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ABSTRACT 
 
Wheeled robots are still frequently used for industrial applications and for research such 
as in remote surveillance and security, humanitarian demining, planetary exploration, 
rescue missions…The Robudem is a wheeled robot that will be tested for such tasks. In 
this paper, we have studied possible kinematics models of this robot based on the pure 
rolling and non-slipping constraints of the wheels on the ground. Then we have studied 
the way to control the posture of the robot when local trajectories (an important behavior 
for mobile robots) are specified. The Robudem robot is a nonholonomic system and the 
design of its controller is a major research topic in the theory on nonlinear control 
systems. This paper describes the use of one method named “the dynamic extension 
algorithm” to control the tracking posture of the Robudem robot. 
 
1. Introduction 
Wheeled robots are mainly used in industry and in research…principally due to their 
engineering simplicity (easy to build and to control than legged robots) and their low 
specific resistance (high energy efficiency). It is in the purpose of outdoor research in 
intelligent navigation that the Robotic Lab at the Royal Military Academy of Belgium has 
purchased the Robucar TT named Robudem (Figure 1) from the Robosoft Company. This 
paper deals with the kinematics models and the feedback control of this robot.  
 

 
Figure 1: Robudem Robot 



 
The models and the design of controllers of Wheeled Mobile Robot have been addressed 
in many papers.  
In [1], P. F. Muir and C. P. Neuman established the methodology for modeling, 
analyzing, designing and controlling wheeled mobile robots. Their approach is parallel to 
the methodology applied on stationary manipulators. They extended it to take into 
account appropriate characteristics of wheeled mobile robots as the multiple closed-link 
chains, the contact between a wheel and a planar surface, and nonactuated and nonsensed 
wheel degrees-of-freedom. Their methodology allows first to model the kinematics of 
each wheel which constitutes the robot using the Sheth-Uicker convention (equivalent to 
the Denavit-Hartenberg convention used for the kinematics model of stationary 
manipulators) to define the transformation matrices. Then they amalgamate the 
information of individual wheel to obtain the kinematics model of the robot. From the 
established kinematics model, they designed the controllers and they also derived the 
conditions of pure rolling. If the pure rolling was not satisfied, they applied the least-
squares fit to obtain the rolling.  
J.C. Alexander and J.H. Maddocks [2] follow the same methodology as above to model 
Wheeled Mobile Robot. The major difference with the formalism developed by Muir and 
Neuman is that their analysis of cases in which pure rolling fails is based on physical 
models of friction. They describe the slippage which results from the wheels 
configuration using Coulomb’s Law to model friction. The application of the 2 methods 
quoted above increases the complexity in the modeling due to the fact that in contrast to 
robotic manipulators, wheeled robots are nonholonomic systems. The pure rolling and the 
non-slipping constraints make the kinematics and dynamics analyses more complicated 
with these methods. Others methods much appropriate in the analyses of wheeled mobile 
robots have been developed.  
In [3], G. Campion, G. Bastin and B. D’Andrea-Novel give a general and unifying 
method to model a wheeled robot by taking into account the restriction to robot mobility 
induced by the constraints. They introduce the concept of degree of mobility and of 
degree of steerability and they show that all wheeled mobile robots can be classified into 
5 classes. In [4], they investigate how point and tracking problems for wheeled mobile 
robots can be solved by state feedback linearization. In this paper, we apply the method in 
[3] on bicycle models to derive known kinematics models in literature of the car-like 
vehicles and unknown models of our particular robot named Robudem. We have 
followed this procedure because the configuration of the Robudem robot is a very special 
case of car-like vehicles. We also consider, in this paper, the practical design of a 
feedback controller on such kind of robots using dynamic extension algorithm as 
described in general case in [5]. This controller will try to follow defined local 
trajectories from sensors in the purpose for example to avoid an obstacle, to reach a 
goal…  

 
2. Kinematics model 
2.1 Generality 
To establish the kinematics model of wheeled robots, we accept the presence of 
nonholonomic constraints due to the rolling without slipping condition between the 
wheels and the ground. We analyze the case of fixed and steering wheels (Figure 2) 
which constitute the robots that we consider.  The position of the wheel is characterized 



by 3 constants:α , l, r and its motion with respect to the robot by 2 time-varying angles 
)(tφ and )(tϕ  (or the speed )()( trtV ϕ= ). φ  is a constant in the case of the fixed wheels. 

We also defined the base frame with origin at 0 and the moving frame with origin P. The 
robot posture can be described in terms of the two coordinates x, y of the origin P of the 
moving frame and by the orientation angle θ  of the moving frame, both with respect to 
the base frame. With these descriptions, the 2 following constraints can be deduced [3, 5]: 

Pure rolling constraint: ( ) ( ) 0sinsincos =−++++++ Vlyx θφθφαθφα &&&  (1)  
Non-slipping constraint: ( ) ( ) 0coscossin =−++−++ θφθφαθφα &&& lyx  (2) 
 
 
 
2.2 Car-Like Vehicle 
About the car-like vehicle, we can distinguish 2 configurations: 
- The rear wheels are driving (Figure 3): the engine motor by means of a 

differential system drives rear wheels. The front wheels are steering by mean of 
an Ackerman mechanism.  

