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Abstract
As robotics  systems are  becoming more  complex,  distributed,  and  integrated,  there  is  a  need  to 
promote  the  construction  of  new  systems  as  composition  of  reusable  building  blocks.  System 
modularity and interoperability are key factors that enable the development of reusable software. The 
work described in this paper consists in two parts: the design of a generic control framework using 
CORBA as its communication middleware and the development and integration of different robots, 
sensors and processing components.

1. Introduction
For  years,  searchers  have  focused  on  embedded  intelligence  providing  ad  hoc  implementation. 
Solutions  have  been  tied  to  existing  platforms,  limited  by  software  and  hardware  constraints 
(processor, memory, OS, communication, ...) or implementation costs. Everything had to be on-board 
and was limited by hardware capabilities. Nowadays hardware is far more affordable and wireless 
communication has become fast and reliable. It has consequently become easier to communicate and 
to implement distributed applications and with the recent  progresses of the Internet,  the notion of 
service has become familiar to many of us. Generally speaking a robot is already by itself a complex 
system but in order to perform useful tasks it must be equipped with external sensors and actuators. 
These have in most cases their own control system resulting obviously in a distributed architecture. 
For non-specialists, developing software for a single robot, without speaking of multi-robots systems, 
can rapidly become a nightmare.  What is needed in robotics is a software framework that enables the 
easy development of distributed applications by providing functions that hide and automate low level 
mechanisms and provide the developer with a high level environment and let  him concentrate on 
intelligent aspects of the application.

It is evident that this initiative is not unique and that other researchers and laboratories have been 
faced  with  similar  frustrations  when  developing  their  control  software  and  have  consequently 
developed their own frameworks based on similar requirements. One of the best known examples is 
certainly the module generator GenoM. It is a tool that helps building real-time software architectures 
and corresponds to the functional level of the architecture developed at the LAAS-CNRS (Alami, R 
& all,  1998). MCA2 is a software framework with real-time capabilities that is rapidly gaining in 
popularity (available at http://mca2.sourceforge.net). The DCA framework (Peterson, L.; Austin, D.; 
Christensen, H. 2001) has been developed to control a mobile manipulator. It relies on a process-
algebra for specifying tasks. The main drawback in GenoM, DCA and MCA2 are their proprietary 
communication mechanism. Some frameworks solve the aforementioned limitations by building up 
on  communication  middleware.  Miro  (Enderle,  S &  all,  2001)  is  a  distributed  object-oriented 
framework developed in C++ for Linux that is based on CORBA technology. It offers synchronous 
and asynchronous communication and configuration capabilities through XML files. MARIE (Mobile 
and Autonomous Robotics Integration Environment) is a programming environment which aim is to 
develop  an  integration  framework  based  on  the  mediator  design  pattern  for  distributed  systems. 
MARIE uses  ACE (Schmidt,  D.  C. & Huston,  & S. D.,  2003)  as  its  communication  library.  All 
interactions  between  applications  are  done  asynchronously.  Orca  (Brooks,  A.  & all,  2005)  is  an 
emerging open-source suite of tools for developing component-based robotic systems (available at 
http://orca-robotics.sourceforge.net).  The Miro weak point  is its  behaviour engine and the lack of 



remote management. MARIE’s approach, as mentioned in (Côté, C. & all, 2004) suffers from many 
drawbacks, namely, overhead, complexity and system resource management. Our framework, which 
name is CoRoBA, tries to merge the strong points of the ones mentioned above while minimizing 
weak points. But as in all  real projects, compromises have to be made and a perfect solution will 
never exist.

The work described in this paper consists in two parts: the design of a generic control framework 
using CORBA as its communication middleware and the development and integration of different 
robots, sensors and processing components.

Section 2 presents software requirements that have been identified by various review and that must be 
satisfied by the framework. In section 3 we discuss the selection and usability of middleware for 
distributed robot control  system and detail  Design Patterns that  guided the software development. 
Section  4  covers  Component  design  and  implementation  and  gives  some  examples  of  existing 
components including a multi-robot 3D simulator. Section 5 describes a control application that has 
been developed with CoRoBA. Section 6 concludes with comments on further research directions.

