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Abstract 
Due to the complexity of walking robots which has in general a great number of degrees of freedom, cognitive 
modelling controller such as Fuzzy Logic, Neural Networks…seems to be reasonable in the design of adaptive control 
of such robot. Fuzzy Logic Controller is more used because it lets you describe desired system behaviour with simple 
“if-then” relations. But it has a major limitation because in many applications, the designer has to derive “if-then” 
rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but 
we cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are 
complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring 
knowledge representation (Neuro-Fuzzy). In this paper, we show an original method to design an adaptive Neuro-Fuzzy 
controller which consists in five steps that are: the initial design of an ANFIS controller, the identification of the 
dynamic model of the leg joints, the estimation of the parameters of the dynamic model, the calculation of an ideal 
torque and the updating of the parameters of the controller and  finally the design of the supervisory control.  

1 Introduction 
Many robots (manipulator and mobile robots), until now, are controlled using linear controllers (PID) which are 
independent for each joint. It can be proven that those controllers are fairly effective. The two main reasons are [1]: 

- The large reduction ratios between the actuators and the link mechanism (non-linearities and coupling terms 
become less important) 

- The large feedback gains in the control loops (they enlarge the domain where the complete robot dynamics is 
locally equivalent to a linear model). 

These controllers operate over a small range in which the dynamics of the system are considered as linear. These 
controllers limit the use of such robots to slow motion applications and fixed payload. However, the normal operational 
range of a robot may be large, and its payload also could change. To have a controller which works on different 
operational range and take into account the change of the payload, the environment and the uncertainties (friction, 
flexibility,…), necessitate a sort of on-line parameter estimation scheme in it (an adaptive controller). Most of classical 
adaptive controllers are based on the well-known dynamic properties of robots which stipulate that the dynamic model 
of a system is linear with respect to the dynamic parameters (mass, moment inertia, link lengths…). Even for simple 
cases, it remains difficult to have the relation which expresses the linearity of the dynamic parameters in the dynamic 
model. The problem become more complex for a walking robot which has in general a large number of degrees of 
freedom (we have 18 just for the robot to walk) and which requires changing internal parameters depending on the 
environment that it explores. Also, it seems practically difficult to build a representative model of a walking robot due 
to the problem of having accurate internal parameters (distance between joints, moment inertia…) and to accurately 
model some complex phenomena such as backslash, friction…In this case, cognitive modelling such as Fuzzy Control 
and Neural Networks seems to be reasonable.  
Fuzzy Logic Controller (FLC) is more used because it lets you describe desired system behaviour with simple « if-
then » relations. In many applications, this gets you a simpler solution in less design time. In addition, you can use all 
available engineering know-how to optimise the system performance directly. While this is certainly the beauty of fuzzy 
logic, at the same time it is a major limitation. In many applications, knowledge that describes desired system behaviour 
is contained in data sets. The designer has to derive the « if-then » rules from the data sets manually, which requires a 
major effort with large data sets. This is often done by trial and error. Without adaptive capability, the performance of 
FLCs relies on two factors: the availability of human experts, and knowledge acquisition techniques to convert human 
expertise into appropriate fuzzy « if-then » rules and membership functions. These two factors substantially restrict the 



application domain of FLCs. Changing shapes of membership functions can drastically influence the quality of the 
FLC. Thus methods for tuning fuzzy controllers are necessary. 
Artificial neural networks are highly parallel architectures consisting of simple processing elements, which 
communicate through weighted connections. They are able to approximate or to solve certain tasks by learning from 
examples. When data sets contain knowledge about the system to be designed, a neural net promises a solution because 
it can train itself from the data sets. However, only few commercial applications of neural nets exist due to the lack of 
interpretation of the solution, the prohibitive computational effort and the difficulty to select the appropriate net model.  
It becomes obvious that a clever combination of the two technologies delivers the best of both. Neuro-Fuzzy [2] is a 
combination of the explicit knowledge representation of the fuzzy logic with the learning power of the neural nets. In 
this paper, we show the way to design an adaptive Neuro-fuzzy controller in order to track determined trajectories in 
different situations. Five steps have been considered in the design of such a controller. 
 

