
CoRoBA, an Open Framework for Multi-Sensor
Robotic Systems Integration

Eric Colon
Unmanned Ground Vehicles Center

Royal Military Academy
Avenue de la Renaissance,30, B-1000 Brussels, Belgium

eric.colon@rma.ac.be

Hichem Sahli
Dept. Electronics & Information Processing

Vrije Universiteit Brussel
VUB-ETRO, Pleinlaan, 2, B-1050 Brussels, Belgium

hichem.sahli@vub.ac.be

 Abstract - This paper presents the recent developments of a
distributed framework for integrating multi-sensor robotic
systems and controlling robots. It is based on the
communication middleware CORBA.

 Index Terms - control framework, distributed computing,
CORBA

I. INTRODUCTION

Computer systems are the backbones of all robotic
applications. Since many years, searchers have developed
ad-hoc programs for every new system. It is consequently
difficult to build on existing systems and to reuse existing
applications. There is a crucial need for reusable libraries,
control framework and components. Efforts in this
direction have focused on autonomous systems while we
are also targetting tele-operation. Some are based on
proprietary communication libraries like in [1] and [2],
others are based on CORBA (Common Object Request
Broker Architecture) like in [3] and [4].

Before going further, we give two useful definitions.
A framework is a reusable, "semi-complete" application.
It provides generic modules which generally need to be
customized and extended in function of the application. An
architecture is an instance of the framework. It is
composed by selected modules which are customized and
completed by application specific modules. A good
designed framework should allow to implement different
control architecture.

It is evident that such a framework has to be based on
robust communication libraries and to claim to be open it
must subscribe as much as possible to existing standards.
When considering communication libraries it appears that
one communication middleware has been present for more
than 10 years and has now reached its maturity, this
middleware is CORBA. This standard is briefly presented
in section II. In the section III we explain the framework
and component design while the software implementation
is summarized in section IV. The 3D simulator that has
been developed and integrated in the framework is briefly
described in section V. The section VI gives practical
informations on the framework use. The section VII
considers different examples of typical tele-robotic
applications and shows how the framework can be used in
each case. The last section discusses some issues when
integrating existing systems.

II. COMMUNICATION MIDDLEWARE

CORBA is actualy a specification of the Object
Management Group (OMG). Presently more than 30
implementations are available on the market. Some are
freely available others are commercial products. Their
common characteristic is that none of these versions
implements all specifications. While the third version of
CORBA has been published, most of the CORBA
implementations conform partially to the version 2.3 or 2.6
of the specifications.

CORBA offers different communication solutions that
give the developer a large freedom when implementing
distributed applications. Besides the 2-way method call,
we can also make use of the Asynchronous Messaging
Invocation (AMI) or of the event-based communication.
The 2-way method is the most familiar to the programmer
because it applies to remote calls the same principles as to
a local method call. The method call blocks until the
response is received from the remote object. It corresponds
to a classical client-server scheme.

The AMI allows sending processing requests to a
remote object without blocking the calling process. This
later receives the response when this is available. A
callback or a polling mechanism have to be used to get the
response data. The AMI mechanism requires to modify the
client but not the server which is unaware of this change.

There are many situations where the standard
CORBA (a)synchronous request/response model is too
restrictive. For instance, clients have to poll the server
repeatedly to retrieve the latest information. Likewise,
there is no way for the server to efficiently notify groups of
interested clients en masse when data change. For these
reasons the OMG introduced the Event Service and the
Notification Service.

In event-based communication we do not speak
anymore about client and server but about suppliers and
consumers (see Fig. 1). The CORBA specifications define
different methods for sending and receiving events:
consumers and producers can push or pull the events.
Implementations of the Events Service act as “mediators”
that support decoupled communication between objects.
Events are typically represented as messages that contain
optional data fields.

A primary goal of the Notification Service is to
enhance the Event Service by introducing the concepts of
filtering and configurability according to various quality of

Fig. 1 Event based communication model

service requirements. Clients of the Notification Service
can subscribe to specific events of interest by associating
filter objects with the proxies through which the clients
communicate with event channels. Furthermore, the
Notification Service enables each channel, each
connection, and each message to be configured to support
the desired quality of service with respect to delivery
guarantee, event aging characteristics, and event
prioritization. The advantages of this communication
method is counterbalanced by the complicated consumer
registration (multiple interfaces, bidirectional object
reference handshake, ...). Not all CORBA libraries
implement the Notification Service.

