
Abstract: This article presents a Java based 3D simulator for
mobile robots called MoRoS3D. This application is able to
simulate realistic motion of different wheeled mobile robots
including dynamic behavior and collision detection. Typical
sensors are also available in order to develop intelligent
navigation applications. As this simulator provides CORBA
interfaces for every active objects, applications can be written in
any language supporting this standard. The design and
implementation as well as a typical control application are
presented in this paper.

Keywords: 3D simulation, mobile robots, CORBA

I. INTRODUCTION

Having a simulator offers many advantages. First of all it is
tremendously cheaper than real robots and sensors,
particularly when experimenting with multi robots systems. It
allows focusing on intelligence and control and disposing of
other, less interesting problems. It makes possible reducing the
development time by trying different scenarios and algorithms
before experimenting them in a real environment. A simulator
also increases safety when developing and testing new control
applications. Developing a simulator can be easier or harder
than building (or buying) hardware. For instance, simulating a
high fidelity stereo vision system would require a lot of work
and could cost much more money than buying equivalent
hardware.

Different approaches are possible for the modeling step. In
some implementations the user has to write equations
representing the dynamical behavior of the simulated system
or to draw a 3D model including physical properties, this
model being also used for the visualization of the results. In
the former solution a separate 3D model has to be provided
and the visualization is generally handled by a separate
animation application. Commercial software's are generic
tools and must consequently be versatile and provide easy to
use interfaces for model creation and results visualization.

For instance, in the commercial software “Universal
Mechanism”1 (UM) the user draws the model and defines the
constraints in a program called “UM Input” while the
simulation and the visualization are provided by the “UM
simulation” application. UM must be combined with Matlab®

if the multi-body simulation has to be embedded in a global
control scheme.

In the simulation library EasyDyn [1] the user has to provide
the position equations and the applied forces. Accompanying

1Http://www.umlab.ru

tools automate the creation of the motion equations and
generate a C++ program that the user has to complete with
additional control equations. Results are saved in files that can
be read by third party applications (GNUPlot, EasyAnim, ...).

The Open Design Engine (ODE)2 is a library that proposes a
mixed approach. The user writes a program (in C++ or
Python) that describes the simulated system by using objects
provided by the library (world, nodes, joints, forces, torques,
...). This library also provides methods for resolving the
implicitly generated equations. The visualization part is the
responsibility of the developer who has to use third party
libraries like Opengl.

Simulators can be divided in off-line and on-line simulators.
Off-line simulators compute motion of objects at their own
pace and produce data that can be visualized as a movie once
the simulation is completed. The aforementioned examples
enter in the off-line simulation category. On-line simulators
are interactive; the motion of the objects can be modified in
real-time by control algorithms or by a user via a GUI or a
joystick. The motion of the controlled object are visualized in
real-time in 2D or 3D.

The Java based simulator, called MoRoS3D, that has been
developed in this work enters in the on-line category. Control
commands and environmental conditions can be changed
interactively. Furthermore, it runs in real time using any
available communication systems and replaces the real
hardware in the application control loop in order to test the
control components.

II. SIMULATOR OVERVIEW.
For the user, the visible output of the simulator is a synthetic

image. Actually, it is not only an image but it is also a model
that is built with algorithms based on physical laws and using
well defined data structures. The simulator provides the
following functionalities:

• Real-time simulation of multiple robots concurrently
• 3D real-time visualization of the simulation
• User interaction through a GUI
• Dynamic control of mobile robots
• Detection of and appropriate reaction to collisions

between mobile and fixed objects
• Simulation of position and distance sensors
• CORBA interfaces

The simulation process is divided in two main steps: the
modeling of 3D scenes and robots by a human and the

2Http://www.ode.org

MoRoS3D, a multi mobile robot 3D simulator
Eric Colon1, Hichem Sahli2, Yvan Baudoin1

1Royal Military Academy- Department of Mechanics
Avenue de la Renaissance 30 – 1000 Brussels – Belgium

2Vrije Universiteit Brussel - Department of Electronics and Informatics (ETRO)
Pleinlaan 2 – 1050 Brussels - Belgium

email: eric.colon@rma.ac.be, hsahli@etro.vub.ac.be, yvan.baudoin@rma.ac.ac.be

Proceedings of the 9th International Conference on Climbing and Walking Robots
Brussels, Belgium - September 2006

722

utilization of the modeled objects in the simulator. These two
steps are explained in the following sections and illustrated by
the diagram of Figure 1.

