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Abstract 
Due to the complexity of walking robots which has in 
general a great number of degrees of freedom, cognitive 
modelling controller such as Fuzzy Logic, Neural 
Networks…seems to be reasonable. Fuzzy Logic 
Controller is more used because it lets you describe 
desired system behaviour with simple “if-then” relations. 
But it has a major limitation because in many 
applications, the designer has to derive “if-then” rules 
manually by trial and error. In this paper, we show an 
original method to fix initial parameters of a Sugeno 
fuzzy controller apparently to Ziegler-Nichols rules. 
Simulations and application to a six-legged robot named 
AMRU5 has proved the effectiveness of this method. 
Then, we make the fuzzy controller obtained adaptive by 
combining it to Neural Networks technologies. 

1 Introduction 
Many robots (manipulator and mobile robots), until now, 
are controlled using linear controllers such as PD, 
PID…which are independent for each joint. It can be 
proven that those controllers are fairly effective. The two 
main reasons are [1]: 

- The large reduction ratios between the actuators 
and the link mechanism (non-linearities and 
coupling terms become less important) 

- The large feedback gains in the control loops 
(they enlarge the domain where the complete 
robot dynamics is locally equivalent to a linear 
model). 

These controllers limit the use of robots to slow motion 
applications and they operate over a small closely 
controlled range. However, the normal operational range 
of a robot is large and its payload also can vary. To have 
a controller which works on different operational range 
and take into account the change of the payload, the 
environment and the uncertainties (friction, 
flexibility…), necessitate a sort of on-line parameter 
estimation scheme in it (an adaptive controller). Most of 
classical adaptive controllers are based on the well-
known dynamic properties of robots which stipulate that 

parameters models (mass, moment inertia, link 
lengths…) are linear. They were applied successfully in 
simple cases (such as inverted pendulum system, planar 
two-link manipulator, five bar linkage manipulator…) 
where mathematical model can be deduced. They were 
also applied in complex cases but simplified by limiting 
for example, the normal operational range of the robot 
due to the difficulty of estimating uncertainties of the 
model. The problem become more complex for a walking 
robot which has in general a large number of degrees of 
freedom (we have 18 just for the robot to walk) and 
which requires changing internal parameters depending 
on the environment that it explores. Also, it seems 
practically difficult to build a representative model of a 
walking robot due to the problem of having accurate 
internal parameters (distance between joints, moment 
inertia…) and to accurately model some complex 
phenomena such as backslash, friction…In this case, 
cognitive modelling such as Fuzzy Control and Neural 
Networks seems to be reasonable. That’s why, we have 
investigate the way to control (joints and gait control) a 
six-legged robot named AMRU5 shown in Figure 1 using 
ANFIS (Adaptive Neuro-Fuzzy Inference System). In 
this paper, we are more focused on the joints control of 
the robot and we show an original method on how to fix 
initial parameters of a Sugeno fuzzy controller. 

 

 
Figure 1: Walking Robot AMRU5 



2 ANFIS1 Architecture 

2.1 Fuzzy Logic and Neural Networks 
 
Fuzzy Logic Controller (FLC) is more used because it 
lets you describe desired system behaviour with simple 
« if-then » relations. In many applications, this gets you a 
simpler solution in less design time. In addition, you can 
use all available engineering know-how to optimise the 
system performance directly. While this is certainly the 
beauty of fuzzy logic, at the same time it is a major 
limitation. In many applications, knowledge that 
describes desired system behaviour is contained in data 
sets. The designer has to derive the « if-then » rules from 
the data sets manually, which requires a major effort with 
large data sets. This is often done by trial and error. 
Without adaptive capability, the performance of FLCs 
relies on two factors: the availability of human experts, 
and knowledge acquisition techniques to convert human 
expertise into appropriate fuzzy « if-then » rules and 
membership functions. These two factors substantially 
restrict the application domain of FLCs. Changing shapes 
of membership functions can drastically influence the 
quality of the FLC. Thus methods for tuning fuzzy 
controllers are necessary. 
Artificial neural networks are highly parallel 
architectures consisting of simple processing elements, 
which communicate through weighted connections. They 
are able to approximate or to solve certain tasks by 
learning from examples. When data sets contain 
knowledge about the system to be designed, a neural net 
promises a solution because it can train itself from the 
data sets. However, only few commercial applications of 
neural nets exist due to the lack of interpretation of the 
solution, the prohibitive computational effort and the 
difficulty to select the appropriate net model .  
It becomes obvious that a clever combination of the two 
technologies delivers the best of both. Neuro-Fuzzy [2] is 
a combination of the explicit knowledge representation 
of the fuzzy logic with the learning power of the neural 
nets.  
 

