the model being updated. These
exit conditions test the physical possibility of the proposed
model update considering the reflection characteristics of
the target object, the change in illumination and the covari-
ance on the measurements. The calculation of the new illu-
mination condition itself can happen very rapidly, since we
already know the reflectance spectrum matrix. After acquir-
ing a nominal color triplet measurementhN , we can write:

qe(Nnew) = hN .R−1 (13)

WhereR−1 is the pseudo-inverse of the reflectance spec-
trum matrix acquired during learning andNnew is the in-
dex of the rarest illumination condition within theL matrix,
which will thus be replaced by the new lighting condition.
The performance of this model updating process is illus-
trated in figure 3. Figure 3a shows the initial probabil-
ity distribution for target object presence, while figure 3b

shows the same distribution at a later time instance. This
illustrates how the update step improves the Bayesian re-
flection model, such that the target object can be classified
more clearly. In figures 3c and 3e, the initially classified
pixels are represented in black and the unclassified pixels in
grey, respectively in thel1 − l2 − l3 and theRGB-space,
while figures 3d and 3f show the same at a later time. These
two time instances are separated by a change in illumination
conditions and as one can observe, the cluster of classified
pixels has moved too in the color space.
The preceding discussion shows how we can acquire a de-
scription for the color of an object which is quite indepen-
dent of the illumination conditions. Now, the object can be
identified reliably and tracked in a following stage, as we’ll
explain in the next paragraph.

3 Camera Control for Target Tracking

We use the pinhole camera model and map the 3D world
coordinates onto the image plane using the perspective pro-
jection. Now, let us consider a pointP in the world coor-
dinate system and its projection in the imagep, as shown
in figure 4. The pointp is given by(u, v). The reciprocal
values of pixel size(dx, dy), the camera focal lengthf and
the principal point(o′u, o′v) are known from the camera cal-
ibration step.



Figure 3. Effects of Model Updating

Figure 4. Definition of parameters

In figure 4 we define two angles:

α = 6 ocx1 (14)

β = 6 ocy1 (15)

α andβ represent the difference in orientation between the
optical axis and the linecpP and can be calculated by:

α = tan−1

(
u − o′u
f · dx

)
(16)

β = tan−1

(
o′v − v

f · dy

)
(17)

Our aim is to keep the target center coincident with the im-
age center, thusα andβ will define the pan/tilt control pa-
rameters of the camera. We define the servomotor-target-
camera system as our plant. The above defined angles are
used for camera control and target tracking. The plant is
considered as a time variant system due to the unknown mo-
tion of the target. The target movement is estimated in real-
time and considered in our system as the plant state transi-
tion of free response. In order to meet the system dynamic
characteristic requirements, a two phase control strategy
was implemented with a separate initialization phase and
an observer based full state feedback control phase. During
the system initialization phase a Proportional and Integral
regulator is used to track the target. At the same time, the
plant input and output data are collected to identify the plant
model and to train the state observer and the adaptive filters
used in the system. The plant model is used in state ob-
servation and state feedback control. After a certain period
of time, the system control strategy is switched from phase
one into phase two: the full state feedback control state.

3.1 Target Tracking during Initialization

During the initialization phase, the system (camera) is
controlled by a PI regulator designed for target tracking.
The system is considered as a time invariant one and the tar-
get movement is considered as an environment disturbance
to the system. The block diagram of the control system for
this phase is given in figure 5. We represent the image cen-
ter aso, v is the target movement,n is the noise caused by
the target movement in perspective view angle,F (v) is the
transfer function, representing the relationship betweenv

andn, e is the signal error,u is the output of the regulator,
m is the camera optical axis movement andy is the cam-
era’s output, i.e. the new target image center. Using this

Figure 5. Initialization System Block Diagram

control method, the camera can start tracking right away,
while the model is being built up from zero.

