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     Abstract - This paper presents the recent developments of a
distributed  framework for  integrating  multi-sensor  robotic
systems  and  controlling  robots.  It  is  based  on  the
communication middleware CORBA.

    Index Terms - control framework, distributed computing,
CORBA

I. INTRODUCTION

Computer  systems are  the  backbones  of  all  robotic
applications. Since many years, searchers have developed
ad-hoc programs for every new system. It is consequently
difficult to build on existing systems and to reuse existing
applications. There is a crucial need for reusable libraries,
control  framework  and  components.  Efforts  in  this
direction have focused on autonomous systems while we
are  also  targetting  tele-operation.  Some  are  based  on
proprietary  communication  libraries  like  in  [1]  and  [2],
others  are  based  on  CORBA (Common Object  Request
Broker Architecture) like in [3] and [4].

Before going further, we give two useful definitions.
A framework is a  reusable, "semi-complete" application.
It  provides  generic  modules  which generally need to  be
customized and extended in function of the application. An
architecture is  an  instance  of  the  framework.  It  is
composed by selected modules which are customized and
completed  by  application  specific  modules.  A  good
designed framework should allow to implement different
control architecture.

It is evident that such a framework has to be based on
robust communication libraries and to claim to be open it
must subscribe as much as possible to existing standards.
When considering communication libraries it appears that
one communication middleware has been present for more
than  10  years  and  has  now  reached  its  maturity,  this
middleware is CORBA. This standard is briefly presented
in section II. In the section III we explain the framework
and component design while the software implementation
is summarized in section IV.  The 3D simulator  that  has
been developed and integrated in the framework is briefly
described  in  section  V.  The  section  VI  gives  practical
informations  on  the  framework  use.   The  section  VII
considers  different  examples  of  typical  tele-robotic
applications and shows how the framework can be used in
each case.   The last section discusses some issues when
integrating existing systems.

II. COMMUNICATION MIDDLEWARE

CORBA  is  actualy  a  specification  of  the  Object
Management  Group  (OMG).  Presently  more  than  30
implementations  are  available  on  the  market.  Some are
freely  available  others  are  commercial  products.  Their
common  characteristic  is  that  none  of  these  versions
implements all  specifications. While  the third version of
CORBA  has  been  published,  most  of  the  CORBA
implementations conform partially to the version 2.3 or 2.6
of the specifications.

CORBA offers different communication solutions that
give  the  developer  a  large  freedom when implementing
distributed  applications.  Besides  the  2-way method  call,
we can  also  make  use  of  the  Asynchronous  Messaging
Invocation  (AMI)  or  of  the event-based  communication.
The 2-way method is the most familiar to the programmer
because it applies to remote calls the same principles as to
a  local  method  call.  The  method  call  blocks  until  the
response is received from the remote object. It corresponds
to a classical client-server scheme.

The  AMI  allows  sending  processing  requests  to  a
remote object  without blocking the calling process.  This
later  receives  the  response  when  this  is  available.  A
callback or a polling mechanism have to be used to get the
response data. The AMI mechanism requires to modify the
client but not the server which is unaware of this change.

There  are  many  situations  where  the  standard
CORBA  (a)synchronous  request/response  model  is  too
restrictive.  For  instance,  clients  have  to  poll  the  server
repeatedly  to  retrieve  the  latest  information.  Likewise,
there is no way for the server to efficiently notify groups of
interested clients  en masse  when data change. For  these
reasons the OMG introduced  the  Event  Service  and  the
Notification Service.

In  event-based  communication  we  do  not  speak
anymore about client and server but about suppliers and
consumers (see Fig. 1). The CORBA specifications define
different  methods  for  sending  and  receiving  events:
consumers  and  producers  can  push  or  pull  the  events.
Implementations of the Events Service act as “mediators”
that  support  decoupled  communication  between objects.
Events are typically represented as messages that contain
optional data fields.