2.2 Neuro-Fuzzy systems 
 
There are many approaches to combine fuzzy logic and 
Neural Networks, known among them are: 

- Cooperative Neuro-Fuzzy systems where ANN 
learning mechanism determines the FIS 
membership functions or fuzzy rules  from the 
training data after ANN goes to the background. 

- Concurrent Neuro-Fuzzy systems where ANN 
assists the FIS continuously to determine the 
required parameters. 

- Fused Neuro-Fuzzy systems is the methods 
where FL and ANN share data structures and 
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knowledge representations. In the above 
methods FL and ANN are separated. In fused  
systems, ANN learning algorithms are used to 
determine the parameters of FIS. For that, Fuzzy 
system is represented in a special ANN like 
architecture. Some of major works in this area 
are NEFCON, ANFIS[3], FALCON, GARIC, 
FINEST and many others. 

 

2.3 ANFIS Architecture 
 
In our application, we use the ANFIS [3] architecture. It 
keeps the structure of the fuzzy controller that is 
determined by the fuzzy rules as depicted in Figure 2.  

 

 
Figure 2: ANFIS Architecture 

 
At layer 1, every node is adaptive (premise parameters) 
with a node function which is the membership function. 
Node output at layer 2 represents the firing strength of a 
rule. In our application, it is a product of all the incoming 
signals but can be in general any T-norm operators that 
performs fuzzy AND. At layer 3, a normalised firing 
strengths is realised by making a ratio of rule’s firing 
strength to the sum of all rule’s firing strengths. Nodes at 
layer 4 are adaptive (consequent parameters) with node 
function which can be a first-order Sugeno, zero-order 
Sugeno, Mandani  or Tsukamoto fuzzy model. 
 

3 Design of an initial zero-order Sugeno 
Fuzzy Logic controller 

It is important to have an initial controller which works 
properly in a closed range. One of the reasons is that 
during the on-line learning, optimization algorithm will 
be used and the solution cannot converge to the good one 
if parameters of the controller are set far away of the true. 
We have to make a fuzzy controller which work properly 
in a closed range then make it adaptive to take into 
account uncertainties of the model. Many controller 
design avoid this problem by making first a classical 
controller (PD usually) then add another controller 
(Fuzzy or Neural Network) to deal with uncertainties. 
This makes the controller more complex. In our method, 



we design an initial Neuro-fuzzy controller which works 
similarly as a classical one. After, we make it adaptive to 
deal with uncertainties. To find good parameters of a 
fuzzy logic controller is not an easy task because they 
have in general a lot of parameters. If we have n input, m  
triangular membership functions (2 parameters to adjust 
by membership function) and a zero-order Sugeno FIS is 
used, we have to fix  parameters. For illustration of 
the method, we will use a fuzzy system with 2 triangular 
membership functions (N, P), 3 input (e(n), e(n-1) and 
e(n-2)) and a zero-order Sugeno FIS as shown on Figure 
2, but this method can be generalised. In this case, we 
have to fix 24 parameters. But if we fix parameters of the 
membership function, we have only 8 parameters to fix. 
A typical rule of such a system has the form: 

nm3

If e(i) is N, e(i-1) is P and e(i-2) is N then the output  

11111 )2()1()( sierieqiepz +−+−+=  (1) 

where { is the parameter set of one node. 

The equation (1) become 

}1111 ,,, srqp

11 sz =  (2) for a zero-order 
Sugeno FIS. 

