
Method to build an initial adaptive Neuro-Fuzzy controller for joints control of
a legged robot

J-C Habumuremyi, P. Kool and Y. Baudoin

Royal Military Academy-Free University of Brussels
08 Hobbema str, box:MRTM, 1000, Brussels, Belgium

E-mail:Jean-Claude.Habumuremyi@rma.ac.be;Pkool@vub.ac.be;
Yvan.Baudoin@rma.ac.be

Abstract
Due to the complexity of walking robots which has in
general a great number of degrees of freedom, cognitive
modelling controller such as Fuzzy Logic, Neural
Networks…seems to be reasonable. Fuzzy Logic
Controller is more used because it lets you describe
desired system behaviour with simple “if-then” relations.
But it has a major limitation because in many
applications, the designer has to derive “if-then” rules
manually by trial and error. In this paper, we show an
original method to fix initial parameters of a Sugeno
fuzzy controller apparently to Ziegler-Nichols rules.
Simulations and application to a six-legged robot named
AMRU5 has proved the effectiveness of this method.
Then, we make the fuzzy controller obtained adaptive by
combining it to Neural Networks technologies.

1 Introduction
Many robots (manipulator and mobile robots), until now,
are controlled using linear controllers such as PD,
PID…which are independent for each joint. It can be
proven that those controllers are fairly effective. The two
main reasons are [1]:

- The large reduction ratios between the actuators
and the link mechanism (non-linearities and
coupling terms become less important)

- The large feedback gains in the control loops
(they enlarge the domain where the complete
robot dynamics is locally equivalent to a linear
model).

These controllers limit the use of robots to slow motion
applications and they operate over a small closely
controlled range. However, the normal operational range
of a robot is large and its payload also can vary. To have
a controller which works on different operational range
and take into account the change of the payload, the
environment and the uncertainties (friction,
flexibility…), necessitate a sort of on-line parameter
estimation scheme in it (an adaptive controller). Most of
classical adaptive controllers are based on the well-
known dynamic properties of robots which stipulate that

parameters models (mass, moment inertia, link
lengths…) are linear. They were applied successfully in
simple cases (such as inverted pendulum system, planar
two-link manipulator, five bar linkage manipulator…)
where mathematical model can be deduced. They were
also applied in complex cases but simplified by limiting
for example, the normal operational range of the robot
due to the difficulty of estimating uncertainties of the
model. The problem become more complex for a walking
robot which has in general a large number of degrees of
freedom (we have 18 just for the robot to walk) and
which requires changing internal parameters depending
on the environment that it explores. Also, it seems
practically difficult to build a representative model of a
walking robot due to the problem of having accurate
internal parameters (distance between joints, moment
inertia…) and to accurately model some complex
phenomena such as backslash, friction…In this case,
cognitive modelling such as Fuzzy Control and Neural
Networks seems to be reasonable. That’s why, we have
investigate the way to control (joints and gait control) a
six-legged robot named AMRU5 shown in Figure 1 using
ANFIS (Adaptive Neuro-Fuzzy Inference System). In
this paper, we are more focused on the joints control of
the robot and we show an original method on how to fix
initial parameters of a Sugeno fuzzy controller.

Figure 1: Walking Robot AMRU5

2 ANFIS1 Architecture

2.1 Fuzzy Logic and Neural Networks

Fuzzy Logic Controller (FLC) is more used because it
lets you describe desired system behaviour with simple
« if-then » relations. In many applications, this gets you a
simpler solution in less design time. In addition, you can
use all available engineering know-how to optimise the
system performance directly. While this is certainly the
beauty of fuzzy logic, at the same time it is a major
limitation. In many applications, knowledge that
describes desired system behaviour is contained in data
sets. The designer has to derive the « if-then » rules from
the data sets manually, which requires a major effort with
large data sets. This is often done by trial and error.
Without adaptive capability, the performance of FLCs
relies on two factors: the availability of human experts,
and knowledge acquisition techniques to convert human
expertise into appropriate fuzzy « if-then » rules and
membership functions. These two factors substantially
restrict the application domain of FLCs. Changing shapes
of membership functions can drastically influence the
quality of the FLC. Thus methods for tuning fuzzy
controllers are necessary.
Artificial neural networks are highly parallel
architectures consisting of simple processing elements,
which communicate through weighted connections. They
are able to approximate or to solve certain tasks by
learning from examples. When data sets contain
knowledge about the system to be designed, a neural net
promises a solution because it can train itself from the
data sets. However, only few commercial applications of
neural nets exist due to the lack of interpretation of the
solution, the prohibitive computational effort and the
difficulty to select the appropriate net model .
It becomes obvious that a clever combination of the two
technologies delivers the best of both. Neuro-Fuzzy [2] is
a combination of the explicit knowledge representation
of the fuzzy logic with the learning power of the neural
nets.