- And the front wheels are driving (Figure 4): the engine motor drives and steers the 
front wheels using a differential system and an Ackerman mechanism. 

 

 
 

Figure 2: Fixed and steering wheels Figure 3: The rear wheels driving vehicle 
 

The kinematics models of the car-like vehicles can be established from a bicycle 
model. We can indeed easily find the following equations from the imaginary wheels 
(Figure 5) placed at the middle of the front and rear axles: 
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2.2.1 Rear wheels driving model 
We can establish the rear wheels driving model by considering the bicycle model 
shown on Figure 6. The two wheels are imaginary ones which are at the middle axles 
of the rear wheels driving vehicle (Figure 3). The relations of the speeds and the 
angles of the real wheels with imaginary wheels are obtained from equations (3), (4), 
(5), (6) and (7).  
 



 

 
Figure 4: The front wheels driving vehicle Figure 5: Car-Like and bicycle models 

 
We can establish for the two wheels the following equations by mean of equations (1) 
and (2): 
Pure rolling constraint of the wheel 1: 1.sin.cos Vyx =+ && θθ  (8) 
Non-slipping constraint of the wheel 1: 0.cos.sin =+− yx && θθ  (9) 
Non-slipping constraint of the wheel 2:  ( ) ( ) 0.cos.cos.sin 222 =++++− θφφθφθ &&& Lyx  (10) 
 
 

By solving equations (8), (9) and (10), we have: 
( )θcos.1Vx =&  (11) 

)sin(.1 θVy =&  (12) 

L
tgV 2
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φ
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Figure 6: Bicycle model: rear wheels driving 
model 

Figure 7: Bicycle model: front wheels driving 
model 

 
2.2.2 Front wheels driving model 
The bicycle model of the front wheels driving model is shown on Figure 7.  
The following equation can be established: 
Pure rolling constraint of the wheel 2: ( ) ( ) 2222 .sin..sin.cos VLyx =++++ θφφθφθ &&&  (14) 



By solving system of equations (14), (9) and (10) we obtain: 
θφ coscos 22Vx =&  (15) 
θφ sincos 22Vy =&  (16) 

L
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2
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θ =&  (17) 

 
2.3 Robudem robot 
The Robudem robot has this of particular: it is a combined front and rear wheels driving 
vehicle because an individual driving motor is attached at each wheel (Figure 8). Also the 
two axles can be steered which allow the robot to move in dual drive. 

 
2.3.1 Single drive 
As said above, in single drive the kinematics model of the Robudem is the combined of 
the rear (equations (11), (12) and (13)) and front (equations (15), (16) and (17)) wheels 
driving models established before. It is important that the two models produce the same 
speeds to avoid conflicts between motors (not good for the structure of the robot and its 
control) i.e. 221 cosφVV =   (18) 
This relation (18) expresses that if we would like the wheels of the Robudem robot to 
move accordingly the 2 constraints quoted above (pure rolling and no-slipping), the speed 
of the imaginary rear wheel (i.e. rear wheels) must change in relation with the angle of 
the steering angle of the front imaginary wheel (i.e. steering front wheels). At the moment 
the low level control of the Robudem robot did not allow such operation. We can use in 
this case, one of the model as an approximation (for example, if steering angles of the 
wheels are not enough big).We can also establish an approximation, at the mathematical 
point of view, of the model of the Robudem robot in single drive by considering all the 
constraints ((9), (10), (11) and (15)) and by using the LSE (Least Square Estimator) 
methods. This method will allow us to have a model which minimizes the error to the 
expected model. The matrices which express the constraints of the Robudem robot are: 

yA =ξ  (18) where: 
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Equation (18) should be modified by incorporating an error vector e to account modeling 
error, as follows: yeA =+ξ  (19). 
Now we want to search for a  which minimizes the sum of squared error defined by ξξ ˆ=

( ) ( ) ( ) yyAyAAAyAyeeE TTTTTT +−=−−== ξξξξξξ 2 .We obtain: (20).  ( ) yAAA TT 1ˆ −
=ξ

By solving the equation (20), we have: 
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As it is the same speed which is send to the low level control computer, this implies that 
. In this particular case, equation (21), (22) and (23) becomes: VVV == 12
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Figure 8: Robudem robot Figure 9: Dual drive 

 
2.3.2 Dual drive 
In dual drive, the slipping of the wheels is unavoidable because the front-wheels and the 
rear-wheels will not intersect at one ICR (Instantaneous Center of Rotation) due to the 2 
Ackerman mechanisms (as shown on Figure 9). We can suppose that the robot will rotate 
at the center determined by the axis of imaginary wheels (Figure 9). 
 
