
Abstract: This article presents a Java based 3D simulator for 
mobile  robots  called  MoRoS3D.  This  application  is  able  to 
simulate  realistic  motion  of  different  wheeled  mobile  robots 
including  dynamic  behavior  and  collision  detection.  Typical 
sensors  are  also  available  in  order  to  develop  intelligent 
navigation  applications.  As  this  simulator  provides  CORBA 
interfaces for every active objects, applications can be written in 
any  language  supporting  this  standard.  The  design  and 
implementation  as  well  as  a  typical  control  application  are 
presented in this paper.
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I. INTRODUCTION

Having a simulator offers many advantages. First of all it is 
tremendously  cheaper  than  real  robots  and  sensors, 
particularly when experimenting with multi robots systems. It 
allows focusing on intelligence and control and disposing of 
other, less interesting problems. It makes possible reducing the 
development time by trying different scenarios and algorithms 
before experimenting them in a real environment. A simulator 
also increases safety when developing and testing new control 
applications. Developing a simulator can be easier or harder 
than building (or buying) hardware. For instance, simulating a 
high fidelity stereo vision system would require a lot of work 
and  could  cost  much  more  money  than  buying  equivalent 
hardware. 

Different approaches are possible for the modeling step. In 
some  implementations  the  user  has  to  write  equations 
representing the dynamical behavior of the simulated system 
or  to  draw a  3D  model  including  physical  properties,  this 
model being also used for the visualization of the results. In 
the former solution a separate 3D model has to be provided 
and  the  visualization  is  generally  handled  by  a  separate 
animation  application.  Commercial  software's  are  generic 
tools and must consequently be versatile and provide easy to 
use interfaces for model creation and results visualization.

For  instance,  in  the  commercial  software  “Universal 
Mechanism”1 (UM) the user draws the model and defines the 
constraints  in  a  program  called  “UM  Input”  while  the 
simulation  and  the  visualization  are  provided  by  the  “UM 
simulation” application. UM must be combined with Matlab® 

if the multi-body simulation has to be embedded in a global 
control scheme.

In the simulation library EasyDyn [1] the user has to provide 
the position equations and the applied forces. Accompanying 

1Http://www.umlab.ru

tools  automate  the  creation  of  the  motion  equations  and 
generate a C++ program that the user has to complete with 
additional control equations. Results are saved in files that can 
be read by third party applications (GNUPlot, EasyAnim, ...). 

The Open Design Engine (ODE)2 is a library that proposes a 
mixed  approach.  The  user  writes  a  program  (in  C++  or 
Python) that describes the simulated system by using objects 
provided by the library (world, nodes, joints, forces, torques, 
...).  This  library  also  provides  methods  for  resolving  the 
implicitly generated  equations.  The  visualization part  is  the 
responsibility  of  the  developer  who  has  to  use  third  party 
libraries like Opengl.

Simulators can be divided in off-line and on-line simulators. 
Off-line simulators  compute  motion of  objects  at  their  own 
pace and produce data that can be visualized as a movie once 
the  simulation  is  completed.  The  aforementioned  examples 
enter in the off-line simulation category.  On-line simulators 
are interactive; the motion of the objects can be modified in 
real-time by control algorithms or by a user via a GUI or a 
joystick. The motion of the controlled object are visualized in 
real-time in 2D or 3D. 

The Java based simulator, called MoRoS3D, that has been 
developed in this work enters in the on-line category. Control 
commands  and  environmental  conditions  can  be  changed 
interactively.   Furthermore,  it  runs  in  real  time  using  any 
available  communication  systems  and  replaces  the  real 
hardware in the application control loop in order to test the 
control components. 

II. SIMULATOR OVERVIEW.
For the user, the visible output of the simulator is a synthetic 

image. Actually, it is not only an image but it is also a model 
that is built with algorithms based on physical laws and using 
well  defined  data  structures.  The  simulator  provides  the 
following functionalities:

• Real-time simulation of multiple robots concurrently 
• 3D real-time visualization of the simulation
• User interaction through a GUI
• Dynamic control of mobile robots
• Detection  of  and  appropriate  reaction  to  collisions 

between mobile and fixed objects
• Simulation of position and distance sensors
• CORBA interfaces

The simulation process  is  divided  in  two main steps:  the 
modeling  of  3D  scenes  and  robots  by  a  human  and  the 

2Http://www.ode.org
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utilization of the modeled objects in the simulator. These two 
steps are explained in the following sections and  illustrated by 
the diagram of Figure 1.