A  primary  goal  of  the  Notification  Service  is  to
enhance the Event Service by introducing the concepts of
filtering and configurability according to various quality of



Fig. 1 Event based communication model

service  requirements.  Clients  of  the  Notification Service
can subscribe to specific events of interest by associating
filter  objects  with the  proxies  through which the  clients
communicate  with  event  channels.  Furthermore,  the
Notification  Service  enables  each  channel,  each
connection, and each message to be configured to support
the  desired  quality  of  service  with  respect  to  delivery
guarantee,  event  aging  characteristics,  and  event
prioritization.  The  advantages  of  this  communication
method is counterbalanced by the complicated consumer
registration  (multiple  interfaces,  bidirectional  object
reference  handshake,  ...).  Not  all  CORBA  libraries
implement the Notification Service. 

III. FRAMEWORK AND COMPONENT DESIGN

The  framework  architecture  defines  how  the  different
components  are  integrated  into  the  framework  and  how
they are interrelated. Framework services are divided into:

• Structural services: these offer the basic services
that  will  be  used  by  other  components  (Name
server, Time server, configurator, supervisor, ...). 

• Application  services:  the  building  blocks  of  an
application (sensors, navigation, ...). 

Because  we cannot  preclude  of  any  use  or  special
needs, the different communication methods are available
in our control framework. In our design, we distinguish the
control data flow from the management data flow. What
concerns the control data flow, we have opted for an event
based  communication  scheme  while  the  management
communication is based on the classical 2-way. Because
each  service  is  managed  individually,  event
communication does not offer any advantage.  Moreover,
by writing interfaces and methods we can create CORBA
object references that are registered with the NameService
and are used by other services to locate them.

Inspired by classical control applications, application
services  have  been  divided  in  three  categories:  sensors,
processors and actuators. Sensors have  connections with
the  physical  world  and  they  output  data  to  one  Event
Channel.  Processors  get  their  inputs  from  one  Event
Channel, they transform data and send the result to another
Event Channel. Actuators have output connections with the
physical world and received data from one Event Channel
(see also section V).

A service is composed of a main thread in which runs
the Object Request Broker (ORB) and a service thread that
runs its own loop (Fig. 2). The service thread can be 

Fig. 2  Service structure

managed  remotely.  It  admits  the  following  commands:
start,  pause,  wakeup,  stop.  The  service  has  3  working
modes that can be remotely selected: synchronous (process
data  when  available),  periodic  (whose  period  can  be
changed)  and  external  (synchronized  on  an  external
trigger). The normal synchronous 2-way can also be used
with methods  declared  in  the  idl  interfaces  (see  section
IV).  The  Table  I  lists  what  happens  for  the  different
service categories in the different modes.

TABLE I
WORKING MODES FOR COROBA SERVICES

Sensor Processor Actuator

synchronous Push event each
time new sensor
values are
available

Process data and
push events
each time a new
event is received

Sends data to
external system
each time a new
event is received

Periodic Reads the sensor
values and push
events at periodic
intervals

Process data and
push event at
periodic
intervals

Sends data
periodically to
external system

External Reads sensor
values and push
events when
externally
triggered

Process data and
push events
when externally
triggered

Sends data to
external system
when externally
triggered

Synchronous
(2 way)

Reads and
returns sensor
values

Process data
received as
parameters and
return values

Sends data
received as
parameters to
external system.

 
The service can also be remotely destroyed. Its life cycle is
resumed in the Fig. 3.

Fig. 3 Service Life Cycle
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IV. SOFTWARE IMPLEMENTATION

A. Corba Libraries
For the software implementation of the framework we

consider  two programming language,  i.e.  C++ and Java.
We have chosen the TAO implementation among others as
the  CORBA  library  for  C++  developments  for  the
following  reasons:  TAO  [  ]  has  been  ported  to  many
operating systems including almost all  UNICES, Win32,
VMS,  QNX, ...  and  TAO is  based  on the very popular
ACE library  which is  a  (efficient)  platform-independent
communication library. In [5] we showed that TAO has all
the characteristics to satisfy the software requirements of
the control framework. Concerning Java, as long as we use
the  2-way  communication  scheme,  the  SUN

implementation coming with the Java Development Kit is
sufficient but for the AMI or or the Notification Service we
have used the popular CORBA implementation JacORB. 