2. Requirements
Developing reusable software is an incremental and iterative work as illustrated by the figure 1. It 
begins with the conceptual design. In this phase, requirements are captured, high level architecture is 
produced and the purpose and function of the components are described. At the second phase, the 
specification design is created. In this stage, the object model may be created, interfaces and sequence 
diagrams defined. In the final stage, the implementation design, the final details are laid down and 
physical systems and technologies are selected. At this stage we have sufficient details for starting the 
implementation. These phases may be repeated several times during the development cycle.

But this is not the end of the story. As the needs change, the code must also be adapted. The life cycle 
of  object-oriented  software  has  typically  several  phases,  namely  prototyping,  expansionary  and 
consolidating phases (figure 2).

At this stage the code has to be re-organized or re-factored.  This means that from the beginning, 
software has to be designed with change in mind. In order to minimize these modifications or to 
simplify them, we need at least to focus on two points: requirements and design patterns. As we will 

Figure 2. Software life cycle
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see in the next section, using design patterns in early stages of software development prevents later 
refactoring; that is because design patterns model what in the code needs to be changed. What is 
presented in this text is the first iteration in the development process.

Requirements  have  been  derived  from three  different  categories:  In  the  first  place  we  gathered 
requirements  that  apply  to  every  networked  applications,  that  is  distribution,  communication, 
computing and performance issues, etc. 

Secondly, from  a decomposition of applications based on increasing complexity we derived robotics 
control patterns. Identified Control Patterns classified from the simplest to the most complex one are:

• Direct control
• Sensor data processing
• Monitoring
• Direct tele-control
• Supervised  and autonomous control
• Multi-robot control
• Multi-user control

The last category that generated requirements is development and deployment support.

We obtained  finally  a  list  of  about  40 requirements.  Developing a  framework that  meets  all  the 
requirements is certainly an utopia. In the architecture and specification design we have had to make 
choices and compromises. Most of the identified requirements have been implemented while others 
have been theoretically addressed.

3. Design and Implementation of the framework architecture

Framework and control architectures
A framework provides a kind of skeleton. The framework architecture  is composed by families of 
related  patterns  and components,  it defines  how the different  components  are  integrated  into  the 
framework and how they are interrelated. It defines also how components communicate with each 
other. It is generally admitted that a framework reverses the control paradigm; components written by 
the programmer are called back by the framework in function of events. The Framework dictates the 
architecture of applications developed with it. 

A control architecture defines the design of a set of components in which perception, reasoning, and 
action occur.  It also specifies  the specific  functionality and interface  of  each component,  and the 
interconnection topology between components. The control architecture specifies which components 
are used and how they collaborate in a concrete application. The framework architecture must be 
flexible  enough  to  allow  different  control  architectures  to  be  build  using  the  same  components 
(Figure 3).

Figure 3. Different Control Architectures developed with the framework
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Communication middleware
The  first  decision  when  developing  distributed  application  is  the  choice  of  the communication 
middleware.

In distributed applications, programs need to invoke operations in other processes, often running in 
different computers. To achieve this, the following programming models are available:

• The Remote Procedure Call (RPC) which allows clients to call procedures in server programs 
running in separate processes and generally in different computers from the client.

• The  Remote  Method  Invocation  (RMI)  that  allows  objects  in  different  processes  to 
communicate with each other.

• The  distributed  Event-based  programming model  that  allows  objects  to  be  notified  when 
events they have registered interest in have been emitted.

As most of current distributed systems is written in object oriented languages, we have only 
considered the two last models.