3.2 Plant Model Identification

The dynamic properties of our system can be described
by the following set of nonlinear differential equations [9]:

~̇x(t) = f (~x(t), ~u(t), t) (18)



Where~x(t) ∈ <n is the state vector,~u(t) ∈ <m is the input
vector andf is a mapping<n ×<m → <n defined as:

f(~x(t), ~u(t), t) =




f1(~x(t), ~u(t), t)

...
fn(~x(t), ~u(t), t)



 (19)

To establish a practically useful plant model we must apply
a linearization around the equilibrium point(~x0, ~u0) where
both ~x0 and~u0 are zero. The control strategy consists of
keeping the target center and the image center coincident,
so we can always linearize the nonlinear dynamic system
around this equilibrium point and use a linear model to ap-
proximate the plant dynamics. For a discrete time system,
the corresponding function can be written as:

~x(k + 1) ≈ A · ~x(k) + B · ~u(k) (20)

Figure 6. Dynamic System Model

X(k + 1) = A(k).X(k) + B(k).u(k) + W (k) (21)

y(k) = C(k).X(k) + v(k) (22)

This can be observed on figure 6 and equations 21 and 22
whereX(k) represents the system state vector consisting of
the angular position and angular speed of the target image,
y(k) is the system output representing the difference be-
tween the camera principal point and the target image posi-
tion,A(k) is the plant system matrix,B(k) is the plant input
matrix,C(k) is the plant output matrix,W (k) is the model
noise vector,v(k) is the measurement noise variable and
u(k) is the system input, which is in our case the center of
the image plane. The matricesA andB are time-dependent,
so the corresponding linear system is a time variant one.
We simplified the plant model by considering a second or-
der difference model in order to reduce the calculation bur-
den. The parameters of the plant state space function and
the plant output function can then be written as:
[

x1 (k + 1)
x2 (k + 1)

]
=

[
0 1

−a0 −a1

] [
x1 (k)
x2 (k)

]
+

[
0
1

]
u (k)

(23)

y (k) =
[

b0 b1

] [
x1 (k)
x2 (k)

]
(24)

(x1, x2) is the state vector corresponding to one of
the camera angles (pan or tilt) and angular velocities.
(a0, a1, b0, b1) are the system parameters to be estimated.
We use a Least-Mean-Square (LMS)2nd-order adaptive fil-
ter as plant parameter estimator [6]. The same structure for
the LMS filter is used for both pan and tilt plant parameter
estimation. The estimator works in two steps. First, it uses
the updated input data, output data and filter’s tap weights
to estimate the system current output value. In the second
step, it uses the updated input data, output data and the error
between the estimated current output and the real output of
the system to modify the tap weights~w(k) of the filter. The
updated tap weights are our plant parameters’ estimates:

~w(k) =
[
−â1(k) −â0(k) b̂1(k) b̂0(k)

]T
(25)

After estimating the plant parameters, the matrices of the
state space model from instancek to k+1 can be estimated:

A(k + 1, k) =

[
0 1

−â0(k) −â1(k)

]
(26)

B(k + 1, k) =

[
0
1

]
(27)

C(k + 1, k) =
[

b̂0(k) b̂1(k)
]

(28)

3.3 Full State Feedback Control

The second phase control strategy consists of an
observer-based full-state-feedback control strategy. Anon-
line identification method identifis in real-time the plant
model and applies the identified model in the Kalman ob-
server to emphasize the influence of the change of plant
model on the plant state estimation. At the same time, the
estimated state models are used for the state feedback strat-
egy calculation to emphasize the time variant property of
the control system. The main tasks of this phase are observ-
ing the plant states, calculating the feedback control value
and identifying the plant model, as shown in figure 7.
Now that the plant model has been identified, its state vec-

tor is estimated using Kalman filtering [6]. The Kalman
filter works as a current observer, taking into account the
dynamics of the target’s movement by using the time vari-
ant plant model. It reduces the influence of noise coming
from the measurement inaccuracy and the model inaccu-
racy. From figure 8, we can see that the observer is a dy-
namic system. It takes the plant input and output as its input
and the estimated plant states as its output. The observer is
a negative feedback subsystem and it guarantees the conver-
gence of the observation.