III. FRAMEWORK AND COMPONENT DESIGN

The framework architecture defines how the different
components are integrated into the framework and how
they are interrelated. Framework services are divided into:

• Structural services: these offer the basic services
that will be used by other components (Name
server, Time server, configurator, supervisor, ...).

• Application services: the building blocks of an
application (sensors, navigation, ...).

Because we cannot preclude of any use or special
needs, the different communication methods are available
in our control framework. In our design, we distinguish the
control data flow from the management data flow. What
concerns the control data flow, we have opted for an event
based communication scheme while the management
communication is based on the classical 2-way. Because
each service is managed individually, event
communication does not offer any advantage. Moreover,
by writing interfaces and methods we can create CORBA
object references that are registered with the NameService
and are used by other services to locate them.

Inspired by classical control applications, application
services have been divided in three categories: sensors,
processors and actuators. Sensors have connections with
the physical world and they output data to one Event
Channel. Processors get their inputs from one Event
Channel, they transform data and send the result to another
Event Channel. Actuators have output connections with the
physical world and received data from one Event Channel
(see also section V).

A service is composed of a main thread in which runs
the Object Request Broker (ORB) and a service thread that
runs its own loop (Fig. 2). The service thread can be

Fig. 2 Service structure

managed remotely. It admits the following commands:
start, pause, wakeup, stop. The service has 3 working
modes that can be remotely selected: synchronous (process
data when available), periodic (whose period can be
changed) and external (synchronized on an external
trigger). The normal synchronous 2-way can also be used
with methods declared in the idl interfaces (see section
IV). The Table I lists what happens for the different
service categories in the different modes.

TABLE I
WORKING MODES FOR COROBA SERVICES

Sensor Processor Actuator

synchronous Push event each
time new sensor
values are
available

Process data and
push events
each time a new
event is received

Sends data to
external system
each time a new
event is received

Periodic Reads the sensor
values and push
events at periodic
intervals

Process data and
push event at
periodic
intervals

Sends data
periodically to
external system

External Reads sensor
values and push
events when
externally
triggered

Process data and
push events
when externally
triggered

Sends data to
external system
when externally
triggered

Synchronous
(2 way)

Reads and
returns sensor
values

Process data
received as
parameters and
return values

Sends data
received as
parameters to
external system.

The service can also be remotely destroyed. Its life cycle is
resumed in the Fig. 3.

Fig. 3 Service Life Cycle

Svc
Main

 Thread
Svc

Thread

Svc
Main

 Thread
Svc

Thread

Life cycle events

Applications events

Management commands

Idle

Running

Suspended

Start Pause

Wakeup

set_mode

set_period

trigger
Stop

Stop

Supplier

Supplier

Event Channel

Consumer

Consumer

Consumer

Events Events

IV. SOFTWARE IMPLEMENTATION

A. Corba Libraries
For the software implementation of the framework we

consider two programming language, i.e. C++ and Java.
We have chosen the TAO implementation among others as
the CORBA library for C++ developments for the
following reasons: TAO [] has been ported to many
operating systems including almost all UNICES, Win32,
VMS, QNX, ... and TAO is based on the very popular
ACE library which is a (efficient) platform-independent
communication library. In [5] we showed that TAO has all
the characteristics to satisfy the software requirements of
the control framework. Concerning Java, as long as we use
the 2-way communication scheme, the SUN

implementation coming with the Java Development Kit is
sufficient but for the AMI or or the Notification Service we
have used the popular CORBA implementation JacORB.

In [6] we presented in more details the
communication options of CORBA and we analyzed which
one is more suited to the different needs in a control
framework. A demonstration application has also be
presented, it allows a CORBA 2-way remote access to a
classical serial port. In order to be invoked remotely, the
methods have to be defined in CORBA interfaces written
with the CORBA Interface Definition Language (idl). The
idl compiler generates classes (C++ classes in the case of
TAO, Java classes with JacORB) that allow the remote
invocation of methods and the transfer of parameters over
the network in a transparent manner. The client that calls a
method is not aware that the object that implements it is
not local to the process.

