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Abstract 
Humanitarian demining still is a highly labor-intensive and high-risk operation. Advanced sensors and 
mechanical aids can significantly reduce the demining time. In this context, it is the aim to develop a 
humanitarian demining mobile robot which is able to scan a minefield semi-automatically. This paper 
discusses the development of a control scheme for such a semi-autonomous mobile robot for humanitarian 
demining. This process requires the careful consideration and integration of multiple aspects: sensors and 
sensor data fusion, design of a control and software architecture, design of a path planning algorithm and 
robot control. 
 
 
Introduction  
The goal of this research project is to prepare the 
ROBUDEM, an outdoor mobile robot platform 
as shown on Figure 1, for a humanitarian 
demining application. In this setup, the robot 
navigates and searches for mines by moving and 
sensing with the metal detector for suspicious 
objects in the soil. Once a suspicious object is 
detected, the robot stops and invokes its 
Cartesian scanning mechanism. This scanning 
mechanism performs a 2D scan of the soil, 
allowing mine imaging tools to make a reliable 
classification of the suspicious object as a mine 
or not. This paper describes partial aspects of this 
research work and focuses mainly on the design 
of the control and software architecture. A goal 
for the future is to implement an existing 
cognitive approach for mobile robot navigation 
on the mobile robotic platform. This will allow 
the robot to scan a suspected minefield semi-
autonomously and return a map with locations of 
suspected mines. The development of such an 
intelligent mobile robot requires consideration of 
different side-aspects.  
Robots use sensors to perceive the environment. 
Sensors under consideration for this research 
work are ultrasonic sensors, a laser range 
scanner, a stereo camera system, an inertial 
measurement system, a GPS receiver and of 
course a metal detector. All but the last one of 
these sensors return positional and perceptual 
information about the surroundings. This sensor 

data has to be fused in a correct way to form a 
coherent “image” of the environment. If a robot 
needs to gain a more or less complete “image” of 
its environment, it cannot rely on only one type 
of sensor. Hence the need for an intelligent 
sensor fusion algorithm to combine the often 
erratic, incomplete and conflicting readings 
received by the different sensors, to form a 
reliable model of the surroundings. Sensor fusion 
has been subject to a lot of research [1][4], most 
of the proposed methods use Kalman Filtering 
[17] and Bayesian reasoning [15]. However, in 
recent years, there has been a tendency to make 
more and more use of soft computing techniques 
such as artificial neural networks [8] and fuzzy 
logic for dealing with sensor fusion. [3][6].  
An autonomous mobile agent needs to reason 
with perceptual and positional data in order to 
navigate safely in a complex human-centered 
environment with multiple dynamic objects. This 
translation of sensory data into motor commands 
is handled by the robot navigation controller. Its 
design is closely related to the design of the 
control architecture which describes the general 
strategy for combining the different building 
blocks. The basis for this reasoning process is 
often a map, which represents a model of the 
environment. These maps can be simple grid 
maps, topological maps [7], or integrated 
methods [16]. The used path planning technique 
depends highly upon the type of map chosen 
before. A survey of different methods can be 



found in [5].The goal of this research is to use a 
behaviour-based control architecture to navigate 
while modeling (mapping) the environment in 3 
dimensions, using vision as a primary sensing 
modality.  
The control architecture has to be translated into 
a software architecture which manages the 
building blocks on a software level. This 
software architecture has to provide the 
flexibility of modular design while retaining a 
thorough structure, enabling an easy design 
process. All the different processes (sensor 
measurements, measurement processing, sensor 
fusion, map building, path planning, task 
execution …) must be coordinated in an efficient 
way in order to allow accomplish a higher goal 
[2]. A number of control strategies can be set up, 
varying from simple serial sense-model-plan-act 
strategies to complex hybrid methods. A 
discussion of some of these control strategies can 
be found in [13]. An interesting approach here, is 
to use fuzzy behaviours, partially overriding each 
other, to build up complex navigation plans, as 
discussed in [9][10][11][12]. This research work 
aims at implementing such a hybrid control 
strategy. 
During the design of all these sub-aspects, the 
outdoor nature of the robot has to be taken into 
account. Outdoor robots face special difficulties 
compared to their indoor counterparts. These 
include totally uncontrolled environments, 
changing illumination, thermal, wind and solar 
conditions, uneven and tough terrain, rain, …  

The rest of this paper is organized as 
follows: The control strategy and architecture are 
described in section 2, the software architecture 
is summarized in section 3 and finally, 
conclusions are given in section 4.  