In  [6]  we  presented  in  more  details  the
communication options of CORBA and we analyzed which
one  is  more  suited  to  the  different  needs  in  a  control
framework.  A  demonstration  application  has  also  be
presented, it allows a CORBA 2-way remote access to a
classical serial port. In order to be invoked remotely, the
methods have to be defined in CORBA interfaces written
with the CORBA Interface Definition Language (idl). The
idl compiler generates classes (C++ classes in the case of
TAO, Java  classes  with JacORB)  that  allow the  remote
invocation of methods and the transfer of parameters over
the network in a transparent manner. The client that calls a
method is not aware that the object that implements it is
not local to the process.

B. Service interfaces and class hierarchy
The  base  service  declares  generic  management

methods in the Service interface. All interfaces are put in a
module named RMA. The file RMA_Service.idl contains
the following code:

module RMA {
  interface Service {
    // typedef and enum are omitted here
    // Exception definitions and raises are omitted here

    SvcMode get_mode();
    void set_mode (in SvcMode mode)

    Msec get_period();
    void set_period (in Msec period)

    void trigger() raises(BadMode,NotRunning);

    Msec get_duration () raises(NotRunning);

    void start() raises(CannotStart, AlreadyRunning);
    void stop() raises(NotRunning);
    void pause() raises(NotRunning);
    void wakeup() raises(NotRunning);

    SvcInfo get_info();

    oneway void destroy();
  }
};

The CORBA idl compiler generates header (*.h) and
code  files (*.cpp) for the client and the server side as well
as an empty implementation class of the interface methods
defined in the idl file. The programmer has to fill in the
empty bodies with the code to perform the desired actions.

We have defined  three  interfaces  that  inherits  from
the  Service interface:  Sensors, Processors and Actuators.
The idl  declaration file for  the  Sensor interface is  listed
below.

#include “RMA_Service.idl"
module RMA {
  interface Sensor : Service {
    exception SensorException {string msg_error;};
    any  get_sensor_value() raises (SensorException);
  };
};

Those interfaces are considered as abstract and they
may not be instantiated. The real services are derived from
those  three  interfaces.  Some  examples  are
Motion_Command_Sensors, Motion_Command_Processor
and  Vehicle_Actuator.  The  idl  declaration  file  for  the
Motion_Command_Sensor interface is listed below.

#include "RMA_Sensor.idl"
module RMA {

  typedef long MotionCommand;
  typedef sequence<MotionCommand> McmdSeq;

  interface Motion_Command_Sensor : Sensor {
     typedef short NumberOfAxis;
     MCmdSeq get_motion_command();
    NumberOfAxis get_number_of_axis();
  };
};

What  we have  presented  until  now is  sufficient  to
write a classical client server application and to invoke the
methods in 2-way calls.  For  using events we need other
CORBA objects that are defined in the NotificationService
specifications. All those objects are defined in idl files and
the  implementation  classes  are  available  in  the  TAO
libraries. Objects of those classes have to be instantiated in
the  different  services.  The  Sensor  uses  a  Supplier,  the
Processor  has  both  a  Consumer and  a  Supplier  and  the
actuator instantiates a Consumer.

We also need to add code for creating and managing
the service thread. This operation is realized by inheriting
from  an  ACE  class,  i.e.  ACE_Task_Base.  This  class
defines  several  virtual  functions  that  have  to  be
implemented in the service code:

  virtual int svc (void);
  virtual int close(void);
  virtual int suspend(void);
  virtual int resume(void);

Each service is  implemented as a  class that inherits
from automatically  generated  CORBA classes  and  from
implementation classes. The implementation class name in
our example is Motion_Command_Sensor_i. The structure
of the classes  is illustrated in the Fig. 4.



Fig. 4  Class inheritance of the Motion_Command_Sensor_i

V. SIMULATOR

MoRoS3D is a 3D robotic simulator which is written in
Java.  It  is  based  on  Java3D  for  all  3D  aspects.  The
simulator has ben designed to allow distributed control of
many  identical  or  different  models  of  mobile  robots.
Currently only flat terrain models are allowed but in the
next future 3D terrain following will also be implemented.
Tri-dimensional  elements have been divided in  different
categories:  robots,  obstacles  and  terrain.  Elements
geometry can be read from files or directly created using
Java  code.  The  simplified  data  structure  of  the  virtual
world is represented in the Fig. 5.