B. Service interfaces and class hierarchy
The base service declares generic management

methods in the Service interface. All interfaces are put in a
module named RMA. The file RMA_Service.idl contains
the following code:

module RMA {
 interface Service {
 // typedef and enum are omitted here
 // Exception definitions and raises are omitted here

 SvcMode get_mode();
 void set_mode (in SvcMode mode)

 Msec get_period();
 void set_period (in Msec period)

 void trigger() raises(BadMode,NotRunning);

 Msec get_duration () raises(NotRunning);

 void start() raises(CannotStart, AlreadyRunning);
 void stop() raises(NotRunning);
 void pause() raises(NotRunning);
 void wakeup() raises(NotRunning);

 SvcInfo get_info();

 oneway void destroy();
 }
};

The CORBA idl compiler generates header (*.h) and
code files (*.cpp) for the client and the server side as well
as an empty implementation class of the interface methods
defined in the idl file. The programmer has to fill in the
empty bodies with the code to perform the desired actions.

We have defined three interfaces that inherits from
the Service interface: Sensors, Processors and Actuators.
The idl declaration file for the Sensor interface is listed
below.

#include “RMA_Service.idl"
module RMA {
 interface Sensor : Service {
 exception SensorException {string msg_error;};
 any get_sensor_value() raises (SensorException);
 };
};

Those interfaces are considered as abstract and they
may not be instantiated. The real services are derived from
those three interfaces. Some examples are
Motion_Command_Sensors, Motion_Command_Processor
and Vehicle_Actuator. The idl declaration file for the
Motion_Command_Sensor interface is listed below.

#include "RMA_Sensor.idl"
module RMA {

 typedef long MotionCommand;
 typedef sequence<MotionCommand> McmdSeq;

 interface Motion_Command_Sensor : Sensor {
 typedef short NumberOfAxis;
 MCmdSeq get_motion_command();
 NumberOfAxis get_number_of_axis();
 };
};

What we have presented until now is sufficient to
write a classical client server application and to invoke the
methods in 2-way calls. For using events we need other
CORBA objects that are defined in the NotificationService
specifications. All those objects are defined in idl files and
the implementation classes are available in the TAO
libraries. Objects of those classes have to be instantiated in
the different services. The Sensor uses a Supplier, the
Processor has both a Consumer and a Supplier and the
actuator instantiates a Consumer.

We also need to add code for creating and managing
the service thread. This operation is realized by inheriting
from an ACE class, i.e. ACE_Task_Base. This class
defines several virtual functions that have to be
implemented in the service code:

 virtual int svc (void);
 virtual int close(void);
 virtual int suspend(void);
 virtual int resume(void);

Each service is implemented as a class that inherits
from automatically generated CORBA classes and from
implementation classes. The implementation class name in
our example is Motion_Command_Sensor_i. The structure
of the classes is illustrated in the Fig. 4.

Fig. 4 Class inheritance of the Motion_Command_Sensor_i

V. SIMULATOR

MoRoS3D is a 3D robotic simulator which is written in
Java. It is based on Java3D for all 3D aspects. The
simulator has ben designed to allow distributed control of
many identical or different models of mobile robots.
Currently only flat terrain models are allowed but in the
next future 3D terrain following will also be implemented.
Tri-dimensional elements have been divided in different
categories: robots, obstacles and terrain. Elements
geometry can be read from files or directly created using
Java code. The simplified data structure of the virtual
world is represented in the Fig. 5.

Fig. 5 Virtual world structure

Collision detection between the robots and between
robots and obstacles works efficiently. It does not use the
collision behaviors delivered with the SUN Java3D
libraries because this one is implemented as an
asynchronous detection system. Therefore collision
detections are sometimes reported severall frames after the
robot has entered into the obstacles! We consequently
implemented a collision detection system based on the
Java3D picking mechanism. At this moment only one type
of robot has been implemented, a Nomad200 as we still
use such a model in our laboratory.

Sensors are off course necessary to simulate any
useful robot application. Therefore a first version of a
distance sensor has also been defined and implemented.
We can see the graphical representation of the measuring
process in the Fig. 6.

A TimerBehavior generates timer events which are
propagated to other collision and sensor behaviors.