Fig. 1. The simulation process

Starting from a  real  or  an hypothetical  robot,  the  creator 
uses a 3D drawing program to generate a virtual model. Other 
information like colours, material and texture can be applied 
to  the  objects  to  improve  the  realism.  Real  or  imaginary 
environments  (terrain  and  obstacles)  are  created  separately 
from the robots. Wings3D uses its own format for internal and 
external  representation  but  models  can  also  be  exported  in 
other  popular  formats.  The  exported  model  is  encoded  in 
VRML (Virtual Reality Modelling Language).

The VRML file is read by the application and transformed 
by the Java3D [2] import library into a Java3D scene graph 
and inserted in the global 3D scene.

The process flow (control-rendering-display) represented in 
Figure 1 continuously runs until the application finishes.  The 
control  process  updates  the  Scene  (section  4),  controls  the 
motion  of  the  robots  (section  5),  performs  the  collision 
detection and response (section 6)  and finally computes the 
output  of  position  and  distance  sensors  (section  7).  The 
Control  also  receives  motion  commands for  the  robots  and 
sends sensors' data via the CoRoBA interfaces (section 8). It 
can  also  control  the  camera  motion  in  automatic  tracking 
mode.  The  GUI (section 3)  lets  the  user  chose  the  camera 
mode and position and  gives the possibility to  position the 
robot in the virtual world.

The execution of the control process is triggered by timer 
events. As each robot and sensor is represented by separate 
objects, the events are propagated to all of them. This means 
that all motion and measurements are synchronized.

Once  all  transformations  of  the  3D  scene  have  been 
performed,  the  scene  is  rendered  by  the  Java3D  rendering 

engine.  This  engine  uses  different  information  in  order  to 
produce an image that can be displayed on the screen:

• The lights present in the scene.
• The lightning model. Here a Gouraud shading is used 

for calculating the illumination of the scene.
• The point of view given by the camera position and 

other viewing information (field of view, near and far 
clipping distances, ...).

• The  projection  model,  which  is  a  perspective 
projection in our case.

The  rendering  engine  of  Java3D can  use  the  DirectX  or 
OpenGL libraries.

III. GRAPHICAL USER INTERFACE

MoRoS3D allows to place a robot in a 3D environment and 
to let it interact with that environment in a manner similar to 
robots situated in the real world. Although the user visualizes 
the entire surroundings of the robot, the robot software only 
”sees” the information it collects through its sensors, just like 
a real robot would do.

As can be seen in Figure 2, the main part of the Graphical 
User Interface (GUI) is off course devoted to the 3D view. On 
the right of the GUI lie several widgets for managing cameras, 
robots'  position  and  trajectory  plots.  The  user  can  choose 
several viewpoints corresponding to virtual cameras in the 3D 
scene.  There  are  also  two  mobile  cameras,  one  on  board 
(button  BOARD)  and  one  at  the  vertical  of  the  robot  that 
points  downward (button TRACK).  With the NEXT button 
the user jumps from robot to robot when in tracking or on-
board mode. The user can also specify the robots' location and 
reset one or all robots in a single operation. There is also a 
button to erase the trajectory plots left behind moving robots. 
Under the 3D view, the name, position and orientation of the 
selected robot are displayed.

Fig. 2. GUI of MoRoS3D

IV. SCENE GRAPH

Many  free  and  open-source  toolkits  are  available  for 
building 3D applications3.  However,  most of them focus on 

3More than 230 engines are recorded in the database of the 
site http://www.devmaster.net

Modelling

Geometrical
data of objects

Geometrical
 Modelling

3D Model
 files

3D Modeller

Colour,
 material, 

texture

Simulation
Control

Motion control
Collision detection
Sensors response

Robot 
Motion

Commands

Sensors
data

Timers

3D Scene

Rendering
CameraLights

Projection
Model

Lighting
Model

Display

CoRoBA
Interfaces GUI

723



visual aspects and few offer high level facilities for managing 
scenes. This is one reason justifying the use of Java3D for the 
development of the simulator.  Java3D is a full-featured API 
for interactive 3D graphics. It is based on a high-level scene 
graph programming model that  describes the scene, Java3D 
managing  the  display  of  it.  Scene  graphs  are  treelike  data 
structures  used  to  store,  organize  and  render  3D  scene 
information. They are made up of objects called nodes, which 
represent objects to be displayed, aspects of the virtual world 
or group of nodes.