 
Figure 1: Walking Robot AMRU5 

2 ANFIS1 Architecture 
There are many approaches to combine fuzzy logic and Neural Networks, known among them are: 

- A Cooperative Neuro-Fuzzy system where ANN learning mechanism determines the FIS membership 
functions or fuzzy rules from the training data after ANN goes to the background. 

- Concurrent Neuro-Fuzzy systems where ANN assists the FIS continuously to determine the required 
parameters. 

- Fused Neuro-Fuzzy systems are the methods where FL and ANN share data structures and knowledge 
representations. In the above methods FL and ANN are separated. In fused systems, ANN learning algorithms 
are used to determine the parameters of FIS. For that, Fuzzy system is represented in a special ANN like 
architecture. Some of major works in this area are NEFCON, ANFIS[3], FALCON, GARIC, FINEST and 
many others. 

In our application, we have used the ANFIS [3] architecture. It keeps the structure of the fuzzy controller that is 
determined by the fuzzy rules as depicted in Figure 2. 
  
At layer 1, every node is adaptive (premise parameters) with a node function which is the membership function. Node 
output at layer 2 represents the firing strength of a rule. In our application, it is a product of all the incoming signals but 
can be in general any T-norm operators that performs fuzzy AND. At layer 3, a normalised firing strengths is realised 
by making a ratio of rule’s firing strength to the sum of all rule’s firing strengths. Nodes at layer 4 are adaptive 
(consequent parameters) with node function which can be a first-order Sugeno, zero-order Sugeno, Mamdani  or 
Tsukamoto fuzzy model. 
 

                                                           
1 Adaptive Neuro-Fuzzy Inference Systems 



 
Figure 2: ANFIS Architecture 

 

3 Step 1: Design of an initial zero-order Sugeno Fuzzy Logic controller 
It is important to have an initial controller which works properly in a closed range. One of the reasons is that during the 
on-line learning, optimization algorithm will be used and the solution cannot converge to the good one if parameters of 
the controller are set far away of the true. We have to make a fuzzy controller which work properly in a closed range 
then make it adaptive to take into account uncertainties of the model. Many controller design avoid this problem by 
making first a classical controller (PD usually) then add another controller (Fuzzy or Neural Network) to deal with 
uncertainties. This makes the controller more complex. In our method, we design an initial Neuro-fuzzy controller 
which works similarly as a classical one. After, we make it adaptive to deal with uncertainties. To find good parameters 
of a fuzzy logic controller is not an easy task because they have in general a lot of parameters. If we have n input, m 
triangular membership functions (2 parameters to adjust by membership function) and a zero-order Sugeno FIS is used, 
we have to fix  parameters. For illustration of the method, we will use a fuzzy system (equivalent to a 
discrete PID controller) with 2 triangular membership functions (N, P), 3 input (e(n), e(n-1) and e(n-2)) and a zero-order 
Sugeno FIS as shown on Figure 2, but this method can be generalised. In this case, we have to fix 20 parameters. But if 
we fix parameters of the membership function, we have only 8 parameters to fix. A typical rule of such a system has the 
form: 

nmmn2 +

If e(i) is N, e(i-1) is P and e(i-2) is N then the output equal  

11111 )2()1()( sierieqiepz +−+−+=  (1) 

Where : is the parameter set of one node. The equation (1) become  (2) for a zero-order 
Sugeno-Takagi FIS. 
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Figure 2: Zero-Order Sugeno: two triangular MF and three input 

 
The first method to fix parameters of a controller is simple trial and error. Unfortunately, intuitive tuning procedures 
can be difficult to develop in the case of Sugeno FIS because a change in one tuning constant tends to affect the 
performance of others terms in the controller’s output. Also, the great number of parameters makes this method 
practically impossible. The second method can be the analytical approach to the tuning problem. It involves a 
mathematical model of the process. This method cannot be used because the advantage of fuzzy logic is precisely the 
fact that it is used on complex processes where the establishment of a reliable model is unimaginable. The third 



approach to the tuning problem is something of a compromise between purely self-teaching trial and error techniques 
and the more rigorous analytical techniques. It was originally proposed by John G. Ziegler and  Nathaniel B. Nichols 
[5] and remains popular today  because of its simplicity and its applicability to process  which can be describes by  a 
“gain”, a “time constant” and a “dead time” (which is the case of  joints of robots actuated by DC motor). Ziegler and 
Nichols came up with a practical method for estimating the proportional, the integral and the derivative parameters of a 
PID controller. In this paper, we show how these techniques can be applied in the design of a fuzzy controller. 
 