 

 
Figure 2: Zero-Order Sugeno: two triangular MF and 

three input 
  
The first method to fix parameters of a controller is 
simple trial and error. Unfortunately, intuitive tuning 
procedures can be difficult to develop in the case of 
Sugeno FIS because a change in one tuning constant 
tends to affect the performance of others terms in the 
controller’s output. Also, the great number of parameters 
makes this method practically impossible. The second 
method can be the analytical approach to the tuning 
problem. It involves a mathematical model of the 
process. This method cannot be used because the 
advantage of fuzzy logic is precisely the fact that it is 
used on complex processes where the establishment of a 
reliable model is unimaginable. The third approach to the 
tuning problem is something of a compromise between 
purely self-teaching trial and error techniques and the 
more rigorous analytical techniques. It was originally 
proposed by John G. Ziegler and  Nathaniel B. Nichols 
[5] and remains popular today  because of its simplicity 
and its applicability to process  which can be describes 
by  a “gain”, a “time constant” and a “deadtime” (which 
is the case of  joints of robots actuated by DC motor). 
Ziegler and Nichols came up with a practical method for 
estimating the proportional, the integral and the 
derivative parameters of a PID controller. In this paper, 
we show how these techniques can be applied in the 
design of a fuzzy controller. 
 

3.1 How the method was developed? 
 
Many techniques used to turn a Mandani Fuzzy Model 
(which has less parameter compare to Sugeno Fuzzy 
Model) are intuitive. In many papers, books…they show 
which parameters to increase or to decrease by 
considering the rise time, the overshoot and the steady 
state error [4]. These techniques seem more like the art 
than engineering and they are difficult to apply them to 
Sugeno Fuzzy Model. The best solution to turn 
parameters of a Sugeno Fuzzy Model is by fusing Neural 
Networks to Fuzzy Logic Systems. But we need data to 
train the system. The first solution can be to collect them 
from a classical controller implemented to the real robot 
by giving random trajectories to the actuators. We 
noticed that we cannot cover all possible operating 
regions, the time to read data (on encoders, actuators,…) 
and to write them on a stored device is too short (the 
microcontroller has no much time sometime to write all 
the value) and there is noise on the data. The error 
obtained after training is still big by using these data. 
Another original solution could be the use of Ziegler-
Nichols rules originally applied to PID controllers. The 
analogue PID controller is expressed by the equation: 

dt
deKdtteKteKtu dip ∫ ++= )()()(  (2) 

 where e is the difference between the set point and the 
process output and u the command signal.  and 

 are controller parameters. 

ip KK ,

dK
Two practical methods can be used to have a first 
estimate of the PID controller parameters: 

- the step-response method 
- and the frequency response method  (only this 

method will be considered in this paper) 

3.1.1 The step-response method 
This method is based on a registration of the open-loop 
response of the system, which is characterized by two 
parameters. The parameters (a and L) are determined 
from a unit step response of the process, as shown in 
Figure 3. When those parameters are known, the 
controller parameters are obtained from Table 1. 
 

Controller 
Type pK  iK  dK  

P 

a
1

 
  

PI 

a
9.0

 
aL

3.0
 

 

PID 

a
2.1

 
aL

6.0
 

aL6.0  

Table 1: Parameters obtained from step-response 
method 



 

  
Figure 3: Step-response 

method 
Figure 4: Frequency 

response method 
 

3.1.2 The frequency-response method 
The idea of this method is to determine the point where 
the Nyquist curve of the open-loop system intersects the 
negative real axis. This is done by connecting the 
controller to the process and setting the parameters so 
that pure proportional loop system is obtained. The gain 
of the controller is then increased until the closed-loop 
systems reaches the stability limit. When this occurs, the 
gain  and the period of oscillation  shown on 
Figure 4 are determined. The controller parameters are 
then given by the Table 2. 

uK uT

 
Controller 
Type pK  i  K dK  

P 
uK5.0    

PI 
uK45.0  

u

u

T
K54.0

 
 

PID 
uK6.0  

u

u

T
K2.1

 uuTK075.0  

Table 2: Parameters obtained from frequency-
response method 

 

3.1.3 Method of turning an UFLC based on the 
frequency-response 

If the ultimate gain   and the ultimate period   of 
the process was determined by experiment or simulation, 
equation…can be write as follow: 

uK uT

dt
deTKdtte

T
K

teKtu uu
u

u
u ∫ ++= 075.0)(

2.1
)(6.0)(   (3) 

There exist different methods to convert equation (3) into 
discrete form for digital implementation such as Tustin 
approximations (or trapezoidal approximations), ramp 
invariance, rectangular approximations…When the 
sampling time T is short, all these methods have nearly 
the same performance. We’ll use rectangular 
approximations. Equation (3) becomes: 
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(4)-(5) gives 
)2()1()()1()()( 321 −+−+=−−=∆ neKneKneKnununu (6) 

