
Tele-robotics:

Distributed Training-oriented Navigation Framework

Thomas Geerinck*, Eric Colon**, Sid Ahmed Berrabah*, Kenny Cauwerts*,Hanene Bahri*, Hichem Sahli*

* Department of Electronics and Informatics (ETRO),

Vrije Universiteit Brussel, Brussels, Belgium

** Department of Mechanics

Royal Military Academy, Brussels, Belgium

Abstract

The purpose of this article is to present a tele-robotic

application, developed on an advanced demonstration plat-

form, incorporating reflexive tele-operated control concepts

elaborated on a mobile robot system. By voice command,

the operator controls the behavior of the robot, being 1 out

of 4 levels of robot-operator interaction, while environmen-

tal exploration is possible by means of the head mounted

display in combination with an inertial tracker. Based on

the distributed framework, named Controlling Robots with

CORBA (CoRoBa), results of the tuned robot navigation

strategy are presented. The results achieved might also be

used in domains such as surveillance, remote monitoring

and risky interventions.

1. Introduction

The purpose of this article is to present ongoing research

and further developments on an advanced demonstration

platform, incorporating reflexive tele-operated control

concepts developed on a mobile robot system. The

functional aspects and operability of the complete system

have been extensively described in [6] as well as in [5]

for a more complete description. Also a quite general

overview about the concepts and state-of-the-art of re-

mote control of mobile robots is presented there. By

operability, the opportunity to develop, simulate tune and

test in real-world environment mobile robot navigation

algorithms is meant. The system functionalities, being

tele-robotic applications in real-world environment as

well as in simulation environment, fit into our distributed

framework. According to requirements in present robotic

software architectures, being object-oriented component

based reusable software patterns, we developed such

a framework, named Controlling Robots with CORBA

[7] (CoRoBa), written in C++ and based on CORBA, a

standardized and popular middleware. CoRoBa relies on

well-known Design Patterns [3] and provides a component

based development model. Concerning the tuning and

simulation of navigation algorithms, a Java based multi

mobile robot simulator (MoRoS3D) exists, and integrates

seamlessly in the framework as described in detail in [5].

The contribution of this paper focusses on a tele-robotic

application in real-world environment, developed on this

framework, allowing an operator to control the robot

remotely in different ways of robot-operator interaction, by

selecting one of the different levels of autonomy by voice

command. The use of an inertial tracker in combination

with a head mounted display improves significantly the

situational awareness of the operator in semi-structured

environments, creating a certain feeling of presence, at the

remote site. As such an application of semi-autonomous

remote environmental exploration is presented. The results

achieved can also be used in domains such as surveillance,

remote monitoring and risky interventions.

The remainder is organized as follows. In section 2

CoRoBa is very shortly discussed. In section 3 the whole

system architecture is presented, highlighting the recently

developed and implemented features. Section 4 presents

some results and finally section 5 draws the conclusion.

2. CoRoBa Framework

Among all existing Middlewares, CORBA [7] has been

selected because of its language and platform indepen-

dence. As such a Middleware is quite complex and brings

some overhead. We typically have a 20 to 30% overhead

in comparison with raw socket communication [3]. With in

creasing computing power and communication bandwidth,

the overhead becomes less significant every day.

The Controlling Robots with CORBA (CoRoBa) frame-

work has been developed to implement sensor networks and

distributed control applications. CoRoBa provides a com-

ponent based development model, relying on well-known

Design Patterns [3]. Components, unit of independent de-

ployment, are regarded as black-boxes only known by their

access points or interfaces. These interfaces specify the

way of interaction between components and their clients.

According to the classical control paradigm, CoRoBa de-

fines three types of components, namely Sensors, Proces-

sors and Actuators. Two communication modes, a classical

synchronous call method and an event based communica-

tion scheme, are proposed in CoRoBa. Communication be-

tween the different components occurs through Events and

Event Channels and is based on CORBA Notification spec-

ifications. The main advantage of event based communica-

tion is the decoupling between producers or suppliers and

consumers. Consumers can receive events from different

producers and producers can send different kinds of events.