Fig. 1. The simulation process

Starting from a real or an hypothetical robot, the creator
uses a 3D drawing program to generate a virtual model. Other
information like colours, material and texture can be applied
to the objects to improve the realism. Real or imaginary
environments (terrain and obstacles) are created separately
from the robots. Wings3D uses its own format for internal and
external representation but models can also be exported in
other popular formats. The exported model is encoded in
VRML (Virtual Reality Modelling Language).

The VRML file is read by the application and transformed
by the Java3D [2] import library into a Java3D scene graph
and inserted in the global 3D scene.

The process flow (control-rendering-display) represented in
Figure 1 continuously runs until the application finishes. The
control process updates the Scene (section 4), controls the
motion of the robots (section 5), performs the collision
detection and response (section 6) and finally computes the
output of position and distance sensors (section 7). The
Control also receives motion commands for the robots and
sends sensors' data via the CoRoBA interfaces (section 8). It
can also control the camera motion in automatic tracking
mode. The GUI (section 3) lets the user chose the camera
mode and position and gives the possibility to position the
robot in the virtual world.

The execution of the control process is triggered by timer
events. As each robot and sensor is represented by separate
objects, the events are propagated to all of them. This means
that all motion and measurements are synchronized.

Once all transformations of the 3D scene have been
performed, the scene is rendered by the Java3D rendering

engine. This engine uses different information in order to
produce an image that can be displayed on the screen:

• The lights present in the scene.
• The lightning model. Here a Gouraud shading is used

for calculating the illumination of the scene.
• The point of view given by the camera position and

other viewing information (field of view, near and far
clipping distances, ...).

• The projection model, which is a perspective
projection in our case.

The rendering engine of Java3D can use the DirectX or
OpenGL libraries.

III. GRAPHICAL USER INTERFACE

MoRoS3D allows to place a robot in a 3D environment and
to let it interact with that environment in a manner similar to
robots situated in the real world. Although the user visualizes
the entire surroundings of the robot, the robot software only
”sees” the information it collects through its sensors, just like
a real robot would do.

As can be seen in Figure 2, the main part of the Graphical
User Interface (GUI) is off course devoted to the 3D view. On
the right of the GUI lie several widgets for managing cameras,
robots' position and trajectory plots. The user can choose
several viewpoints corresponding to virtual cameras in the 3D
scene. There are also two mobile cameras, one on board
(button BOARD) and one at the vertical of the robot that
points downward (button TRACK). With the NEXT button
the user jumps from robot to robot when in tracking or on-
board mode. The user can also specify the robots' location and
reset one or all robots in a single operation. There is also a
button to erase the trajectory plots left behind moving robots.
Under the 3D view, the name, position and orientation of the
selected robot are displayed.

Fig. 2. GUI of MoRoS3D

IV. SCENE GRAPH

Many free and open-source toolkits are available for
building 3D applications3. However, most of them focus on

3More than 230 engines are recorded in the database of the
site http://www.devmaster.net

Modelling

Geometrical
data of objects

Geometrical
 Modelling

3D Model
 files

3D Modeller

Colour,
 material,

texture

Simulation
Control

Motion control
Collision detection
Sensors response

Robot
Motion

Commands

Sensors
data

Timers

3D Scene

Rendering
CameraLights

Projection
Model

Lighting
Model

Display

CoRoBA
Interfaces GUI

723

visual aspects and few offer high level facilities for managing
scenes. This is one reason justifying the use of Java3D for the
development of the simulator. Java3D is a full-featured API
for interactive 3D graphics. It is based on a high-level scene
graph programming model that describes the scene, Java3D
managing the display of it. Scene graphs are treelike data
structures used to store, organize and render 3D scene
information. They are made up of objects called nodes, which
represent objects to be displayed, aspects of the virtual world
or group of nodes.

Nodes and NodeComponents are the basic elements of the
scene graphs. Nodes can be divided into the following basic
categories:

• Shape nodes, which represent 3D objects in the
world.

• Environment nodes, which represent characteristics
of the world such as light, fog, sounds, etc.