Fig. 5 Virtual world structure 

Collision detection between the robots and between
robots and obstacles works efficiently. It does not use the
collision  behaviors  delivered  with  the  SUN  Java3D
libraries  because  this  one  is  implemented  as  an
asynchronous  detection  system.  Therefore  collision
detections are sometimes reported severall frames after the
robot  has  entered  into  the  obstacles!  We  consequently
implemented  a  collision  detection  system based  on  the
Java3D picking  mechanism. At this moment only one type
of robot has been implemented, a Nomad200 as we still
use such a model in our laboratory.

Sensors  are  off  course  necessary  to  simulate  any
useful  robot  application.  Therefore  a  first  version  of  a
distance sensor has  also been  defined and implemented.
We can see the graphical representation of the measuring
process in the Fig. 6.

A TimerBehavior  generates  timer  events  which are
propagated to other collision and sensor behaviors.

The  class  SensorBGroup,  which  extends
BranchGroup, defines the geometry of the sensors and also
contains  a  LaserBehaviour  that  performs  the  operations
simulating  the  measurement  process.  This  behaviour  is
triggered  by  a  timer  event  generated  by  the  global
TimerBehaviour of the simulator. The measured distances
are  visually  depicted  by  variable  length  red  rays.  The
distance are stored in a local array that is also accessible
from CORBA methods (see below).
 The simulator has naturally CORBA capabilities. The
ORB is run in a separate thread that allows dispatching the
CORBA calls to the right objects. 
The idl definition of CORBA interfaces are listed below.
The  Nomad interface  is  derived  from a  generic  Robot
interface. The Sensor interfaces is also included in this file.

module MoRoS3DCorba
{
  interface Robot
  {
   void move_rel (in float dist, in float angle);
    void move_abs (in float x, in float y, in float angle); 
   };

interface Nomad: Robot
  {

Fig. 6 The simulator  with 3 robots 
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    long pr(in long t_pr, in long s_pr, in long r_pr);
    long vm(in long t_vm, in long s_vm, in long r_vm);
    long dp(in long x, in long y);
    long da(in long th, in long tu);
    void get_rc(out long x, out long y, out long steer, out long turret);
    void get_rv(out long vel_trans, out long vel_steer, out long vel_turret);
  };

  typedef long Sensor_data[16]; 
  interface Sensor {
   Sensor_data get_data();
  };
};

Along writing new services,  some existing  code  or
applications will need to be integrated in the framework.
We can distinguish different types of integration: database,
library and application. Integration is  generally made by
providing a facade, aka an object wrapper [Design pattern:
wrapper facade]. The wrapper is in this case a distributed
object and its implementation manages the interaction with
the existing system. When developing the facade, one has
to capture the business model of the existing system and
develop interfaces that reflects this model.  For wrapping
libraries, we need to pay attention to serialize data access
if existing libraries are not thread-safe.  The difficulty for
wrapping  applications  depends  on  the  available
mechanisms  available  for  communicating  with  it:  API,
network  messages  (traditional  client/server),  file-based
communication ( batch program).

If we consider the case of a Nomad200, we have an
API which is available for Linux OS. So we can write an
actuator  that  translates  CORBA  method  invocations  to
motion command functions of the API and a  Sensor that
reads the different sensor' values and propagates them as
events.

The methods listed in the  Nomad interface keep the
same signature as original functions of the Nomad200 API.
The JacORB idl compiler applied to this file generates  the
stubs  and  skeletons necessary to  write  client  and  server
applications. A Java class  NomadImpl extends one of the
generated class (NomadPOA) but in order to be able to
receive  events,  it  also  implements  the  interface
org.omg.CosNotifyComm.StructuredPushConsumerOperat
ions. This interface defines one method that is called by
the NotificationService mechanism to send events to  the
consumer.

VI. UTILISATION

The following steps have to be followed in order to build a
useful applications from the different services.

• Start the NameService. 
The NameService is a kind of phone book that stores the
name of the services and their CORBA Object Reference,
that  is,  how to  contact  the  service  (it  contains e.g.  The
server name or ip address, the port and a private key).

• Start the NotificationService
This service is used to create and managed Event Channels
It registers with the NameService.

• Start the different services.
We  take  the  Motion_Command_Sensor  service  as

example  to  explain  the  starting  sequence  whose
startinginfo are showed in Fig 7.