3. System Overview

Figure 1 shows the different components involved in this

application, whereas figure 2 represents the real existing

system. The processors form the skeleton of the applica-

tion. Actuator and sensor components only serve as trans-

lators. As argued in section 2 communication between the

three kinds of components is realized in the CoRoBa frame-

Figure 1. Global system architecture

Figure 2. The Nomad200 robot with the upper
PC-platform and the biclops head on top. The
stereo vision system forms the robots eyes.

work. In the following the focus will be laid on the different

ways of robot-operator interaction, as well as how this level

of interaction might be changed. This interaction refers to

the responsibilities in control of both robot and operator.

The basic mode of operation for the system is traditional

or direct tele-operation, including the creation of feeling of

presence. In order to introduce shared or supervisory au-

tonomy control aspects to the existing architecture of direct

tele-operation, a choice must be made in how to define the

responsibilities for both robot and tele-operator. We chose

to provide fixed static responsibilities for human and robot.

Based on the statement that the aim of robotics is to serve

and help humans, our implemented system is well-suited for

exploring purposes. The fixed responsibilities are defined in

4 levels of autonomy:

Tele-operation Mode The user has full, continuous con-

trol of the robot at low level. The robot takes no ini-

tiative except perhaps to stop once it recognizes that

communications have failed. It does indicate the de-

tection of obstacles in its path to the user, but will not

prevent collision. This is the default autonomy level.

Safe Mode The user directs the movements of the robot,

but the robot takes initiative and has the authority to

protect itself. For example, it will stop before it col-

lides with an obstacle, which it detects via multiple US

and IR sensors.

Shared Control Mode The robot takes the initiative to

choose its own path in response to general direction

and speed input from the operator. Although the robot

handles the low level navigation and obstacle avoid-

ance, the user supplies intermittent input to guide the

robot in general directions.

Full Autonomy Mode The robot performs global path

planning to select its own routes, acquiring no opera-

tor input. The goal of the robot can be specified by the

operator or by the robot’s vision system by introducing

target recognition techniques and tracking.

Note that, the change in autonomy level is made dynami-

cally; whenever the operator desires to change the level of

autonomy the robot changes its behavior. Moreover, this

change of autonomy level is realized by a speech recogni-

tion module. Subsequently this voice command recognition

module is explained in more detail and the navigation strat-

egy and motion controller will be emphasized with extra

details about the implementation of the robot-operator in-

teraction in Shared Control Mode.

3.1. Voice Command Module

A speech recognition module has been developed and

implemented in C to allow the robot to respond to voice

commands. This enables the operator to control the robot

vocally while performing other manual tasks and it also

opens the option to control the robot over a voice link us-

ing for example a cell phone or a VoIP link. Since the

voice command module required only a small vocabulary

and needed to be controllable by only a few operators, the

easiest and most efficient way for designing and implement-

ing the speech recognition unit was to use the traditional

pattern matching approach. In this approach, the training

phase of the recognizer consists in storing several example

recordings of the desired commands by the different opera-

tors as templates in memory. During the recognition phase,

the unknown word is then compared to every template in

memory. The template that has the smallest global spec-

tral distance to the unknown command is selected and the

command that corresponds to this template is recognized

as the intended command. In our current implementation,

the global spectral distance used is the so-called bandpass

liftered LPC cepstral distance [1] which is calculated us-

ing a Dynamic Time Warping (DTW) [4] procedure. This

DTW allows accounting for possible differences in speak-

ing rate between the vocal commands that are issued and

the corresponding templates in the recognizer’s memory.

At present the voice control module of the robot has not

yet been applied in critical situations. Therefore, recog-

nized commands are executed immediately without requir-

ing confirmation from the operator first. The only measure

taken against the negative influence of varying background

conditions such as noise, is the use of a close talking, head

mounted microphone. If the number of vocabulary words

and/or operators where to increase, standard noise suppres-

sion techniques such as spectral subtraction [2] could be ap-

plied before, eventually, more elaborated recognition tech-

niques, such as Hidden Markov Modelling [9] would have

to be used.

3.2. Navigation Strategy and Motion Con-

troller

The basic building block of the present navigation strat-

egy is a behavior, defined as representation of a specific se-

quence of actions aimed at attaining a given desired objec-

tive. Each behavior comprises a set of fuzzy-logic rules.