3.1 How the method was developed? 
 
Many techniques used to turn a Mandani Fuzzy Model (which has less parameter compare to Sugeno Fuzzy Model) are 
intuitive. In many papers, books…they show which parameters to increase or to decrease by considering the rise time, 
the overshoot and the steady state error [4]. These techniques seem more like the art than engineering and they are 
difficult to apply them to Sugeno Fuzzy Model. The best solution to turn parameters of a Sugeno Fuzzy Model is by 
fusing Neural Networks to Fuzzy Logic Systems. But we need data to train the system. The first solution can be to 
collect them from a classical controller implemented to the real robot by giving random trajectories to the actuators. We 
noticed that we cannot cover all possible operating regions, the time to read data (on encoders, actuators,…) and to 
write them on a stored device is too short (the microcontroller has no much time sometime to write all the value) and 
there is noise on the data. The error obtained after training is still big by using these data. Another original solution 
could be the use of Ziegler-Nichols rules originally applied to PID controllers. The analogue PID controller is expressed 
by the equation: 

dt
deKdtteKteKtu dip ∫ ++= )()()(  (3) 

 Where e:  is the difference between the set point and the process output and u the command signal.  and  
are controller parameters. 

ip KK , dK

Two practical methods can be used to have a first estimate of the PID controller parameters: 
- the step-response method 
- and the frequency response method  (only this method will be considered in this paper) 

3.1.1 The step-response method 
This method is based on a registration of the open-loop response of the system, which is characterized by two 
parameters. The parameters (a and L) are determined from a unit step response of the process, as shown in Figure 3. 
When those parameters are known, the controller parameters are obtained from Table 1. 
 

  
Figure 3: Step-response method Figure 4: Frequency response 

method 
 

3.1.2 The frequency-response method 
The idea of this method is to determine the point where the Nyquist curve of the open-loop system intersects the 
negative real axis. This is done by connecting the controller to the process and setting the parameters so that pure 
proportional loop system is obtained. The gain of the controller is then increased until the closed-loop systems reaches 
the stability limit. When this occurs, the gain  and the period of oscillation  shown on Figure 4 are determined. 
The controller parameters are then given by the Table 2. 

uK uT



Controller 
Type pK  iK  dK  
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a
1

 
  

PI 

a
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aL
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PID 

a
2.1

 
aL

6.0 aL6.0
 

 

Table 1: Parameters obtained from 
step-response method  

Controller 
Type pK  iK  dK  
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Table 2: Parameters obtained from frequency-response 
method 

 
 

3.1.3 Method of turning an UFLC based on the frequency-response 

If the ultimate gain   and the ultimate period   of the process were determined by experiment or simulation, 
equation 3 can be written as follow: 

uK uT

dt
deTKdtte

T
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u ∫ ++= 075.0)(

2.1
)(6.0)(   (4) 

There exist different methods to convert equation (3) into discrete form for digital implementation such as Tustin 
approximations (or trapezoidal approximations), ramp invariance, rectangular approximations…When the sampling 
time T is short, all these methods have nearly the same performance. We’ll use rectangular approximations. Equation 
(4) becomes: 

T
neneTKTie

T
K

neKnu uu

n

iu

u
u

)1()(075.0)(
2.1

)(6.0)(
1

−−
++= ∑

=

 (5) 

T
neneTKTie

T
K

neKnu uu

n

iu

u
u

)2()1(075.0)(
2.1

)1(6.0)1(
1

1

−−−
++−=− ∑

−

=

 (6) 