Where
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Equation (6) can now be used to build a FLC controller 
that we called a UFLC (Unit FLC). UFLC will be 
determined by the equation: 

)2()1()()( 321 −+−+=∆ neKneKneKnu uuuu
 (7) 

where  is between -1 and 1. If we define a step t 
(0.001 for example), we can define a set A of numbers 
between -1 and 1 as follow: 

()ue

}1,1,21,,21,1,1{ ttttA −−+−+−−= K  
Then we constitute all possible set 

)}2(),1(),({ −− nenene uuu  with numbers which 
belong to  the set A. From each set, we calculate 

)(nuu∆  using equation(7). Finally, we can use the set 
)}(),2(),1(),({ nunenene uuuu ∆−−  to train the Neuro-

Fuzzy Controller. Using a hybrid learning paradigm 
(least square error algorithm for consequent parameters 
which are linear and backpropagation for premise 
parameters), we noticed that the initial membership 
functions did not change (premise parameters remain the 
same), only consequent parameters change) With 2 
triangular membership functions choose for our 
illustration, we have analytical expression shown in the 
Table 3. 
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u

u
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TT
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6 P N P 

TT
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u
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7 P P N 

TT
TTK

u

uu

20
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8 P P P 
u

u

T
TK

5
6  

Table 3: Rules of the system used for illustration 



The same procedure can be applied to the step-response 
method and to derive rules of a controller which depends 
from the parameters a and L. 

3.1.4 Use of the UFLC on a real process 
In practice, error will not belong always between -1 and 
1. We need some transformation to use the UFLC design 
on a real process. If the minimum error of the system is a 
and the maximum is b (a and b was determined by the 
limitation of each joint), a reduced error (error 
between -1 and 1) can be expressed as follow: 
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Equation (9) in (6) gives 
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Equation (10) becomes after simplification: 

25
6

2
)()( ab

T
TKabnunu

u

u
u

+
+

−
∆=∆  (11) 

Figure 5 shows how UFLC is used on a real process. 
 

 
Figure 5: Use of the UFLC on a real process 

 

3.1.5 How to determine ? uK
Two ways can be used to determine the ultimate 
gain : uK

- By using the proportional classical controller 
and change  until the system reach the 
stability limit 

pK

- By using the method mentioned above, we can 
easily build a UFLC which react exactly as a 
classical controller. For example, if we change 
to  the value of  for rule 1, 2, 3, 

4 and to  for rule 5, 6, 7, 8; the UFLC will 
react as a proportional classical controller. 

pK− )(nuu∆

pK

 

3.1.6 Application to a known function transfer  
To allow comparison between a classical PID controller 
and a UFLC, we have applied the method to the process 
with a transfer function 

3)1(
1)(
+

=
s

sG  (13) 

This process has the ultimate gain  and the 

ultimate period

8=uK

63.3
3

2
≈=

π
uT . From the Table 2 and 

Table 3, we can easily design a PID and an UFLC. 
Figure 6 shows the Matlab schematic used to compare 
the two controllers with the step function as the input. 
 

 
Figure 6:  Comparison between PID controller and 

UFLC 
 
The output of the two controllers and their result of the 
error (output of the PID controller subtract to the output 
of the UFLC) are shown on Figure 7 and 8. The error is 
less than 0.0063. 
 

 
Figure 7: Output of the PID controller and the UFLC 

 

 
Figure 8: Error between the PID controller and the 

UFLC 
 
 



4 Conclusions  
We show in this paper original methods to turn an initial 
ANFIS controller based on Ziegler-Nichols rules. The 
methods were applied to a zero-order Sugeno with 2 
triangular membership functions and 3 inputs. Analytical 
expression of turning rules was deduced from these 
methods. These methods can be easily extended to more 
than 2 triangular membership functions and to other 
types of fuzy model: first-order  Sugeno, Mandani, 
Tsukamoto. Indeed, the structure of 2 membership 
functions can be found in a structure with more than 2 
membership functions. The zero-order Sugeno is a 
particular case of a first-order Sugeno (just the constant 
element is no null), of a Mandani fuzzy model (each 
rule’s consequent is specified by a fuzzy singleton) and 
of  a Tsukamoto (each rule’s consequent is specified by a 
step membership function center at the constant). 
We obtain with the methods mentioned above a first 
approximation of the controller which can be refining 
after with adaptive paradigm. 
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