Nodes and  NodeComponents are the basic elements of the 
scene graphs. Nodes can be divided into the following basic 
categories:

• Shape  nodes,  which  represent  3D  objects  in  the 
world.

• Environment  nodes,  which  represent  characteristics 
of the world such as light, fog, sounds, etc.

• Group nodes, which organise the scene graph.
• The  ViewPlatform, which is a place where a viewer 

can look at the world.
Group is the base class for a number of classes that position, 

orient and control scene graph objects in the virtual universe. 
The two subclasses used in MoRoS3D are BranchGroup and 
TransformGroup.  BranchGroup holds sub-graphs that can be 
added  and  removed  while  the  scene  is  being  displayed. 
TransformGroup changes the transformation of  its  children, 
giving them a different position, orientation and size.

By  default,  each  object  in  a  Java3D  scene  is  initially 
stationary  and  remains  at  its  starting  location  unless  code 
specifies otherwise. A  TransformGroup is associated with a 
Transform3D structure  that  corresponds  to  a  4x4 
transformation  matrix.  A  single  Transform3D object  can 
represent a translation, a rotation, a scaling or a combination 
of the three. A transformation turns the X,Y and Z coordinates 
of a point into a new set of coordinates:

This relations  can be expressed with 4x4 matrices, where [x 
y  z  1]t are  the  original  and  [x'  y'  z'  1]t the  transformed 
coordinates:

[x '
y '
z '
1 ]=[m00 m01 m02 m03

m10 m11 m12 m13
m20 m21 m22 m23
0 0 0 1 ][x

y
z
1 ] (1)

There are many methods to create and modify Transform3D 
objects. These include methods to make a Transform3D have 
a translation, scale or rotation. When a TransformGroup is the 
child  of  another  TransformGroup,  the  effects  of  their 
Transform3D objects are multiplied so that all the children of 
the  child  TransformGroup are  affected  by  both  sets  of 
transforms.

NodeComponents are  nodes  that  hold  properties  or  data. 
Shape nodes  are  NodeComponents that  consist  of  two 
properties: the geometry, which specifies the 3D coordinates 
and  the  appearance,  which  specifies  the  colour  and  other 
properties of the shape.

SimpleUniverse is a Java3D utility class that manages low 
level  functionality  as  for  instance  3D to  2D mapping.  The 

SimpleUniverse renders the image in a 3DCanvas, which is a 
drawing  widget  added  to  the  View3DPanel.  The 
ViewPlatform is  a  member  of  the  SimpleUniverse used  to 
transform  the  viewpoint  with  the  mouse  via  predefined 
behaviours (MouseZoom, MouseRotate, MouseTranslate).

The  worldBGroup (BranchGroup)  contains  environmental 
node such as lights, fog and background and the sceneBgroup 
(BranchGroup).

The  objects  of  the  3D world  have  been  divided  in  three 
groups:  the  terrain,  the  obstacles  and  the  robots.  This 
separation provides flexibility in the composition of the scene. 
The  sceneBGroup therefore contains the  terrainBGroup,  the 
obstacleBGroup and the robotBGroup.

 

Fig. 3. Scene graph.

V. ROBOT MODELS

The geometry of robots  is determined by their  shape and 
dimensions.  The  3D  models  have  been  drawn  with  a  3D 
modeling application (Wings3D) and exported in the VRML 
format.

A. Nomad
The  Nomad  (Figure  4)  has  a  simple  geometry  and  only 

visible parts have been modeled. 
The Nomad  is actuated by a synchronous mechanism, each 

wheel is capable of being driven and steered. The three steered 
wheels are arranged as vertices's of an equilateral triangle and 
all  the  wheels  turn  and  drive  in  unison.  Actually  the  real 
Nomad  has  a  third  degree  of  freedom,  the  turret  can  turn 
independently of  the base but  this  mechanism has not  been 
implemented in the model. 
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Fig. 4. 3D and kinematic models of the Nomad

The motion equation of the Nomad are:

[xk1

yk1

k 1
]=[x k

y k

k
][vk cos k

vk sin k

wk
]⋅h (2)

The  Euler  algorithm  [JAME85]  is  used  as  integration 
method to obtain the position from the velocity. The standard 
Euler  integration  method  requires  a  single  forcing  function 
evaluation, and produces a first order accurate solution. The 
algorithm for a single variable is simple: 

xth =xt h vk cosk (3)

The algorithm is applied repetitively to compute a solution 
for  the state  at  equally spaced intervals  of  time.  The  Euler 
method is known for accumulating errors at each integration 
steps. We neglect these errors here as we are more interested 
by global behaviors and environment interaction than by exact 
trajectories. 