(5)-(6) gives 
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Equation (6) can now be used to build a FLC controller that we called a UFLC (Unit FLC). UFLC will be determined 
by the equation: 

)2()1()()( 321 −+−+=∆ neKneKneKnu uuuu
 (8) 

where  is between -1 and 1. If we define a step t (t equal 0.001 for example), we can define a set A of numbers 
between -1 and 1 as follow: 

()ue

}1,1,21,,21,1,1{ ttttA −−+−+−−= K  

Then we constitute all possible set )}2(),1(),({ −− nenene uuu  with numbers which belong to  the set A. From each 

set, we calculate  using equation(8). Finally, we can use the set )(nuu∆ )}(),2(),1(),({ nunenene uuuu ∆−−  to train the 
Neuro-Fuzzy Controller. Using a hybrid learning paradigm (least square error algorithm for consequent parameters 
which are linear and backpropagation for premise parameters), we noticed that the initial membership functions did not 
change (premise parameters remain the same), only consequent parameters change. With 2 triangular membership 
functions choose for our illustration, we have analytical expression shown in the Table 3. 
 
The same procedure can be applied to the step-response method and to derive rules of a controller which depends from 
the parameters a and L. 

3.1.4 Use of the UFLC on a real process 
In practice, error will not belong always between -1 and 1. We need some transformation to use the UFLC design on a 
real process. If the minimum error of the system is a and the maximum is b (a and b was determined by the limitation of 
each joint), a reduced error (error between -1 and 1) can be expressed as follow: )(neu
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Table 3: Rules of the system used for illustration 
Equation (10) in (7) gives 
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Equation (11) becomes after simplification: 
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Figure 5 shows how UFLC is used on a real process. 
 

 
Figure 5: Use of the UFLC on a real process 

 
 



3.1.5 Application to a known function transfer  
To allow comparison between a classical PID controller and a UFLC, we have applied the method to the process with a 
transfer function 

3)1(
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This process has the ultimate gain  and the ultimate period8=uK 63.3
3

2
≈=

π
uT . From the Table 2 and Table 3, we 

can easily design a PID and an UFLC. Figure 6 shows the Matlab schematic used to compare the two controllers with 
the step function as the input. 
 

 
Figure 6:  Comparison between PID controller and UFLC 

 
The output of the two controllers and their result of the error (output of the PID controller subtract to the output of the 
UFLC) are shown on Figure 7 and 8. The error is less than 0.0063. We can see how close they behave in the same way 
and the small error between them is mainly due to the truncation of the numbers. 
 

  
Figure 7: Output of the PID controller and the UFLC Figure 8: Error between the PID controller and the UFLC 

 



4 Step 2: Identification of the dynamic model of the legs 
ANFIS will be used to identify the dynamic model of each legs of the robot AMRU5. The dynamic model of the amru5 
leg (or robot in general) is formulated as: 

RF
T
F FJGFCA )()(),(),()( θθθθθθθθθτ −+++= &&&&&  (14) 

Where: 
[ 321 ,, ]ττττ =  Is the vector of forces/torques 

[ 321 ,, ]θθθθ =  Is the vector of the position coordinates 

)(θA  Is the inertia matrix 

),( θθ &C  Is the centrifugal and Coriolis vectors 

),( θθ &F  Are frictions forces acting on the joints 

)(θG  Is the vector of the gravitational forces/torques 
T
FJ  Is a transpose of a Jacobian matrix 

RFF  Is the vector of the reaction forces that the ground exerts on the robot feet 

 
Equation 14 can be written in a compact way as follow: 

( ) ( )θθθθτ &&& ,HA +=  (15) 

With being defined as a whole without distinguishing the differences among the different terms. 

contains centrifugal, Coriolis, gravitational forces, viscous friction, coulomb friction and reaction forces 
terms. 