The class SensorBGroup, which extends
BranchGroup, defines the geometry of the sensors and also
contains a LaserBehaviour that performs the operations
simulating the measurement process. This behaviour is
triggered by a timer event generated by the global
TimerBehaviour of the simulator. The measured distances
are visually depicted by variable length red rays. The
distance are stored in a local array that is also accessible
from CORBA methods (see below).
 The simulator has naturally CORBA capabilities. The
ORB is run in a separate thread that allows dispatching the
CORBA calls to the right objects.
The idl definition of CORBA interfaces are listed below.
The Nomad interface is derived from a generic Robot
interface. The Sensor interfaces is also included in this file.

module MoRoS3DCorba
{
 interface Robot
 {
 void move_rel (in float dist, in float angle);
 void move_abs (in float x, in float y, in float angle);
 };

interface Nomad: Robot
 {

Fig. 6 The simulator with 3 robots

POA_RMA::Service

Start, stop, pause,
wakeup, trigger
get_mode, set_mode
get_period, set_period
get_duration, get_info
destroy

POA_RMA::Sensor

get_sensor_value

POA_RMA::Motion_Command_Sensor

get_motion_command
get_number_of_axis

ACE_Task_Base

Svc, suspend, resume,
close

RMA_Service_i

init

RMA_Sensor_i

get_sensor_data

RMA_Motion_Command_Sensor_i

send_event

SimpleUniverse

Canvas3D ViewPlatformBranchGroup

Zoom
Rotate

Translate

TransformGroup

BranchGroup

TerrainBGroup

BranchGroup

TimerBehaviour

ObstaclesBGroup robotBGroup
robotBGroup

 long pr(in long t_pr, in long s_pr, in long r_pr);
 long vm(in long t_vm, in long s_vm, in long r_vm);
 long dp(in long x, in long y);
 long da(in long th, in long tu);
 void get_rc(out long x, out long y, out long steer, out long turret);
 void get_rv(out long vel_trans, out long vel_steer, out long vel_turret);
 };

 typedef long Sensor_data[16];
 interface Sensor {
 Sensor_data get_data();
 };
};

Along writing new services, some existing code or
applications will need to be integrated in the framework.
We can distinguish different types of integration: database,
library and application. Integration is generally made by
providing a facade, aka an object wrapper [Design pattern:
wrapper facade]. The wrapper is in this case a distributed
object and its implementation manages the interaction with
the existing system. When developing the facade, one has
to capture the business model of the existing system and
develop interfaces that reflects this model. For wrapping
libraries, we need to pay attention to serialize data access
if existing libraries are not thread-safe. The difficulty for
wrapping applications depends on the available
mechanisms available for communicating with it: API,
network messages (traditional client/server), file-based
communication (batch program).

If we consider the case of a Nomad200, we have an
API which is available for Linux OS. So we can write an
actuator that translates CORBA method invocations to
motion command functions of the API and a Sensor that
reads the different sensor' values and propagates them as
events.

The methods listed in the Nomad interface keep the
same signature as original functions of the Nomad200 API.
The JacORB idl compiler applied to this file generates the
stubs and skeletons necessary to write client and server
applications. A Java class NomadImpl extends one of the
generated class (NomadPOA) but in order to be able to
receive events, it also implements the interface
org.omg.CosNotifyComm.StructuredPushConsumerOperat
ions. This interface defines one method that is called by
the NotificationService mechanism to send events to the
consumer.

VI. UTILISATION

The following steps have to be followed in order to build a
useful applications from the different services.

• Start the NameService.
The NameService is a kind of phone book that stores the
name of the services and their CORBA Object Reference,
that is, how to contact the service (it contains e.g. The
server name or ip address, the port and a private key).

• Start the NotificationService
This service is used to create and managed Event Channels
It registers with the NameService.

• Start the different services.
We take the Motion_Command_Sensor service as

example to explain the starting sequence whose
startinginfo are showed in Fig 7.

Fig. 7 Start sequence info for a Sensor service

The main() function creates an instance of the utility
RMA_Sensor_Object and performs the following actions:

1. Initializes the RMA_Sensor_Object
2. Initializes the ORB
3. Tries to resolve a running NameService
4. Tries to resolve the NotificationService from the

Naming service
5. Creates EventChannels
6. Creates the Supplier Admin
7. Creates a Supplier
8. Creates the Service

After all objects have been created, the run() method
of the RMA_Sensor_Object is called; this method calls the
run() method of the ORB, starting the CORBA operations.