2.2 Neuro-Fuzzy systems

There are many approaches to combine fuzzy logic and
Neural Networks, known among them are:

- Cooperative Neuro-Fuzzy systems where ANN
learning mechanism determines the FIS
membership functions or fuzzy rules from the
training data after ANN goes to the background.

- Concurrent Neuro-Fuzzy systems where ANN
assists the FIS continuously to determine the
required parameters.

- Fused Neuro-Fuzzy systems is the methods
where FL and ANN share data structures and

1 Adaptive Neuro-Fuzzy Inference Systems

knowledge representations. In the above
methods FL and ANN are separated. In fused
systems, ANN learning algorithms are used to
determine the parameters of FIS. For that, Fuzzy
system is represented in a special ANN like
architecture. Some of major works in this area
are NEFCON, ANFIS[3], FALCON, GARIC,
FINEST and many others.

2.3 ANFIS Architecture

In our application, we use the ANFIS [3] architecture. It
keeps the structure of the fuzzy controller that is
determined by the fuzzy rules as depicted in Figure 2.

Figure 2: ANFIS Architecture

At layer 1, every node is adaptive (premise parameters)
with a node function which is the membership function.
Node output at layer 2 represents the firing strength of a
rule. In our application, it is a product of all the incoming
signals but can be in general any T-norm operators that
performs fuzzy AND. At layer 3, a normalised firing
strengths is realised by making a ratio of rule’s firing
strength to the sum of all rule’s firing strengths. Nodes at
layer 4 are adaptive (consequent parameters) with node
function which can be a first-order Sugeno, zero-order
Sugeno, Mandani or Tsukamoto fuzzy model.

3 Design of an initial zero-order Sugeno
Fuzzy Logic controller

It is important to have an initial controller which works
properly in a closed range. One of the reasons is that
during the on-line learning, optimization algorithm will
be used and the solution cannot converge to the good one
if parameters of the controller are set far away of the true.
We have to make a fuzzy controller which work properly
in a closed range then make it adaptive to take into
account uncertainties of the model. Many controller
design avoid this problem by making first a classical
controller (PD usually) then add another controller
(Fuzzy or Neural Network) to deal with uncertainties.
This makes the controller more complex. In our method,

we design an initial Neuro-fuzzy controller which works
similarly as a classical one. After, we make it adaptive to
deal with uncertainties. To find good parameters of a
fuzzy logic controller is not an easy task because they
have in general a lot of parameters. If we have n input, m
triangular membership functions (2 parameters to adjust
by membership function) and a zero-order Sugeno FIS is
used, we have to fix parameters. For illustration of
the method, we will use a fuzzy system with 2 triangular
membership functions (N, P), 3 input (e(n), e(n-1) and
e(n-2)) and a zero-order Sugeno FIS as shown on Figure
2, but this method can be generalised. In this case, we
have to fix 24 parameters. But if we fix parameters of the
membership function, we have only 8 parameters to fix.
A typical rule of such a system has the form:

nm3

If e(i) is N, e(i-1) is P and e(i-2) is N then the output

11111)2()1()(sierieqiepz +−+−+= (1)

where { is the parameter set of one node.

The equation (1) become

}1111 ,,, srqp

11 sz = (2) for a zero-order
Sugeno FIS.

Figure 2: Zero-Order Sugeno: two triangular MF and

three input

The first method to fix parameters of a controller is
simple trial and error. Unfortunately, intuitive tuning
procedures can be difficult to develop in the case of
Sugeno FIS because a change in one tuning constant
tends to affect the performance of others terms in the
controller’s output. Also, the great number of parameters
makes this method practically impossible. The second
method can be the analytical approach to the tuning
problem. It involves a mathematical model of the
process. This method cannot be used because the
advantage of fuzzy logic is precisely the fact that it is
used on complex processes where the establishment of a
reliable model is unimaginable. The third approach to the
tuning problem is something of a compromise between
purely self-teaching trial and error techniques and the
more rigorous analytical techniques. It was originally
proposed by John G. Ziegler and Nathaniel B. Nichols
[5] and remains popular today because of its simplicity
and its applicability to process which can be describes
by a “gain”, a “time constant” and a “deadtime” (which
is the case of joints of robots actuated by DC motor).
Ziegler and Nichols came up with a practical method for
estimating the proportional, the integral and the
derivative parameters of a PID controller. In this paper,
we show how these techniques can be applied in the
design of a fuzzy controller.