After  having  compared  different  Middlewares,  we  selected  CORBA  for  our  framework 
implementation.  CORBA  provides  RMI  and  Event-based  communication.  CORBA  is  actually  a 
specification of the Object Management Group (OMG). Presently more than 30 implementations are 
available  on  the  market.  Some  are  free  software  others  are  commercial  products.  The  TAO 
implementation has been selected among others as the CORBA library for C++ developments for the 
following  reasons.  For  developers  of  distributed  and  embedded  applications  who  have  stringent 
performance  demands,  TAO is  a  freely available,  open-source,  and standards-compliant  real-time 
implementation of CORBA that provides efficient, predictable, and scalable quality of service (QoS) 
end-to-end. Unlike conventional  implementations of CORBA, which are inefficient,  unpredictable, 
non-scalable,  and  often  non-portable,  TAO  applies  the  best  software  practices  and  patterns  to 
automate the delivery of high-performance and real-time QoS to distributed applications.TAO has 
been ported to many operating systems including almost all UNICES, Win32, VMS, QNX, etc.  TAO 
is based on the very popular ACE library which is a (efficient) platform-independent communication 
library.

Framework and Design Patterns
A Framework captures the design decisions that are common to its application domain. Applications 
based on frameworks can be built faster and have similar structures. They are consequently easier to 
maintain. The drawback is that applications are particularly sensitive to changes in the framework 
interfaces. Design Patterns actually help reducing these changes.

Design  Patterns  brings  a  theoretical  foundation  to  software  engineering. A  pattern  describes  a 
problem which occurs over and over again and then describes the core of the solution to that problem, 
in such a way that you can reuse it again and again. Sets of interrelated patterns tailored specifically 
to work well together are called frameworks. In a framework-based development effort, the majority 
of the application is provided by the instantiated framework. Frameworks provide four primary usage 
strategies: instantiation, generalization, parametrization and extension.

Design Patterns involved in the Framework architecture design and how they are implemented have 
been presented in (Colon E. & Sahli H.,2005). We provide here a summary of those patterns; they fall 
into the following categories: Architecture Patterns and Distribution Patterns.

• Component-based Architecture Pattern organises system into replaceable units with opaque 
interfaces. It increases the robustness of the architecture in the presence of maintenance and 
is highly reusable in a variety of circumstances.

• The  Channel  Architecture  Pattern  is  useful  when  data  within  a  stream  is  sequentially 
transformed in a series of steps. It improves throughput capacity with the replication of units 
allowing  efficient  processing  of  multiple  data  in  different  stages  of  processing.  It  also 
improves reliability and safety through the simple addition of redundant processing. 



• Remote Method Call Pattern extends the programming model used to invoke services locally 
and does the same think when the client and server do not reside in the same address space. 
The Client does not communicate directly with the Server but via a Client Stub that contacts 
the Server Stub, which invokes the specified method on the Server. The low-level network 
operations are hidden to the Client and Server.

• The Broker Pattern may be though of as a symmetric version of the Proxy Pattern. It provides 
a Proxy Pattern in situations where the location of the clients and servers are not known at 
design time. The Broker Pattern is a very effective means for hiding remoteness of clients and 
servers  that  greatly  simplifies  the  creation  of  systems  with  symmetric  distribution 
architectures.

• The Data Bus Pattern further abstracts the Observer Pattern by providing a common (logical) 
bus to which multiple servers post their information and where multiple clients come to get 
various events and data posted to the bus. The Data Bus Pattern is basically a Proxy Pattern 
with a centralized store into which various data objects may be plugged along with metadata 
that describes its contents.

CORBA communication models
CORBA offers different communication solutions that implement the Design Patterns described in 
the  previous  subsection.  It  give  the  developer  a  large  freedom  when  implementing  distributed 
applications.

CORBA  relies on IDL (Interface Definition Language) compilers to generate stubs for clients and 
servers.  Besides  the  2-way method call,  we can  also  make use  of  the  Asynchronous  Messaging 
Invocation (AMI) or of the event-based communication. The 2-way method is the most familiar to the 
programmer because it  applies to remote calls  the same principles as to a local  method call.  The 
method call blocks until the response is received from the remote object. It corresponds to a classical 
client-server scheme.

The AMI allows sending processing requests to a remote object without blocking the calling process. 
This later receives the response when this is available. A callback or a polling mechanism have to be 
used to get the response data. The AMI mechanism requires to modify the client but not the server 
which is unaware of this change.