• Group nodes, which organise the scene graph.
• The ViewPlatform, which is a place where a viewer

can look at the world.
Group is the base class for a number of classes that position,

orient and control scene graph objects in the virtual universe.
The two subclasses used in MoRoS3D are BranchGroup and
TransformGroup. BranchGroup holds sub-graphs that can be
added and removed while the scene is being displayed.
TransformGroup changes the transformation of its children,
giving them a different position, orientation and size.

By default, each object in a Java3D scene is initially
stationary and remains at its starting location unless code
specifies otherwise. A TransformGroup is associated with a
Transform3D structure that corresponds to a 4x4
transformation matrix. A single Transform3D object can
represent a translation, a rotation, a scaling or a combination
of the three. A transformation turns the X,Y and Z coordinates
of a point into a new set of coordinates:

This relations can be expressed with 4x4 matrices, where [x
y z 1]t are the original and [x' y' z' 1]t the transformed
coordinates:

[x '
y '
z '
1]=[m00 m01 m02 m03

m10 m11 m12 m13
m20 m21 m22 m23
0 0 0 1][x

y
z
1] (1)

There are many methods to create and modify Transform3D
objects. These include methods to make a Transform3D have
a translation, scale or rotation. When a TransformGroup is the
child of another TransformGroup, the effects of their
Transform3D objects are multiplied so that all the children of
the child TransformGroup are affected by both sets of
transforms.

NodeComponents are nodes that hold properties or data.
Shape nodes are NodeComponents that consist of two
properties: the geometry, which specifies the 3D coordinates
and the appearance, which specifies the colour and other
properties of the shape.

SimpleUniverse is a Java3D utility class that manages low
level functionality as for instance 3D to 2D mapping. The

SimpleUniverse renders the image in a 3DCanvas, which is a
drawing widget added to the View3DPanel. The
ViewPlatform is a member of the SimpleUniverse used to
transform the viewpoint with the mouse via predefined
behaviours (MouseZoom, MouseRotate, MouseTranslate).

The worldBGroup (BranchGroup) contains environmental
node such as lights, fog and background and the sceneBgroup
(BranchGroup).

The objects of the 3D world have been divided in three
groups: the terrain, the obstacles and the robots. This
separation provides flexibility in the composition of the scene.
The sceneBGroup therefore contains the terrainBGroup, the
obstacleBGroup and the robotBGroup.

Fig. 3. Scene graph.

V. ROBOT MODELS

The geometry of robots is determined by their shape and
dimensions. The 3D models have been drawn with a 3D
modeling application (Wings3D) and exported in the VRML
format.

A. Nomad
The Nomad (Figure 4) has a simple geometry and only

visible parts have been modeled.
The Nomad is actuated by a synchronous mechanism, each

wheel is capable of being driven and steered. The three steered
wheels are arranged as vertices's of an equilateral triangle and
all the wheels turn and drive in unison. Actually the real
Nomad has a third degree of freedom, the turret can turn
independently of the base but this mechanism has not been
implemented in the model.

simpleU
SimpleUniverse

canvas3D
Canvas3D

ViewPlatform

worldBGroup
MouseZoom

MouseRotate
MouseTranslate

LigthsBGroup

ambLight
dirLight

fog

backGround

sceneBGroup

terrainBGroup
VRMLTerrainFileBGroup

(TerrainBGroup)

robotBGroup
VRMLRobotFileBGroup

(RobotBGroup)

obstaclesBGroup
VRMLObstaclesFileBGroup

(ObstaclesBGroup)

724

Fig. 4. 3D and kinematic models of the Nomad

The motion equation of the Nomad are:

[xk1

yk1

k 1
]=[x k

y k

k
][vk cos k

vk sin k

wk
]⋅h (2)

The Euler algorithm [JAME85] is used as integration
method to obtain the position from the velocity. The standard
Euler integration method requires a single forcing function
evaluation, and produces a first order accurate solution. The
algorithm for a single variable is simple:

xth =xt h vk cosk (3)

The algorithm is applied repetitively to compute a solution
for the state at equally spaced intervals of time. The Euler
method is known for accumulating errors at each integration
steps. We neglect these errors here as we are more interested
by global behaviors and environment interaction than by exact
trajectories.