The navigation strategy used in this application is a reac-

tive navigation. While a mission is assigned or a goal lo-

Figure 3. Results of the navigation strategy,
presented in the MoRoS3D multi robot simu-
lator

cation is known, the robot does not plan its path but rather

navigates itself by reacting to its immediate environment in

real-time. The result of applying iteratively a reactive navi-

gation method is a sequence of motion commands that move

the robot from the initial location towards the final location,

while avoiding collisions. In our approach for robot navi-

gation we describe the possible situations by a set of basic

rules:

• If no obstacle is detected then use the ”Goal seeking

behavior”.

• If it’s not possible to change direction toward the goal

and there is no obstacle in front of the robot, then

use the ” Go straight ahead behavior”. This behavior

avoids the swaying of the robot due to it hesitation.

• If an obstacle is detected in front of the robot and it’s

still possible to change direction (to turn), then use the

” Obstacle avoidance behavior”.

• If there is an obstacle in front of the robot and there is

no possibility to change the direction, then use ” Make

U-turn behavior”.

Figure 3 shows results acquired by simulating the robot’s

navigational behavior in the simulator MoRoS3D. The fig-

ure represents 4 screen shots of the simulator in action. In

the upper two figures, the robot travels a path towards a cer-

tain goal using a combination of the 3 behaviors ”Goal seek-

ing”, ”Going straight ahead” and ”Obstacle avoidance”. In

the lower two subfigures, two different viewpoints of the

same robot travel path are presented, combining the 2 be-

haviors, ”Goal seeking” and ”Obstacle avoidance”.

MoRoS3D seamlessly integrates with our framework

CoRoBa. Having such a simulator allows focusing on in-

telligence and control, while disposing of other, less inter-

esting problems. A simulator as such also increases safety

when developing and testing algorithms. In MoRoS3D a

robot can be placed in a 3D environment and interact with

that environment in a manner similar to that of the robot

in the real physical situation. Although MoRoS3D visual-

izes the entire surroundings of the robot, the robot software

only ”sees” the information it collects through its sensors,

just like with a physical robot. The MoRoS3D simulator

provides simple interaction with the user and offers differ-

ent virtual cameras including on-board and tracking ones.

Simple distance sensors, such as Laser, US and IR, are sim-

ulated. Sensor simulation is actually a geometrical problem

that comes to calculating intersections between shapes. For

visual simplicity the sensors are represented by beams in-

stead of cones, although the actual field of view of some

sensors (namely ultrasonic) is cone-shaped.

According to the selected level of autonomy, the naviga-

tion strategy controller selects the proper driving behavior.

For direct tele-operation, this behavior is straightforward:

simply feed the acquired speed and steering commands to

the robot’s motion controller. In safe mode a check is per-

formed for collision danger and if necessary an emergency

stop is executed. In shared control mode as well as in au-

tonomous mode the robot has the responsibility of the local

navigation. When autonomous mode is selected, the input

from the operator can be: the relative coordinates of a final

goal if way and time to reach this goal or not important; a

final goal with a set of desired intermediate passing points;

or a completely continuous path until the final goal. If an

obstacle is detected, the robot uses the obstacle avoidance

behavior to bypass it and retrieve the path afterwards. In

shared control mode of operation, robot and operator work

together executing their exploration or data retrieval tasks

in a certain environment. The goal is provided to the robot

in terms of polar coordinates, a distance and an angle rel-

ative to the robot. The distance is set to a fixed value of

5m. The orientation of the goal with relation to the robot,

is set on a circle with radius 5m. This orientation results

form the operator’s Head Mounted Display (HMD), provid-

ing the operator with visual feedback, as well as registering

the operator’s head movement via a built in inertial tracker.

At present a total of 6 voice commands are implemented.

Concerning the selection of level of autonomy, these

commands include, , ”TELE”, ”SAFE”, ”SHARED” and

”AUTO”, respectively corresponding to the 4 levels men-

tioned earlier. In Shared Control Mode of operation, local

navigation is the responsibility of the robot. However, mo-

tion of the robot is controlled by the operator by means of

2 simple voice commands: ”MOVE” and ”STOP”. In the

future, this actual list of commands might be extended.