Fig. 7  Start sequence info for a Sensor service

The  main() function  creates  an  instance  of  the  utility
RMA_Sensor_Object and performs the following actions:

1. Initializes the  RMA_Sensor_Object
2. Initializes the ORB
3. Tries to resolve a running NameService
4. Tries  to  resolve  the  NotificationService  from  the

Naming service
5. Creates EventChannels
6. Creates the Supplier Admin
7. Creates a Supplier
8. Creates the Service

After all objects have been created, the run() method
of the RMA_Sensor_Object is called; this method calls the
run() method of the ORB, starting the CORBA operations.

Each  service  is  a  console  application  that  takes
parameters on the command line to select the input and/or
input channels as well as the name that is registered with
the NameService (each instance of a  service class has a
CORBA  Reference  and  can  be  registered  with  a
NameService).

start CoRoBa_Sensor.exe -s RMA_Sensor1 -e 0

The Fig.  8  shows examples of names that are registered
with the NameService.

A console management application (CoRoBa Remote
Control or crc) has been developed to remotely manage the
life  cycle  of  the  services.  It  gets  the  reference  to  the
CORBA objects from the NameService.

  crc -n RMA_Sensor1 -c command

The  available  commands  are  start,  stop,  pause,  wakeup,
info. We can also change the working mode:

  crc -n RMA_Sensor1 -m mode  <-p period>

The last two lines of the Fig. 7 illustrates this command.
The mode has been changed to periodic with a period of
300 ms. 



Fig. 8 Tree of the Services registered with the NameService

How can we combine the different services together ? 
On the command line we can pass the channel number we
want  the  process  to  communicate  through  (-e  channel
number  -i  input_channel  -o  output_channel  ).  If  the
channel does not exist, the service will create it (and all
other channels below it). Each channel receives a unique id
number  from  the  NotificationService.  We  can  see  an
example in the Fig. 7. In this case, three channels exist and
the first one is selected by the service. It  means that the
Sensor will send the events on the first channel (id=4).

It can be a joystick that sends the raw X-Y data. We
can use an actuator that is connected to the physical system
(or to the simulator)  that  listens directly on this channel
(Fig.  9  top)  or  we  can  use  a  processor  that  will  first
transform the raw data and then send the result on an other
channel (Fig. 9 bottom). The event domain and type are
indicated in the figure.

Fig. 9 Combination  of Sensor, Actuator and processor

VII TELE-ROBOTIC CONTROL PATTERN

In  order  to  identify  reusable  components,  we
introduced the robotic control patterns concept (a pattern
is  a  proved  design  solution  to  a  general  problem).  The
robotic  control  patterns  are  classified  from the  simplest
one  to  the  most  complex  one.  This  classification  has
helped  us to identify basic  components  for  each pattern
and to make common components as generic as possible.
Considering complex application  patterns at  design time
allows integrating their requirements during the design of

generic services.
We show that most of the cases are trivially satisfied

thanks to the framework flexibility. 
• Direct control:sensor (joystick, console, GUI) and

actuator
• Monitoring: We can connect to any channels and

intercepts all events in order to display or save it.
• Sensor data processing: it is a combination of sensors

and processors.
• Direct tele-control: A sensor must be send information

about the robot's environment. A GUI has to connect
to the channel and display the data.

• Assisted tele-control: The user commands must be
fused with sensors' information in processors.

• Autonomous navigation: Sensors + processors +
actuators

• Multi-robot coordination:Each robot corresponds to
one object reference that can be resolved in a
NameService. Each robot can be controlled by a
separate process and a processor can coordinates the
robot activities.

• Multi-user cooperation:each user can from its
computer control one or more robot.

VIII CONCLUSIONS

We  present  in  this  paper  the  most  recent
developments of a framework that should allow to develop
more  flexible  and  more  robust  distributed  robotic
applications. Off course the chosen design has still to be
refined in function of the results that will be obtained with
different  real  applications.  What is  certainly missing for
the  moment  are  graphical  tools  for  managing  and
monitoring the processes and for configuring the services.

The  simulator  has  also  to  be  improved  to  become
more flexible and the terrain following has certainly to be
implemented.
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