Determining the real dynamic behavior of such a robot is 
not  a  trivial  task,  but  as  the  motion  of  the  real  robot  is 
controlled  by  a  PID  controller,  we  assume  that  it  can  be 
reasonably modeled by a first order differential equation. The 
steer  speed  and  the  translation  speeds  are  consequently 
updated according to the following equations:

v k=vk −1vc−v k−1h/t

w k=wk−1wc−wk−1 h /s

(4)

Where  τs and  τt are  the  estimated  time  constants  of  the 
system  and  vc and  wc   are  the  command  speeds.  These 
constants have been adjusted for the typical dynamic behavior 
of  the  Nomad  taking  into  account  the  standard  value  for 
accelerations  (These  values  can  be  changed  by  calling  the 
appropriate function of the Nomad API).

B. Robudem
The geometry of the Robudem is more complicated than the 

one of  the  Nomad.  The  Robudem has  four  wheels that  are 
individually actuated by electrical motors. The two axles are 
steerable and are actuated by two linear electrical motors via 
an Ackerman mechanism. The following figures show the real 
robot and its 3D model.

Fig 5. Picture and 3D model of the Robudem

The trajectory control of the real Robudem is based on two 
parameters: the instant desired speed v and the instant desired 
steering lock α. Indeed, at each time, the vehicle trajectory can 
be expressed with those two values that are given by the user 
through a joystick interface or by a control program. 

Supposing a perfect Ackermann steering mechanism for the 
front axle results in the instantaneous center of rotation lying 
on the axis of the rear axle. In this case we can use a bicycle 
model for representing the kinematics of the vehicle (Figure 
6): the four wheels are replaced by two wheels located in the 
middle of the vehicle.

Let  the  angular  velocity vector  along  the body z  axis  be
̇ . Using the bicycle model approximation, the radius of 

curvature R and the steer angle α are related by the wheelbase 
L. By definition of the curvature:

d
ds

=1
R
=

tan
L

(5)

̇=
d 
ds

ds
dt

=1
R

v=v
tan

L
(6)

 k=v k h
tank

L
(7)

v(t)

w(t)

y

x

θ
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Fig. 6. Kinematic model of the Robudem

Once the incremental angle has been obtained,  The model of 
the equations 2 and 3 can be used. Simulating the dynamic 
behavior of Robudem is based on the same model as for the 
Nomad (Equation 4). Off course the time constants have been 
adapted  to  reflect  the  dynamics  of  this  robot.  Another 
particularity  of  the  real  controller  that  has  been  taken  into 
account  is  the  following:  when the  user  suddenly  puts  the 
joystick in neutral position, the controller immediately stops 
the robot while when he pulls it gently, the speed is reduced 
by applying a linear profile.

VI. HANDLING COLLISIONS

The previous section has presented the motion control  of 
robots in open environment, that is without any obstacles. Off 
course in any realistic application robots have to cope with 
static  and  dynamic  obstacles.  In  the  developed  simulator, 
dynamics  obstacles  are  other  mobile  robots  while  the 
environment is static. It this then necessary to be able to detect 
and  to  react  to  collisions.  Moving  autonomously  implies 
detecting and avoiding obstacles. One of the basic requirement 
of the simulator is consequently to provide collision detection 
to  detect  when  the  control  algorithm  fails  and  the  robot 
collides  with  the  environment  or  with  other  robots  and  to 
provide adapted response. 

Java3D  provides  classes  for  detecting  collisions  between 
objects.  However,  this  API  works asynchronously and does 
not  offer  any guarantee when the detected collision will  be 
reported, what happens generally after the object has entered 
into another one. This is not an appropriate mechanism and 
therefore  a  collision  detection  algorithm exploiting  Java3D 
Behaviors has been implemented. Collision detection is more 
a geometric problem than a physical one. To make sure that 
any area of space cannot be occupied by more than one object, 
collision  detection  based  on  the  geometry of  the  objects  is 
required [3]. 