 
Figure 1: ROBUDEM robot with scanning 

mechanism 
 

Control Architecture  
The control architecture describes the strategy to 
combine the three main capabilities of an 
intelligent mobile agent: sensing, reasoning 
(intelligence) and actuation. These three 
capabilities have to be integrated in a coherent 
framework in order for the mobile agent to 
perform a certain task adequately. 
The working principle of the proposed control 
architecture is sketched on Figure 2. There are 
three distinctive modules to be discriminated: 
Navigation (on the right side on Figure 2), Mine 
Detection - Scanning (in the middle on Figure 2) 
and Metal Detection (on the left side on Figure 
2).  These three processes are controlled by a 
watchdog, the robot motion scheduler, which 
manages the execution of each module and 
decides on the commands to be sent to the robot 
actuators. This robot motion scheduler is 
explained more in detail in Figure 3 and is 
discussed here more in detail for each of the 
three modules. 
 
1. Navigation 
Different Sensors provide input for a 
Simultaneous Localization and Mapping module 
Sensors:  
- GPS (Global Positionment System) gives 

absolute coordinates 
- IMS (Inertial Measurement System) gives 

acceleration (and speed and position by 
integration) 

- US (Ultrasonic sensors) give distance 
measurements to obstacles 

- IR (Infrared sensors) give distance 
measurements to obstacles 

- LASER gives line 3D data 
- Mine Sensor: The mine imaging module will 

return locations of mines, which have to be 
represented on the map and which are 
obstacles themselves 

 
As the SLAM module works with a global map, 
it doesn’t have to re-calculate the whole map 
from scratch every time, but the map can just be 
iterated to improve the different estimates, hence 
the loopback arrow. The SLAM module outputs 
a global map with obstacles and also with mines, 
thanks to the input from the mine imaging 
module. This map is used by the navigation 
module to calculate a safe path. The safe path is 
given as an input to the robot motion scheduler 
which will transform it into a motor command 
and execute it, unless another module has a 
higher priority task (and trajectory) to perform. 
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2. Mine Detection 
 
The Cartesian scanning mechanism makes a 2D 
scan with the metal detector. Mine imaging tools 
determine the likelihood of mine occurrence and 
the exact position of eventual mines. If a mine is 
found, this will be reported to the robot motion 
scheduler, which will take the appropriative 
actions. In addition to this the Mine detector acts 
as a sensor for the SLAM-algorithm, as it will 
return the locations of mines, which have to be 
represented on the map and which are of course 
obstacles themselves.  
 
3. Metal Detection 
The metal detector scans for metal in the soil. If 
no metal is found, it keeps on doing this and the 
robot keeps on moving. If a metal is found, this 
will be reported to the robot motion scheduler, 
which will take the appropriative actions.  

Robot motion scheduler 
The robot motion scheduler (Figure 3) needs to 
arbitrate which of the modules is executed and 
which of them can influence the robot actuators 
through robot commands.  
Therefore, there are two main paths through the 
robot scheduler, one for the (normal) situation of 
exploring while avoiding obstacles and while 
detecting metals and one for the situation where 
a metal is found and more thorough investigation 
is needed (mine detection) while the robot is 
standing still.  
In a normal situation, occurring e.g. in an initial 
situation (default inputs), or when the “no mine 
found” or “mine found” trigger are given, the 
scanning metal detection is turned off. The 
Navigation module gives at all time instances a 
safe path and trajectory, as this module loops 
infinitely without interaction with the other 
modules. This Trajectory is set as the trajectory 
to be executed, but with a low priority. The 
Metal detector module is activated.  