4. System Performance

The performance of control and visual feedback loops

are essential when the performance of the tele-operation

system is evaluated. The entire system setup exists on a

a Nomad200 robotic platform, an electrical driven mobile

robot build by the Nomadic Technologies Inc. company, as

shown in figure Y.

Concerning the operability of the robotic platform, impor-

tant delays should be kept in mind by the operator. It is clear

that experience in driving the robot system, dealing with all

the delays including the reaction time of the operator itself

is a primordial factor. It takes about 2 s for the robot to turn

30 degrees and an acceptable speed of 0.2 m/s is reached

after 350 ms [5]. Compared to the mean human reaction

time, the speed delay is satisfactory. The turn delay how-

ever, makes the operator wait for the robot’s accurate reac-

tion. The update of the commands from operator to robot

occurs every 100 ms (10 Hz), to keep this system reactive.

Regarding the vision loop two processes are considered.

First of all the motion-head-tracking-servo-head loop pro-

vides some delay (600ms/50dgr) mainly caused by the

servo system. Internally the update rate of the head motion

occurs at 180 Hz. Second, the loop of capturing, compress-

ing and sending stereo images contains two delays. The

first delay is the time it takes to compress and decompress,

the second is the transmission delay. The time lost with

compression and decompression is on the other hand recu-

perated by the much faster transmission of the images com-

pared to the case without compression. Using a state of the

art coding scheme, SQuare Partitioning (SQP) [8], a frame

rate of approximately 20 Hz is obtained.

Concerning the simulator performances, typical figures for

10 robots with 16 laser distance sensors is 80% processor

activity (Centrino 735) and a memory usage of 40MB, im-

age refresh period in this configuration is 80ms.

5. Conclusions

In this paper, an advanced mobile robot platform is

shortly presented. Two interesting features of the system,

the voice command recognition and the implementation of

the 4 levels of autonomy, in particular the shared control

mode of operation, have been highlighted. The tele-robotic

application is perfectly suited for exploration and surveil-

lance purposes. The operator selects the global direction

of navigation. An obstacle avoidance algorithm based on

fuzzy logic has been implemented, giving the robot the re-

sponsibility of the local navigation. The results of this algo-

rithm have been presented by means of screenshots in the

MoRoS3D simulator, perfectly suited for development and

testing of new navigation algorithms.

References

[1] Juang Biing-Hwang, Lawrence R. Rabiner, and Jay G.

Wilpon, On the use of bandpass liftering in speech

recognition, IEEE TRANSACTIONS ON ACOUS-

TICS, SPEECH, AND SIGNAL PROCESSING ASSP-

35 (1987), no. 7.

[2] S.F. Boll, Suppression of acoustic noise in speech us-

ing spectral subtraction, IEEE Trans. ASSP 27 (1979),

113–120.

[3] E. Colon, H. Sahli, and Y. Baudoin, Coroba, a multi

mobile robot control and simulation framework, Spe-

cial Issue on ”Software Development and Integration

in Robotics” of the International Journal on Advanced

Robotics 3 (2006), no. 1, 73–78.

[4] J.R. Deller, J.H.L. Hansen, and J.G. Proakis, Discrete-

time processing of speech signals (2d ed.), IEEE Press,

2000.

[5] Thomas Geerinck, Eric Colon, Sid Ahmed Berrabah,

and Kenny Cauwerts, Tele-robot with shared autonomy:

Distributed navigation development framework, Inte-

grated Computer-Aided Engineering (ICAE) (2006),

tbp.

[6] Thomas Geerinck, Valentin Enescu, Ioan Alexandru

Salomie, Sid Ahmed Berrabah, Kenny Cauwerts, and

Hichem Sahli, Tele-robots with shared autonomy: tele-

presence for high level operability., ICINCO, 2005,

pp. 243–250.

[7] Michi Henning and Steve Vinoski, Advanced corba

programming with c++, Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1999.

[8] A. Munteanu, J. Cornelis, G. Van der Auwera, and

P. Cristea, Wavelet-based lossless compression scheme

with progressive transmission capability, International

Journal of Imaging Systems and Technology, Special

Issue on Image and Video Coding 10 (1999), no. 1, 76–

85.

[9] L. Rabiner and J. Biing-Hwang, Fundamentals of

speech recognition, Prentice-Hall, 1993.