),( θθ &H
),( θθ &H

We have used a 2D pantograph mechanism for each leg. This mechanism shown on Figures 9 and 10 has the 
particularity to have a decoupling of the joint 3θ   from the joints 2θ  and 1θ . Equation 15 can be split in two parts as 
follows: 
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Figure 9: 2D pantograph mechanism Figure 10: General structure of the AMRU5  robot leg 

 
We will only consider the system of equation 16 to explain the ANFIS joints control. Equation 17 is particular case. To 
identify  parameters of the dynamic model described by equation 16, we need its equivalent discrete-time version 



defined by nonlinear difference equations. To approximate and  (i=1 to 2), we have used the Taylor series and we 
find: 
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Where is the sampling time. t∆
Equation … becomes in discrete-time: 

( )( ) ( ) ( ) ( )( )kθ,kθHkθkθAτ(k) &&& +=  (20) 
The procedure to have an Offline (Online is also possible) ANFIS dynamic model of the coupled joints 1 and 2 is as 
follows: 

1. Collect ( ) ( )( ) ( (k)τ(k),τ1),(kθ1),(kθkτ,1kθ 2121 )++≡+  from trajectories of the actuators on the 
joints 1 and 2. These trajectories are chosen in such a way to cover all the possible movements of the two 
joints. 

2. Constitute from these collected data sets 
3. The sets defined above will be used in the parallel identification model shown in Figure 11. Trial and error 

have to be used to find the best type of membership function to use, the number of linguistic variables and the 
type of  Takagi-Sugeno FIS. The final RMSE (Root Mean-Square Error) of each trial gives a comparative 
evaluation between different ANFIS models. 

 

 
Figure 11: Offline ANFIS parallel Identification model 

 

5 Step 3: Estimation of the parameters of the dynamic model 

It is necessary to estimate to estimate the elements of the symmetric inertia matrix ( )( )kθA  and the elements of the 

matrix ( ) ( )( )kθ,kθH &  because they will be used in the strategy control. To estimate those elements, we use the 
principle that the elements of the inertia matrix are only dependent on θ and the element of the matrix  (k)

( ) ( )( )kθ,kθH &   are dependent on and  i.e. if we change and maintain θ and with the same 
value, elements of the inertia matrix will remain the same. 
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By applying the principle stated above, we have: 
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The resolution of the system of equations 22 and 23 gives the estimated values of the elements of the inertia matrix. 
There are two way to determine  (by using the system of equations 22 or the system of equations 23).  These two 
ways could give an idea on the precision of the estimated parameters. 

12A

6 Step 4: Calculation of the ideal torque to control the joints and updating of the parameters 
of the controller 

From equation 20, we obtain: 
( )( ) ( ) ( )( ) ( ) ( )( )kθ,kθHkθAkτkθA(k)θ 11 &&& −− −=  (24) 

If we suppose that the matrices A  and H are known exactly, we can define a control law as follows: 
[ ]ke(k)θ))k(),k((H))k((A(k))A(τ(k) d

1 ++= − &&&θθθθ  (25) 

where is the vector with the desired angular accelerations of the joints 1 and 2. 

is the tracking error vector where 
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Introducing 25 in 24, we have: 
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We can see that , which is the main objective of the control. Since 0)t(elim jt =∞→ A  and H  are not known 

exactly, we replace them respectively by  A~  and H~ obtained from the ANFIS model. The resulting control law is: 
[ ]ke(k)θ))k(),k((H~))k((A~(k))(A~(k)τ d

1
c ++= − &&&θθθθ  (27) 

(k)τ c obtained from an approximated model of the process is called the certainty equivalent controller [6] in the 

adaptive control literature. This torque will be used to update the parameters of the initial controller designed. If aτ  is 
the output of the zero order Takagi-Sugeno controller, it can be expressed as: 
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Where n is the number of rules, iω the product of the output of the membership functions which belong to the rule i and  

the output weight of the rule i. We update only the output weights of the rules by minimizing the error 

(backpropagation algorithm) . For the lth rule with 
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The update law of the weight of lth rule is 
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Whereη  is the learning rate. 