Determining the real dynamic behavior of such a robot is
not a trivial task, but as the motion of the real robot is
controlled by a PID controller, we assume that it can be
reasonably modeled by a first order differential equation. The
steer speed and the translation speeds are consequently
updated according to the following equations:

v k=vk −1vc−v k−1h/t

w k=wk−1wc−wk−1 h /s

(4)

Where τs and τt are the estimated time constants of the
system and vc and wc are the command speeds. These
constants have been adjusted for the typical dynamic behavior
of the Nomad taking into account the standard value for
accelerations (These values can be changed by calling the
appropriate function of the Nomad API).

B. Robudem
The geometry of the Robudem is more complicated than the

one of the Nomad. The Robudem has four wheels that are
individually actuated by electrical motors. The two axles are
steerable and are actuated by two linear electrical motors via
an Ackerman mechanism. The following figures show the real
robot and its 3D model.

Fig 5. Picture and 3D model of the Robudem

The trajectory control of the real Robudem is based on two
parameters: the instant desired speed v and the instant desired
steering lock α. Indeed, at each time, the vehicle trajectory can
be expressed with those two values that are given by the user
through a joystick interface or by a control program.

Supposing a perfect Ackermann steering mechanism for the
front axle results in the instantaneous center of rotation lying
on the axis of the rear axle. In this case we can use a bicycle
model for representing the kinematics of the vehicle (Figure
6): the four wheels are replaced by two wheels located in the
middle of the vehicle.

Let the angular velocity vector along the body z axis be
̇ . Using the bicycle model approximation, the radius of

curvature R and the steer angle α are related by the wheelbase
L. By definition of the curvature:

d
ds

=1
R
=

tan
L

(5)

̇=
d
ds

ds
dt

=1
R

v=v
tan

L
(6)

 k=v k h
tank

L
(7)

v(t)

w(t)

y

x

θ

725

Fig. 6. Kinematic model of the Robudem

Once the incremental angle has been obtained, The model of
the equations 2 and 3 can be used. Simulating the dynamic
behavior of Robudem is based on the same model as for the
Nomad (Equation 4). Off course the time constants have been
adapted to reflect the dynamics of this robot. Another
particularity of the real controller that has been taken into
account is the following: when the user suddenly puts the
joystick in neutral position, the controller immediately stops
the robot while when he pulls it gently, the speed is reduced
by applying a linear profile.

VI. HANDLING COLLISIONS

The previous section has presented the motion control of
robots in open environment, that is without any obstacles. Off
course in any realistic application robots have to cope with
static and dynamic obstacles. In the developed simulator,
dynamics obstacles are other mobile robots while the
environment is static. It this then necessary to be able to detect
and to react to collisions. Moving autonomously implies
detecting and avoiding obstacles. One of the basic requirement
of the simulator is consequently to provide collision detection
to detect when the control algorithm fails and the robot
collides with the environment or with other robots and to
provide adapted response.

Java3D provides classes for detecting collisions between
objects. However, this API works asynchronously and does
not offer any guarantee when the detected collision will be
reported, what happens generally after the object has entered
into another one. This is not an appropriate mechanism and
therefore a collision detection algorithm exploiting Java3D
Behaviors has been implemented. Collision detection is more
a geometric problem than a physical one. To make sure that
any area of space cannot be occupied by more than one object,
collision detection based on the geometry of the objects is
required [3].

For any realistic environment and even if simplified shapes
are used, the collision detection needs a lot of mathematical
operations. each object is composed of hundreds of triangles
and the collision detection would required too much time if it
had to be performed for any triangle. During the simulation we
need to check for collisions at every frame therefore it is

important that collision detection be very efficient. We
therefore need to apply a method to speed up the computation.
Hopefully, there exist different optimization methods for
reducing the amount of operations. For instance, bounding
volumes can be used to reject non intersecting objects. Axis
Aligned Bounding Box (Figure 7) and spheres are the most
used bounding volumes.

 If a single volume around the object does not give accurate
enough collision detection for the shape then it is possible to
use multiple boxes in a hierarchical way to more accurately
match the shape of an irregular object.