3.1 How the method was developed?

Many techniques used to turn a Mandani Fuzzy Model
(which has less parameter compare to Sugeno Fuzzy
Model) are intuitive. In many papers, books…they show
which parameters to increase or to decrease by
considering the rise time, the overshoot and the steady
state error [4]. These techniques seem more like the art
than engineering and they are difficult to apply them to
Sugeno Fuzzy Model. The best solution to turn
parameters of a Sugeno Fuzzy Model is by fusing Neural
Networks to Fuzzy Logic Systems. But we need data to
train the system. The first solution can be to collect them
from a classical controller implemented to the real robot
by giving random trajectories to the actuators. We
noticed that we cannot cover all possible operating
regions, the time to read data (on encoders, actuators,…)
and to write them on a stored device is too short (the
microcontroller has no much time sometime to write all
the value) and there is noise on the data. The error
obtained after training is still big by using these data.
Another original solution could be the use of Ziegler-
Nichols rules originally applied to PID controllers. The
analogue PID controller is expressed by the equation:

dt
deKdtteKteKtu dip ∫ ++=)()()((2)

 where e is the difference between the set point and the
process output and u the command signal. and

 are controller parameters.

ip KK ,

dK
Two practical methods can be used to have a first
estimate of the PID controller parameters:

- the step-response method
- and the frequency response method (only this

method will be considered in this paper)

3.1.1 The step-response method
This method is based on a registration of the open-loop
response of the system, which is characterized by two
parameters. The parameters (a and L) are determined
from a unit step response of the process, as shown in
Figure 3. When those parameters are known, the
controller parameters are obtained from Table 1.

Controller
Type pK iK dK

P

a
1

PI

a
9.0

aL

3.0

PID

a
2.1

aL

6.0

aL6.0

Table 1: Parameters obtained from step-response
method

Figure 3: Step-response

method
Figure 4: Frequency

response method

3.1.2 The frequency-response method
The idea of this method is to determine the point where
the Nyquist curve of the open-loop system intersects the
negative real axis. This is done by connecting the
controller to the process and setting the parameters so
that pure proportional loop system is obtained. The gain
of the controller is then increased until the closed-loop
systems reaches the stability limit. When this occurs, the
gain and the period of oscillation shown on
Figure 4 are determined. The controller parameters are
then given by the Table 2.

uK uT

Controller
Type pK i K dK

P
uK5.0

PI
uK45.0

u

u

T
K54.0

PID
uK6.0

u

u

T
K2.1

 uuTK075.0

Table 2: Parameters obtained from frequency-
response method

3.1.3 Method of turning an UFLC based on the
frequency-response

If the ultimate gain and the ultimate period of
the process was determined by experiment or simulation,
equation…can be write as follow:

uK uT

dt
deTKdtte

T
K

teKtu uu
u

u
u ∫ ++= 075.0)(

2.1
)(6.0)((3)

There exist different methods to convert equation (3) into
discrete form for digital implementation such as Tustin
approximations (or trapezoidal approximations), ramp
invariance, rectangular approximations…When the
sampling time T is short, all these methods have nearly
the same performance. We’ll use rectangular
approximations. Equation (3) becomes:

T
neneTKTie

T
K

neKnu uu

n

iu

u
u

)1()(075.0)(
2.1

)(6.0)(
1

−−
++= ∑

=

 (4)

T
neneTKTie

T
K

neKnu uu

n

iu

u
u

)2()1(075.0)(
2.1

)1(6.0)1(
1

1

−−−
++−=− ∑

−

=

 (5)

(4)-(5) gives
)2()1()()1()()(321 −+−+=−−=∆ neKneKneKnununu (6)

Where
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ++
=

u

uuu

TT
TTTTK

K
22

1
168

40
3 ,

⎟
⎠
⎞

⎜
⎝
⎛ −−

=
T

TTK
K uu 4

20
3

2
 and

T
TK

K uu

40
3

3 =

Equation (6) can now be used to build a FLC controller
that we called a UFLC (Unit FLC). UFLC will be
determined by the equation:

)2()1()()(321 −+−+=∆ neKneKneKnu uuuu
 (7)

where is between -1 and 1. If we define a step t
(0.001 for example), we can define a set A of numbers
between -1 and 1 as follow:

()ue

}1,1,21,,21,1,1{ ttttA −−+−+−−= K
Then we constitute all possible set

)}2(),1(),({ −− nenene uuu with numbers which
belong to the set A. From each set, we calculate

)(nuu∆ using equation(7). Finally, we can use the set
)}(),2(),1(),({ nunenene uuuu ∆−− to train the Neuro-

Fuzzy Controller. Using a hybrid learning paradigm
(least square error algorithm for consequent parameters
which are linear and backpropagation for premise
parameters), we noticed that the initial membership
functions did not change (premise parameters remain the
same), only consequent parameters change) With 2
triangular membership functions choose for our
illustration, we have analytical expression shown in the
Table 3.