7 Step 5: Design of the supervisory control 
For simplicity of writing, we will not put the terms between brackets. Equation 24 can be written as follows:  
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Introducing 27 in 31 and defining φ  as , b as  and e as previously, we obtain 
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Where    )H~A~HA()AA~(J 11
c
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We define a Lyapunov function Pee
2
1V T=  

Where P is a positive definite symmetric 4X4 matrix which satisfies the Lyapunov equation  (Q is 
an arbitrary 4X4 positive definite matrix. The derivative of the Lyapunov candidate function gives: 

QPPT −=+ φφ

PbJeQee
2
1V TT +−=&  (33) 

In order for  to be bounded we require that V must be bounded that means  when V is greater 

than a large constant

e ,e dd && −− θθ 0V ≤&

V . However, from equation 33, it is difficult to design cτ  such that  is less than zero. To 

solve this problem we add another term 

PbJeT

sτ  to cτ  called supervisory control term. The control torque 

becomes sc τττ += . With the new definition ofτ , we obtain: 
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Substituting 34 in 33, we have: 
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Using the known properties of the dynamic model of robot in general which stipulate that the inertia matrix and its 
inverse is positive definite and bounded (i.e. ∞<≤<∃ βα0 , such that ) and if 

we suppose we know (or we estimate it with great values) the upper bound 

n
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where equal 1 if  and -1 if )xsgn( 0x ≥ 0x < . 
Substituting equation 37 in equation 36, we obtain 
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8 Illustration of the proposed NF Controller 
The implementation of this controller on the real robot (which is not a negligible task and which can prove to be 
difficult because of the interaction between the software and the hardware) was not going to give us quantitative and 
qualitative measurements allowing the comparison of this controller with the range of some considered controllers and 
that in various situations. It is for that reason we have recognized the need of having a software to simulate dynamically 
the leg of the robot. We have used the simMechanics toolbox of the MathWorks, Inc. The Figure 12 shows all the block 
diagrams of the considered controller. This diagram has the leg model of the AMRU5 (block legModel) and the initial 
PD-like Fuzzy Logic Controller as subsystems. Figure 13 shows the comparison between the proposed adaptive 
controller and the initial controllers (PD-like controller) when tracking a square signal. We can see on this Figure how 
fast the adaptive controller reaches the set point and how small is the final error. On the simMechanics legModel, we 
have an entry where we can change the external force acting of the robot (it can be the case when the robot is on a 
slope, the payload is changed by adding for example devices on the robot (battery, sensors…)). Doing that (5N acting 
horizontally at the foot), we can see on Figure 14 that the response of the non-adaptive controller becomes worse while 
the adaptive controller adapts to the new situation. 
 

Figure 12: The blocks of the ANFIS controller designed 



  
Figure 13: Response of the adaptive controller (solid 

line) and of the initial controller (doted line) to a square 
signal 

Figure 14: Response of the adaptive controller (solid line) 
and of the initial controller (doted line) to a square signal and 

change of the load 
 

9 Conclusions  
In this paper, we have shown the way to derive parameters of a zero-order Sugeno Fuzzy Logic Controller from the 
Ziegler-Nichols method. This method makes a Fuzzy Logic Controller to behave as a classical controller (PID, PI, PD, 
P). As zero-order Sugeno Fuzzy Logic is a particular case of known fuzzy reasoning methods (Mamdani, first-order 
Sugeno, Tsukamoto), we can conclude that the performance comparisons between a PID and Fuzzy Logic controllers  
which can be found in some paper are debatable. A Fuzzy Logic Controller includes the classical PID controller but it is 
a non-linear controller and it can cope with more complex situations like variable payload. We have also developed a 
method on how to find the model and the parameters of the process using the adaptive Fuzzy Inference System. We 
have tested this method on a two link planar manipulator because we have a mathematical model of it. The comparison 
between the outputs of the method developed and the mathematical mode show the validity of it. Our method is very 
general because it is based on the properties of the equation describing the dynamic model of robots. Finally, we have 
presented the way to adapt parameters of the initial controller design. The Lyapunov method has been used to prove that 
the controller designed is bounded. This method is based on the model of the process obtained, on the estimation of the 
lower and upper bound of the inertia matrix and also the upper bound of the matrix containing the Coriolis, the 
centrifugal, the gravitational and the frictions vectors. 
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