There are many situations where the standard CORBA (a)synchronous request/response model is too 
restrictive. For instance, clients have to poll the server repeatedly to retrieve the latest information. 
Likewise, there is no way for the server to efficiently notify groups of interested clients  when data 
change. For these reasons the OMG introduced the Event Service and the Notification Service.

The CORBA specifications define different methods for sending and receiving events: consumers and 
producers  can push or  pull  the events   (Figure  4).  Implementations  of  the  Events  Service  act  as 
“mediators” that support decoupled communication between objects. Events are typically represented 
as messages that contain optional data fields. A primary goal of the Notification Service is to enhance 
the Event Service by introducing the concepts of filtering and configurability according to various 
quality of service requirements. Clients of the Notification Service can subscribe to specific events of 
interest by associating filter  objects with the proxies through which the clients communicate with 
event  channels.  Furthermore,  the Notification Service enables  each channel,  each connection,  and 
each  message to  be  configured  to  support  the  desired  quality  of  service  with  respect  to  delivery 
guarantee,  event  aging characteristics,  and  event  priority.  The  advantages  of  this  communication 
method  is  counterbalanced  by  the  complicated  consumer  registration  (multiple  interfaces, 
bidirectional  object  reference  handshake,  ...).  Not  all  CORBA  implementations  implement  the 
Notification Service.

Because  we  cannot  preclude  of  any  use  or  special  needs,  the  different  communication  methods 



described above are available in our control framework. In our design, we distinguish the control data 
flow from the management data flow. What concerns the control data flow, we have opted for an 
event based communication scheme while the management communication is based on the classical 
2-way.

4. Design and Implementation of components

Components implementation 
The component architecture actually implements the Hierarchical Control Pattern and the Message 
Queuing Pattern:

• The Hierarchical Control Pattern uses two types of interfaces: control interfaces that monitor 
and control  how the behaviours are achieved and functional  interfaces,  which provide the 
services controlled by the other set of interfaces. The use of separate control and functional 
interfaces  provides  a  simple  and  scalable  approach  when  the  system  must  be  highly 
configurable.

• The  Message  Queuing  Pattern  provides  a  simple  means  for  threads  to  synchronise  and 
communicate  information  among  one  another  using  asynchronous  communications 
implemented via queued messages. his pattern has many advantages.

CoRoBA Services have the generic architecture depicted in the figure 5.

Figure 5. Generic Component Architecture
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A service is composed of a main thread in which runs the Object Request Broker (ORB) and service 
threads that runs their own loop. The service thread can be managed remotely by invoking operations 
defined in the Service interface. It admits the following commands: start, pause, wakeup and stop. A 
service  has  3  working  modes  that  can  be  remotely  selected:  synchronous  (process  data  when 
available),  periodic  (whose  period  can  be  changed)  and  external  (synchronized  on  an  external 
trigger). Threads in a service communicate by synchronized message exchange.

Component classic trilogy
Inspired by classical control applications, components have been divided in three categories: sensors, 
processors  and  actuators  (Figure  6).  Sensors  have connections  with  the  physical  world  and  they 
output data to one Event Channel. Processors get their inputs from one Event Channel, they transform 
data  and  send  the  result  to  another  Event  Channel.  Actuators  have  output  connections  with  the 
physical world and received data from one Event Channel.  Services can run on any machine in a 
network and are remotely managed by an administration application. Services register with a Naming 
Service  that acts as a yellow phone book allowing to easily relocate services. 

Simulation
In order to easily test the capabilities of the framework , a 3D simulator for mobile robots has been 
developed.  It  is  written  in  Java  and  Java3D.  It  can  import  3D  objects  from VRML  files.  The 
characteristics of the simulator are:
• 3D environment with flat ground
• Multi robot simulation 
• Obstacles collision detection (included collision between moving robots) 
• Laser Distance sensors
• Planned and real followed trajectory visualisation
• Goal visualisation
• Fixed, tracking and on-board virtual cameras.