Each service is a console application that takes
parameters on the command line to select the input and/or
input channels as well as the name that is registered with
the NameService (each instance of a service class has a
CORBA Reference and can be registered with a
NameService).

start CoRoBa_Sensor.exe -s RMA_Sensor1 -e 0

The Fig. 8 shows examples of names that are registered
with the NameService.

A console management application (CoRoBa Remote
Control or crc) has been developed to remotely manage the
life cycle of the services. It gets the reference to the
CORBA objects from the NameService.

 crc -n RMA_Sensor1 -c command

The available commands are start, stop, pause, wakeup,
info. We can also change the working mode:

 crc -n RMA_Sensor1 -m mode <-p period>

The last two lines of the Fig. 7 illustrates this command.
The mode has been changed to periodic with a period of
300 ms.

Fig. 8 Tree of the Services registered with the NameService

How can we combine the different services together ?
On the command line we can pass the channel number we
want the process to communicate through (-e channel
number -i input_channel -o output_channel). If the
channel does not exist, the service will create it (and all
other channels below it). Each channel receives a unique id
number from the NotificationService. We can see an
example in the Fig. 7. In this case, three channels exist and
the first one is selected by the service. It means that the
Sensor will send the events on the first channel (id=4).

It can be a joystick that sends the raw X-Y data. We
can use an actuator that is connected to the physical system
(or to the simulator) that listens directly on this channel
(Fig. 9 top) or we can use a processor that will first
transform the raw data and then send the result on an other
channel (Fig. 9 bottom). The event domain and type are
indicated in the figure.

Fig. 9 Combination of Sensor, Actuator and processor

VII TELE-ROBOTIC CONTROL PATTERN

In order to identify reusable components, we
introduced the robotic control patterns concept (a pattern
is a proved design solution to a general problem). The
robotic control patterns are classified from the simplest
one to the most complex one. This classification has
helped us to identify basic components for each pattern
and to make common components as generic as possible.
Considering complex application patterns at design time
allows integrating their requirements during the design of

generic services.
We show that most of the cases are trivially satisfied

thanks to the framework flexibility.
• Direct control:sensor (joystick, console, GUI) and

actuator
• Monitoring: We can connect to any channels and

intercepts all events in order to display or save it.
• Sensor data processing: it is a combination of sensors

and processors.
• Direct tele-control: A sensor must be send information

about the robot's environment. A GUI has to connect
to the channel and display the data.

• Assisted tele-control: The user commands must be
fused with sensors' information in processors.

• Autonomous navigation: Sensors + processors +
actuators

• Multi-robot coordination:Each robot corresponds to
one object reference that can be resolved in a
NameService. Each robot can be controlled by a
separate process and a processor can coordinates the
robot activities.

• Multi-user cooperation:each user can from its
computer control one or more robot.

VIII CONCLUSIONS

We present in this paper the most recent
developments of a framework that should allow to develop
more flexible and more robust distributed robotic
applications. Off course the chosen design has still to be
refined in function of the results that will be obtained with
different real applications. What is certainly missing for
the moment are graphical tools for managing and
monitoring the processes and for configuring the services.

The simulator has also to be improved to become
more flexible and the terrain following has certainly to be
implemented.

REFERENCES

[1] KU. Scholl, J. Albiez, B. Gassmann, “MCA – An expandable
Modular Controller Architecture”, Third Real-Time Linux
Workshop , 2001, Milan, Italy,

[2] R. Alami, R. Chatila, S. Fleury, M. Ghallab, F. Ingrand, “An
architectue for autonomy”,International Journal of Robotics
Research, Special issue on “Integrated Architectues for Robot
Control and Programming”, 1998.

[3] http://marie.sourceforge.net/
[4] S. Engerle & al, “MIRO:Middleware for autonomous mobile

robots”, Telematics Applications in Automoation and Robotics,
TA2001 preprints ,p 149-154, July 2001, Weingarten, Germany.

[5] Eric Colon, Hichem Sahli, “Software modularity for mobile robotic
applications”, CLAWAR2003, p 417 – 424, September 2003.

[6] Eric Colon, “Evaluation of CORBA communication models for the
development of a robot control framework “,HUDEM04,
Brussels,June 2004.

Sensor
Joystick Channel 0 Actuator

Sensor
Joystick Channel 0

Actuator

Processor

Channel 1

SENSOR
MC_SENSOR

PROCESSOR
MC_PROCESSOR