Rule)(ne

)1(−ne

)2(−ne

)(nun∆

1 N N N

u

u

T
TK

5
6−

2 N N P

TT
TTK

u

uu

20
)8(3 22 −−

3 N P N

TT
TTK

u

uu

10
)2(3 2+−

4 N P P

TT
TTTTK

u

uuu

20
)88(3 22 ++−

5 P N N

TT
TTK

u

uu

10
)2(3 2+

6 P N P

TT
TTK

u

uu

10
)4(3 22 +

7 P P N

TT
TTK

u

uu

20
)8(3 22 −

8 P P P
u

u

T
TK

5
6

Table 3: Rules of the system used for illustration

The same procedure can be applied to the step-response
method and to derive rules of a controller which depends
from the parameters a and L.

3.1.4 Use of the UFLC on a real process
In practice, error will not belong always between -1 and
1. We need some transformation to use the UFLC design
on a real process. If the minimum error of the system is a
and the maximum is b (a and b was determined by the
limitation of each joint), a reduced error (error
between -1 and 1) can be expressed as follow:

)(neu

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +

−
−

=
2

)(2)(abne
ab

neu
 (8)

and
22

)()(ababnene u
+

+
−

= (9)

Equation (9) in (6) gives

2
)(

2
))2()1()(()(321321

abKKKabneKneKneKnu nnn
+

+++
−

−+−+=∆
 (10)

Equation (10) becomes after simplification:

25
6

2
)()(ab

T
TKabnunu

u

u
u

+
+

−
∆=∆ (11)

Figure 5 shows how UFLC is used on a real process.

Figure 5: Use of the UFLC on a real process

3.1.5 How to determine ? uK
Two ways can be used to determine the ultimate
gain : uK

- By using the proportional classical controller
and change until the system reach the
stability limit

pK

- By using the method mentioned above, we can
easily build a UFLC which react exactly as a
classical controller. For example, if we change
to the value of for rule 1, 2, 3,

4 and to for rule 5, 6, 7, 8; the UFLC will
react as a proportional classical controller.

pK−)(nuu∆

pK

3.1.6 Application to a known function transfer
To allow comparison between a classical PID controller
and a UFLC, we have applied the method to the process
with a transfer function

3)1(
1)(
+

=
s

sG (13)

This process has the ultimate gain and the

ultimate period

8=uK

63.3
3

2
≈=

π
uT . From the Table 2 and

Table 3, we can easily design a PID and an UFLC.
Figure 6 shows the Matlab schematic used to compare
the two controllers with the step function as the input.

Figure 6: Comparison between PID controller and

UFLC

The output of the two controllers and their result of the
error (output of the PID controller subtract to the output
of the UFLC) are shown on Figure 7 and 8. The error is
less than 0.0063.

Figure 7: Output of the PID controller and the UFLC

Figure 8: Error between the PID controller and the

UFLC

4 Conclusions
We show in this paper original methods to turn an initial
ANFIS controller based on Ziegler-Nichols rules. The
methods were applied to a zero-order Sugeno with 2
triangular membership functions and 3 inputs. Analytical
expression of turning rules was deduced from these
methods. These methods can be easily extended to more
than 2 triangular membership functions and to other
types of fuzy model: first-order Sugeno, Mandani,
Tsukamoto. Indeed, the structure of 2 membership
functions can be found in a structure with more than 2
membership functions. The zero-order Sugeno is a
particular case of a first-order Sugeno (just the constant
element is no null), of a Mandani fuzzy model (each
rule’s consequent is specified by a fuzzy singleton) and
of a Tsukamoto (each rule’s consequent is specified by a
step membership function center at the constant).
We obtain with the methods mentioned above a first
approximation of the controller which can be refining
after with adaptive paradigm.

5 References
[1] T. Yoshikawa, “Foundations of Robotics: Analysis
and Control”. Massachusetts Institute of Technology,
USA, 1990

[2] D. Nauck, F. Klawonn and R. Kruse. “Combining
Neural Networks and Fuzzy Controllers” FLAI’93, Linz,
Austria, Jun. 28-Jul.2, 1993

[3] J. –S. R. Jang, C. T. Sun and E. Mizutani. “Neuro-
Fuzzy and Soft Computing” . Prentice-Hall (UK), 1997

[4] B. Subudhi, A. S. Morris, “Fuzzy and Neuro-Fuzzy
approaches to control a flexible single-link manipulator ”
IMechE 2003, 29 May 2003

[5] J.G. Ziegler and N.B. Nichols, “Optimum settings for
automatic controllers”, Trans. ASME, 64, 759, 1942

	Introduction
	ANFIS� Architecture
	Fuzzy Logic and Neural Networks
	Neuro-Fuzzy systems
	ANFIS Architecture

	Design of an initial zero-order Sugeno Fuzzy Logic controlle
	How the method was developed?
	The step-response method
	The frequency-response method
	Method of turning an UFLC based on the frequency-response
	Use of the UFLC on a real process
	How to determine?
	Application to a known function transfer

	Conclusions
	References