Using bounding volumes reduce the computing cost by
eliminating objects that do not collide but it may not be good
enough to rely on the bounding box or sphere alone especially
if the objects are complex shapes. However they can at least
filter out those objects that do not overlap. Another reason that
we cant rely on bounding rectangle or sphere alone is that in
order to go on to the next stage of working out the collision
response we also need to know the points of impact.

If we want to test for collision of meshes, made up from
triangles, and we want to check for collisions accurately, using
all the information from the geometry, we may need to test
each triangle on object 'A' with each triangle on object 'B' for
intersection. Currently the most efficient test is the algorithm
of Moller [4] that is explained below.

We first determine the equation of the planes containing the
triangles and work out the intersection line for the two planes
(Figure 8). Intervals Ia and Ib are are computed. If Ia ∩ Ib ≠ ф
than the two triangles intersect.

Fig. 8. Testing a possible intersection between two
triangles

Fig. 7. Bounding boxes

 α

α

R

L

X

Z

Y

726

Java3D offers methods for calculating intersection between
bounding boxes of objects. However automatically computed
bounding boxes have always their axes parallel to the global
reference frame. This gives an unrealistic representation for
any real object.

Therefore the method used in the simulator is a compromise
between the two approaches presented above. It consists in
replacing mobile robots by a good approximation and
checking for collision with the real geometry of other objects.
The Nomad is for instance simply replaced by a cylinder. The
Robudem has basically a box shape and it is more suited to
define its contour manually by specifying a bounding box
defined by six orthogonal plans what in the Java3D jargon is
called a “Polytope”.

In order to render realistic collision occurrences we must be
able to predict these events before they effectively happen in
order to avoid that a robot enters into an object. Knowing the
actual speeds we compute for each frame the posture. With
this prediction we check if a collision occurs with any fixed or
mobile obstacles.

Once we have detected a collision between two objects, we
can compute the reaction by using physical laws and by
considering for each object the velocity, the mass, the centre
of mass, the inertia, ... As in targeted applications real robots
are moving slowly we do not need complex collision response
because most of the time robots are simply blocked when they
move into an obstacle. So in case of collision we stop the
robot by disregarding the last transformation.

VII. SENSORS

Two kinds of sensors are necessary for developing
intelligent control applications in mobile robotics: position
and environment perception sensors.

Global position sensors can be easily implemented within
the simulator because we perfectly know the position and
orientation of the robot and of all its components. Relative
position sensors and low level encoder signals can also be
derived from this global position knowledge.

A mobile robot can only act intelligently if it perceives its
environment. Distance sensors are mandatory for seeing what
stands around the robot. Three models of such sensors have
been implemented in the simulator, namely laser, infra-red and
ultrasonic sensors. To implement the measurement process we
have used Java3D's picking routines. The idea is to cast a ray
into the space around the robot. This ray has a length equal to
the maximum distance the sensor can measure.

Fig. 9. Simulated Laser and Ultrasonic sensors

VIII. DEVELOPING APPLICATIONS

A. Principle
MoRoS3D integrates seamlessly with the control framework

that has been developed at the Royal Military Academy.
CoRoBA is a solution package for developing distribution
applications that uses components with standardized interfaces
and communication mechanisms. Components are divided in
Actuators, Processors and Sensors.

The utilization philosophy is to develop and tune control
algorithms in simulation and to simply replace simulated by
real components once satisfying results have been reached, no
further modification of the Processor components being
required. In Figure 10, the concept of integrating MoRoS3D in
the CoRoBA framework is shown. Sensor and Actuator
components developed with CoRoBA can be seen as interface
components that have to be specific for the simulator or the
hardware they are linked to.

Fig. 10. Simulator and CoRoBA integration

The block named “Intelligent Control” on top of Figure
contains Processors. This part does not care if real or
simulated hardware is used. The Processor components are the
key-stone of the control architecture and exhibit the largest
potential of reuse between applications involving different
robots while Sensors and Actuators, that serve as interfaces or
translators between the software and external modules, are
specific to these devices. The more abstract a Processor is, the
greater the possibility of reusing it without any modification.

The middle block corresponds to interface components that
make the link between the Processors and the simulated world.
Sensor and Actuator components implement the same
interfaces as those implemented by components linked to
physical systems, allowing to instantaneously switch between
simulation and reality.