For any realistic environment and even if simplified shapes 
are used, the collision detection needs a lot of mathematical 
operations. each object is composed of hundreds of triangles 
and the collision detection would required too much time if it 
had to be performed for any triangle. During the simulation we 
need  to  check  for  collisions  at  every  frame  therefore  it  is 

important  that  collision  detection  be  very  efficient.  We 
therefore need to apply a method to speed up the computation. 
Hopefully,  there  exist  different  optimization  methods  for 
reducing the amount of  operations.   For  instance,  bounding 
volumes can be used to reject non intersecting objects. Axis 
Aligned Bounding Box (Figure 7) and spheres are the most 
used bounding volumes.

 If a single volume around the object does not give accurate 
enough collision detection for the shape then it is possible to 
use multiple boxes in a hierarchical way to more accurately 
match the shape of an irregular object.

Using  bounding  volumes  reduce  the  computing  cost  by 
eliminating objects that do not collide but it may not be good 
enough to rely on the bounding box or sphere alone especially 
if the objects are complex shapes. However they can at least 
filter out those objects that do not overlap. Another reason that 
we cant rely on bounding rectangle or sphere alone is that in 
order to go on to the next stage of working out the collision 
response we also need to know the points of impact.

If we want to test  for collision of meshes,  made up from 
triangles, and we want to check for collisions accurately, using 
all  the information from the geometry, we may need to test 
each triangle on object 'A' with each triangle on object 'B' for 
intersection. Currently the most efficient test is the algorithm 
of Moller [4] that is explained below.

We first determine the equation of the planes containing the 
triangles and work out the intersection line for the two planes 
(Figure 8). Intervals Ia and Ib are are computed. If Ia ∩ Ib ≠ ф 
than the two triangles intersect.

Fig. 8. Testing a possible intersection between two 
triangles

Fig. 7. Bounding boxes
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Java3D offers methods for calculating intersection between 
bounding boxes of objects. However automatically computed 
bounding boxes have always their axes parallel to the global 
reference frame. This gives an unrealistic representation for 
any real object. 

Therefore the method used in the simulator is a compromise 
between the two approaches presented above.  It  consists  in 
replacing  mobile  robots  by  a  good  approximation  and 
checking for collision with the real geometry of other objects. 
The Nomad is for instance simply replaced by a cylinder. The 
Robudem has basically a box shape and it is more suited to 
define  its  contour  manually  by  specifying  a  bounding  box 
defined by six orthogonal plans what in the Java3D jargon is 
called  a “Polytope”.

In order to render realistic collision occurrences we must be 
able to predict these events before they effectively happen in 
order to avoid that a robot enters into an object. Knowing the 
actual speeds we compute for each frame the posture.  With 
this prediction we check if a collision occurs with  any fixed or 
mobile obstacles. 

Once we have detected a collision between two objects, we 
can  compute  the  reaction  by  using  physical  laws  and  by 
considering for each object the velocity, the mass, the centre 
of mass, the inertia, ... As in targeted applications real robots 
are moving slowly we do not need complex collision response 
because most of the time robots are simply blocked when they 
move into an obstacle.  So in  case of  collision we stop  the 
robot by disregarding the last transformation.

VII. SENSORS

Two  kinds  of  sensors  are  necessary  for  developing 
intelligent  control  applications  in  mobile  robotics:  position 
and environment perception sensors.

Global  position sensors can be easily implemented within 
the  simulator  because  we  perfectly  know  the  position  and 
orientation of  the robot  and of all  its  components.  Relative 
position  sensors  and  low level  encoder  signals  can  also  be 
derived from this global position knowledge. 

A mobile robot can only act intelligently if it perceives its 
environment. Distance sensors are mandatory for seeing what 
stands around the robot.  Three models of such sensors have 
been implemented in the simulator, namely laser, infra-red and 
ultrasonic sensors. To implement the measurement process we 
have used Java3D's picking routines. The idea is to cast a ray 
into the space around the robot. This ray has a length equal to 
the maximum distance the sensor can measure.

  

Fig. 9. Simulated Laser and Ultrasonic sensors

VIII. DEVELOPING APPLICATIONS

A. Principle
MoRoS3D integrates seamlessly with the control framework 

that  has  been  developed  at  the  Royal  Military  Academy. 
CoRoBA  is  a  solution  package  for  developing  distribution 
applications that uses components with standardized interfaces 
and communication mechanisms.  Components are divided in 
Actuators, Processors and Sensors.

The  utilization philosophy is  to  develop and  tune control 
algorithms in simulation and to simply replace simulated by 
real components once satisfying results have been reached, no 
further  modification  of  the  Processor  components  being 
required. In Figure 10, the concept of integrating MoRoS3D in 
the  CoRoBA  framework  is  shown.  Sensor  and  Actuator 
components developed with CoRoBA can be seen as interface 
components that have to be specific for the simulator or the 
hardware they are linked to. 