Figure 7. Observer Based Full State Feedback

Figure 8. Full State Feedback Control System

~x(k + 1) = A(k + 1, k) · ~x(k) + B(k + 1, k) · ~u(k) +~v1(k)
(29)

~y(k) = C(k + 1, k) · ~x(k) + ~v2(k) (30)

In figure 8 and equations 29 and 30,u represents the plant
input signal (pan or tilt control signal),y is the plant out-
put signal (the angle estimated from the image),x̃ is the
estimated plant state vector,A(k + 1, k) is the plant system
transition matrix from instantk to instantk+1, B(k+1, k)
is the plant control input matrix from instantk to instant
k + 1, C(k + 1, k) is the plant output matrix from instantk

to instantk+1, ~v1(k) is the system process noise and~v2(k)
the observation noise vector at instantk. The pole assign-
ment method is used to design the state feedback controller.

3.4 Windowed Tracking

In order to increase the tracking sampling rate and the
signal-to-noise ratio of the camera control, a bounding box
(search window/region of interest) around the target image
is defined. An LMS filter is used to estimate and to pre-
dict the position (̄x ,ȳ ) and size (l ,h) of the defined search
window, taking into account the activity of the camera. The
window size is calculated by using the second order mo-
ments of the detected target boundary (µ2

x ,µ2
y), following

the equations 31 and 32:

l = C1 · µ
2
x + 2 · ε (31)

h = C2 · µ
2
y + 2 · ε (32)

whereC1 andC2 are scale factors andε is a tolerance.
The prediction of the search window position and size are
made during the tracking process. Therefore, the time-
variant characteristics of the system and the camera activity
are taken into account. The structures of the adaptive LMS
filters which are used for this purpose for the prediction of
the search window position and size are identical. The dif-
ference between the filters lies in the fact that the first one
uses the window position and the camera control signal as
inputs to return a new window position estimate, while the
second one uses the second order moments as inputs to cal-
culate the window size. The predictor works in two steps.
First, it uses the old input data and the current desired out-
put data to train the filter; that is, to update the filter tap
weights. In the second step, it uses the updated input data
and tap weights to estimate a prediction for the real output.
We define the prediction error as:

e(k) = d(k) − y(k) (33)

whered(k) is the desired output at the instantk andy(k)
is the predicted output at the instantk. The cost function is
defined as:

J(k) =
1

2
· E

[
|e(k)|

2
]

(34)

The filter minimizesJ(k), thereby estimating the search
window parameters. Experimentally a2nd order filter was
selected, because it proved to allow fast and stable tracking.

4 Experimental Results

Figure 9 shows the strength of the color constancy al-
gorithm by comparing two pictures shot during the same
indoor testing sequence, but with a difference in illumina-
tion conditions (lights turned off). As you can observe by
noticing the whitened pixels which mean that a target has
been found here, the algorithm succeeds in recognizing and
classifying the searched object.
Figure 10 shows the tracking error in theX direction and
demonstrates the tracking ability of this system. Notice the
little increment when the target moves closer to the camera;
it decreases when the target moves away from the camera.

Concerning the real-time capabilities, the target tracking
program is able to run at about 10fps on a PC equipped
with an 1.7GHz PIV processor, which is adequate for most
every-day target tracking tasks.

5 Conclusions

We have shown a powerful set of algorithms, which were
combined to form a universally useable system for auto-



Figure 9. Color Constancy Results

Figure 10. Tracking Error in Pixels

mated target detection, tracking and position estimation,us-
ing a single and fairly simple pan/tilt camera. The Bayesian-
based color constancy approach which was used ensures
that this system can keep working, even in harsh illumi-
nation conditions. This research was specifically aimed at
applicability in the field of robotics, yet due to its general
structure it can also be used for a range of applications.
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