The last block represents the simulator. It is constituted by
different elements that are described hereafter. First of all it
contains models of the physical elements. The robot model
deals with the geometric, kinematic and dynamic aspects of
the robot. The sensor model encodes information about the
sensors like the radiation model, the minimum and maximum
distances, the precision, etc. The environment model contains
the 3D geometrical representation of the environment. The
robot simulator is responsible for the realistic motion of the

Interface Components

Intelligent Control
Processor A Processor X

Sensor (s) Actuator(s)

Simulator

Sensor
Simulation

Environment
Model

Robot
Simulator

Robot
Model

Sensor
Model

CoRoBA

727

robot and takes care of the collision with fixed and moving
obstacles like other robots. It receives motion commands from
Actuator components.

The simulated sensors produce measurement data that are
injected in the application control loop by the Sensor
components . The data is forwarded to Processor components
where they are exploited to finally produce motion commands
that are sent to the Actuator Components. These
ActuatorComponents adapt and send this information to the
robot objects. The sensors affect the vehicles motion through
Intelligent Control and vehicles motion affect sensors through
the Simulator taking into account the model of the
environment.

B. Example: Goal Navigation with the Robudem
The purpose of this application is to let the Robudem move

autonomously from a given position to succession of goals in
an obstacle free environment. The components involved in this
application and the transferred data are shown in Figure 11.
The Goal Controller uses a Fuzzy Inference System.

Fig. 11. Components' network

During the execution of the application, the following
operations are executed:
• At initialization, the Goal_Provider reads a list of goals

from a file (goals.dat).
• When the components are started, the first goal position

[Xg Yg θg] is sent to the Goal_Controller and to the
Goal_Scheduler.

• These components also receive the global position of the
robot [x y θ αf αr] from the Sim_Robudem Sensor
component).

• The Goal_Controller uses this information to produce
steering and driving commands [Vt Vs] in order to
reach the goal .

• These commands are received by the Sim_Robudem
Actuator that adapt them to the controlled robot.

• The Goal_Scheduler compares the goal position
received from the Goal_Provider with the instantaneous
position of the robot. When the robot is sufficiently
close to the goal, the Goal_Scheduler sends an event to

the Goal_Provider to inform it that it has to provide the
next goal .

• A new goal is sent to the Goal_Controller and
Goal_Scheduler .

• These operations are repeated until the last goal is
reached.

Fig. 12. Two steps of a navigation sequence

IX. CONCLUSIONS

This chapter presented MoRoS3D, a multi-robot and sensor
simulation application that simulates 3D environment for
developing mobile robots applications. This simulator is
versatile enough to simulate different types of robots.

The 3D scene modeling and rendering is based on Java3D
and is therefore platform independent. It is extensible and
users can easily change the environment (terrain and
obstacles) as they are passed as command line parameters,
they do not need to recompile the application.

Finally, it integrates seamlessly into the CoRoBA
framework thanks to the CORBA middleware.

Despite this tight integration, the simulator can also be used
independently of the framework and control applications can
be written in any language supporting CORBA interfaces.

Keeping the control algorithms out of the simulator has the
advantage that an application developer does not need to deal
with Java3D programming.

REFERENCES

[1] Verlinden O., Kouroussis G.,Conti C., EasyDyn: A framework
based on free symbolic and numerical tools for teaching
multibody systems, Proceedings of the Multibody Dynamics
2005, ECCOMAS.

[2] Walsh A. & Gehringer D, Java3D API Jump-Start, Prentice Hall, ISBN
0-13-034076-6.

[3] Ericson C., Real-Time Collision Detection, The Morgan Kaufmann
Series in Interactive 3-D Technology, 2004, ISBN: 1558607323.

[4] Moller, T., A fast triangle-triangle intersection test. Journal of Graphics
Tools. (1997).

Simulator

<<McmdSeq>>
[Vt Vs]

goals.dat

0 0
2 5
5 10
-3 4

Goal
Scheduler

Goal
Provider

Sim_Robudem Sim_Robudem

Goal
Controller<<RobudemKinematics

>>
[x y θ αf αr]

<<trajet_pts>
>

[Xg Yg θg]

<<Any>>
[]

RobotSensor

get_rc ()

Goal_Display

Goal

vm (Vt, αf ,
αr)

display
(x,y)

728