Fig. 10. Simulator and CoRoBA integration

The  block  named  “Intelligent  Control”  on  top  of  Figure 
contains  Processors.  This  part  does  not  care  if  real  or 
simulated hardware is used. The Processor components are the 
key-stone of  the control  architecture  and exhibit  the largest 
potential  of  reuse  between  applications  involving  different 
robots while Sensors and Actuators, that serve as interfaces or 
translators  between  the  software  and  external  modules,  are 
specific to these devices. The more abstract a Processor is, the 
greater the possibility of reusing it without any modification. 

The middle block corresponds to interface components that 
make the link between the Processors and the simulated world. 
Sensor  and  Actuator  components  implement  the  same 
interfaces  as  those  implemented  by  components  linked  to 
physical systems, allowing to instantaneously switch between 
simulation and reality.

The last block represents the simulator. It is constituted by 
different elements that are described hereafter. First of all it 
contains  models  of  the physical  elements.  The  robot  model 
deals with the geometric,  kinematic and dynamic aspects of 
the robot.  The sensor model encodes information about the 
sensors like the radiation model, the  minimum and maximum 
distances, the precision, etc. The environment model contains 
the  3D  geometrical  representation  of  the  environment.  The 
robot simulator is responsible for the realistic motion of the 
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robot and takes care of the collision with fixed and moving 
obstacles like other robots. It receives motion commands from 
Actuator components. 

The simulated sensors produce measurement data that  are 
injected  in  the  application  control  loop  by  the  Sensor 
components . The data  is forwarded to Processor components 
where they are exploited to finally produce motion commands 
that  are  sent  to  the  Actuator  Components.  These 
ActuatorComponents adapt and send this information to the 
robot objects. The sensors affect the vehicles motion through 
Intelligent Control and vehicles motion affect sensors through 
the  Simulator  taking  into  account  the  model  of  the 
environment.

B. Example: Goal Navigation with the Robudem
The purpose of this application is to let the Robudem move 

autonomously from a given position  to succession of goals in 
an obstacle free environment. The components involved in this 
application and the transferred data are shown in Figure 11. 
The Goal Controller uses a Fuzzy Inference System.

Fig. 11. Components' network

During  the  execution  of  the  application,  the  following 
operations are executed:
• At initialization, the Goal_Provider reads a list of goals 

from a file (goals.dat).
• When the components are started, the first goal position 

[Xg Yg  θg] is sent to the  Goal_Controller and to the 
Goal_Scheduler.

• These components also receive the global position of the 
robot  [x  y  θ  αf  αr]  from the  Sim_Robudem Sensor 
component).

• The  Goal_Controller uses this information to produce 
steering  and  driving  commands   [Vt  Vs]  in  order  to 
reach the goal .

• These  commands  are  received  by  the  Sim_Robudem 
Actuator that adapt them to the controlled robot.

• The  Goal_Scheduler compares  the  goal  position 
received from the Goal_Provider with the instantaneous 
position  of  the  robot.  When  the  robot  is  sufficiently 
close to the goal, the Goal_Scheduler sends an event to 

the Goal_Provider to inform it that it has to provide the 
next goal .

• A  new  goal  is  sent  to  the  Goal_Controller and 
Goal_Scheduler .

• These  operations  are  repeated  until  the  last  goal  is 
reached.

Fig. 12. Two steps of a navigation sequence
 

IX. CONCLUSIONS

This chapter presented MoRoS3D, a multi-robot and sensor 
simulation  application  that  simulates  3D  environment  for 
developing  mobile  robots  applications.  This  simulator  is 
versatile enough to simulate different types of robots.

The 3D scene modeling and rendering is based on Java3D 
and  is  therefore  platform independent.  It  is  extensible  and 
users  can  easily  change  the  environment  (terrain  and 
obstacles)  as  they are  passed  as  command line  parameters, 
they do not need to recompile the application.

Finally,  it  integrates  seamlessly  into  the  CoRoBA 
framework thanks to the CORBA middleware.

Despite this tight integration, the simulator can also be used 
independently of the framework and control applications can 
be written in any language supporting CORBA interfaces.

Keeping the control algorithms out of the simulator has the 
advantage that an application developer does not need to deal 
with Java3D programming.
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