These equations can be established by considering the bicycle model (Figure 10) of the 
Robudem robot in the dual drive: 

Pure Rolling constraint of the wheels 1 and 2 
( ) ( ) 0sincos 111 =−+++ Vyx && θφθφ (27)   

( ) ( ) 0sinsincos 2222 =−++++ VLyx θφθφθφ &&&  (28) 
Non-slipping constraint of the wheels 1 and 2 

( ) ( ) 0cossin 111 =+−+ yx && θφθφ  (29)  
( ) ( ) 0coscossin 222 =−+−+ θφθφθφ &&& Lyx  (30) 

By solving the system of equations (27), (28) and (29), we obtain: 
( )θφ += 11 cosVx&  (30) 
( )θφ += 11 sinVy&  (31) 
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And solving the system of equations (27), (28) and (30), we obtain: 



( )θφ += 11 cosVx&  
( )θφ += 11 sinVy&  
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Here also to avoid the conflicts between motors, we must change the speeds according to 
the steering angles. The constraint relation obtained by considering (32) and (33) is: 

1122 coscos φφ VV =  (34) 
We can also obtain the approximation of the model using the LSE (by solving equations 
(27), (28), (29) and (30)): 
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If   (the particular case of the actual low level control of the Robudem 
Robot), we have: 

VVV == 12

( )θφ += 1cosVx&  
( )θφ += 1sinVy&  

L
V )sin(sin 12 φφ

θ
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Figure 10: dual drive bicycle model Figure 11: Point coordinate P’ 
 
3. Posture tracking of the Robudem robot 
3.1 Dynamic extension algorithm 
We will consider in this paper only the front wheels driving model. This model is one of 
the possible configurations of the Robudem Robot. The same principle can be followed 
for other configurations. The posture kinematics model of the front wheel drive robot is 
expressed by the following equations (equivalent to equations (16), (17) and (18) where 
we add a supplementary equation related to the control of the steering angles of the 
wheels): 
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Such a robot has a restricted mobility and is not full state feedback linearizable. In this 
case, the kinematics model can not be solved by a continuous static time-invariant state 
feedback but by a dynamic (the robot is moving) linearizing state feedback. In order to 
apply the dynamic extension algorithm, we have to choose as output functions the 
coordinates of a point P’ located on the axle of the fixed wheels (Figure 11), i.e. 

θsin1 exh −=  (47) 
θcos2 eyh +=  (48) 

 

Figure 12: Block diagram of the controller 
 
 
The first derivative of the output functions give: 
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The third derivative of the output functions gives: 
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We define and as the transformation obtained from the coordinate of the 
desired trajectory. If we apply the control law  

ddd hhh &&&&&& ,, dh
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We obtain (introducing (57) in (55)) the closed-loop dynamics 
0321 =+++ eKeKeKe &&&&&&  (58) 
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By an appropriate choice of the elements of the matrices ,  and  such that all 
roots of the polynomial  and the polynomial  

 are in the open left-half plane, we can see that 
(i.e. the tracking of the posture). 
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3.2 Implementation and experimentation 
Figure 12 shows the block diagram of the controller. The output of the controller (after 
the control law is applied) is χ&  andκ& . Next we integrate χ&  and we obtain χ . We have to 
solve the system of equations (51) and (56), to have  and2V& ζ . The solvability of this 
system of equations is possible only when  is different of 0 i.e. the robot must be in 
movement to apply the algorithm above.  

2V

 
The case study is shown on Figures 13, 14 and 15. It is a typical case of obstacle 
avoidance but with the control of the speed, the posture and the orientation of the robot. 
The simulate robot is initially at the Cartesian coordinate (0,0) (the middle of the rear 
axle is the reference point), has a speed of 1.2 m/s and an orientation of 0°. The desire 
trajectory, speed (1 m/s) and orientation (0°) are shown with dashed lines in respectively 
Figures 13, 14 and 15. We can see on these figures that the tracking of the desired 
postures of the simulated robot is acceptable. 
 
 

 
Figure 13: Desired and actual Trajectories Figure 14: Desired and actual speed 

 
 

 
 



 
Figure 15: Desired and actual orientation Figure 16: steering angles of the imaginary 

wheel 
 
4. Conclusion 
In this paper, we derived the models of the car-like vehicles by considering the pure 
rolling and the non-slipping constraints of the wheels and applying them on a bicycle 
model. We also established different models of the Robudem robot depending on its 
configuration (single or dual drive). Then we showed from one configuration, how to 
track a specified posture by means of dynamic linearizing state feedback using the 
dynamic extension algorithm. The case study showed the performance of the design 
controller on the simulated robot. On the real robot, we had to solve the problem of the 
transition between the static states of the robot to the dynamic states and reciprocally 
because the algorithm is only applicable when the robot is in movement. It is also 
important to determine the way of choosing the parameters of the controller because its 
behavior depends greatly on this choice. In spite of some failures in the tracking of the 
defined posture of the robot, due mainly to the 2 problems mentioned above, certain tests 
on the robot proved the efficiency of this algorithm. In future, we will investigate how to 
solve the two problems. 
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