Figure 2: General Robot Control Architecture



If the “metal found” trigger is given, the metal 
detector is switched off. The trajectory for the 
robot is set to a predefined movement, more 
specifically, to back off a little. This is done to 
be able to centre the scanning metal detection 
better around the suspicious object. This 
trajectory has a high priority. When this 
movement is completed, the robot is halted, by 
giving a “no movement” trajectory with a high 
priority. Finally, the scanning metal detection 
module is activated.  
 
 
 
Software Architecture 
As control architectures which aim to mimic 
human thinking risk of becoming highly 
complex, the choice of a flexible, extendable and 
real-time capable software architecture is very 
important. This software architecture has to ease 
the use of reusable and transferable software 
components. The chosen software architecture, 
MCA (Modular Controller Architecture) [14] 
achieves this by employing simple modules with 
standardized interfaces. They are connected via 
data transporting edges which is how the 
communication between the single parts of the 
entire controller architecture is managed. The 
main programs only consist of constructing 
modules that are connected via edges and pooled 
into a group. This results in an equal 
programming on all system levels. As modules 

can be integrated both on Windows, Linux and 
on RT-Linux without changes, they can be 
developed on Linux-side and then transferred 
later to RT-Linux. As errors in RT-Linux lead to 
system-hangs this development strategy prevents 
from many reboot cycles and results in faster 
software development. 
The proposed MCA software architecture, as it is 
depicted on Figure 4, consists of three main 
groups: one for sensor-guided robot control 
(using a behavior based navigation method and 
SLAM), one for Scanning metal detection and 
one for metal detection.  
The robot motion scheduler controls which of 
the three groups is executed and with which 
parameters. Each group consists of several 
modules and/or subgroups. 
Each MCA module is determined by four 
connectors with the outside world: Sensor input 
(left below), Sensor output (left top), Control 
Input (right top), Control Output (right below). 
As a result sensor data streams up, control 
commands stream down. The Sensor input and 
output are connected through a Sense procedure 
which enables to process the sensor data and the 
Control input and output are connected through a 
Control procedure which enables to process the 
control commands. Sensor data flow is shown in 
yellow, control command flow in red.  
 
 

Figure 3: Control architecture for the robot motion scheduler 



For now, the scanning and metal detection 
modules are implemented and operational. The 
X-axis of the scanner has been removed in the 
mean time, so scanning is only performed in the 
Y-direction. The whole architecture contains 
interfaces that can be used via TCP-IP 
(Ethernet). In this way all sensors values can 
textually or graphically be presented on a second 
PC. A common graphical user interface has been 
developed to simplify the procedure. Figure 5 
shows the graphical interface which was 
developed for controlling the mine detection 
process. This computer interface enables the user 
to control the robot scanning mechanism or to 
order the robot to scan the suspected area for 
mines. It also shows the map of suspected mine 
locations, as detected by the robot. This map is 
shown here in an initial stage where all non-
scanned, and therefore non-cleared, terrain is 
treated as suspected, and therefore indicated with 
a red led. As the SLAM and path planning 
modules are not implemented yet, the robot is 
currently still restricted to following 
predetermined trajectories. 
 
Conclusions 
In this paper, we have demonstrated our solution 
for the control problem of a mobile humanitarian 
demining robot. The results so far are 
encouraging: the robot is able to follow a 
predetermined trajectory and find mines along 
this path. Future research will enable the robot to 
find its way semi-autonomously, by the 
integration of extensive navigation, map-
building and path-planning techniques. These 
will be integrated in a behaviour based reactive-

reflexive framework, such that the robot can at 
the same time react quickly to dynamic changes 
in the environment, and perform high-level 
reasoning on a 3D model (map) of the 
environment.  
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