Two different views of the simulator are provided in the figure 7.

Presently 3 robots are available in the simulator: the Robudem (rectangular robot with 4 wheels) the 
Nomad and the Melexis(cylindrical robots with 3 synchronous wheels).

All simulated elements of the simulator have CORBA interfaces and can consequently communicate 
with CoRoBA components.

Several CoRoBA components communicating with the simulator have been developed:
• Sensors: Joystick control, Distance sensors, Robot pose, Goal Sensor, Trajectory sensor
• Processors: Simple collision avoidance algorithm, Fuzzy controller for goal seeking and 

trajectory following 
• Actuators: Nomad , Robudem and Melexis.

The simulator can also be used to visualize the motion of real robots or robots simulated in another 

Figure 6. Typical components combination
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simulation (distributed simulation). In the future it could be extended to build virtual worlds based on 
the detection of obstacles by real sensors.

System integration
While  new services  are designed from scratch,  existing applications  and systems will  need to be 
integrated in the framework. Depending on the case this integration can be a trivial or a tricky job. 
We can distinguish different  types of  integration:  database,  library and application.  Integration is 
made  by  providing  a  façade,  aka  an  object  wrapper  following the  Wrapper  Façade  pattern.  The 
wrapper is in this case a distributed object and its implementation manages the interaction with the 
existing system. When developing the façade, one has to capture the business model of the existing 
system and develop interfaces  that  reflects  this  model. When wrapping libraries,  we need to pay 
attention to serialize data access if existing libraries are not thread-safe.

If we consider the case of a Nomad200, we have an  API which is available for the Linux OS. So we 
can write an actuator that translates CORBA method invocations to motion command functions of the 
API and a Sensor that reads the different sensor' values and propagates them as events. The methods 
listed in the Nomad interface keep the same signature as original functions of the Nomad200 API.

The  integration  of  the  second robot  (Robudem) is  simpler  because  we do not  have to  wrap  any 
existing API. On the Robudem main computer runs a server that transfers data via shared memory 
between the Linux side and the RT-Linux side of the control  application.  The data structure that 
contains the robot kinematic information but also the motion commands are exchanged via sockets. 
As only one client is allowed to connect to the robot, the CoRoBA wrapper component breaks with 
the design standard presented above that separates sensors from actuators. It is actually a processor 
that receives motion commands via events, propagates the commands via sockets to the Robudem 
server,  receives  the  kinematics  data  as  the  reply from the socket  server  and finally  forwards  the 
kinematic information via the output event channel. The control of the robot is implemented by other 
CoRoBA components.

5. Fuzzy Control Application
This application controls a simulated four-wheeled robot in an outdoor environment. The aim is to 
travel along  way-points that are provided by the Goal Provider (Figure 8). The way-points are read 
from a file when the components are started. The Goal Scheduler compares the actual position of the 
robot  with  the  coordinates  of  the  way point.  When this  is  reached,  an event  is  sent  to  the  Goal 
Provider in order to jump to the next way point. The Position Sensor propagates the position events 
that are used by the Goal Scheduler and the Goal Controller. The Goal Controller used a fuzzy logic 
control engine to navigate to the way point.

Figure 7. Multi-robot indoor and single robot simulation



6. Conclusion and further work
We present in this paper the most recent developments of a framework that allows to develop more 
flexible and more robust distributed robotic applications. This is the first iteration of the development 
cycle and the chosen design will need to be refined in function of results that will be obtained with 
different real applications. What is certainly missing for the moment are graphical tools for managing 
and monitoring the processes and for configuring the services. The simulator has also to be improved 
to become more flexible and terrain following has certainly to be implemented.
In order to further validate the framework, we need more demonstration applications; some could be 
simply build up by combining existing components in different ways while others will require the 
development of new components. We are also working on a general distributed Behaviour engine for 
multi-robots applications. In the next future, we will integrate other robots (Melexis developed at the 
VUB, a Cartesian scanner at the RMA) and real sensors (Laser, GPS, US, MD...).
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