
 Promotors: Prof. H. Sahli
 Prof. Y. Baudoin

Submitted in fulfillment of the requirements for the degree of
Doctor of Applied Sciences at:
Vrije Universiteit Brussel, Faculty of Engineering Sciences

and
Royal Military Academy, Polytechnics Faculty

Vrije Universiteit Brussel Koninklijke Militaire School

CoRoBA, a Framework for Multi-Sensor
Robotic Systems Integration

 ir. Eric Colon

VRIJE UNIVERSITEIT BRUSSEL
Faculteit Ingenieurswetenschappen
Vakgroep Elektronica en Informatica

KONINKLIJKE MILITAIRE SCHOOL
Faculteit Polytechniek
Departement Mechanica

COROBA, A FRAMEWORK FOR MULTI-
SENSOR ROBOTIC SYSTEMS INTEGRATION

. ir Eric Colon

Submitted in the fulfillment of the requirements for the degree of
Doctor of Applied Sciences

Promotors : Prof. Dr. H. Sahli
Prof. ir. Y. Baudoin

Jury :
President: Prof. Dr. ir. D. Lefeber
Vice-President: Prof. Dr. ir. J. Vereecken

Prof. Dr. ir. J. Cornelis
Prof. Dr. ir. M. Acheroy
Prof. Dr. ir. P. Dehombreux
Prof. Dr. V. Jonckers
Prof. Dr. ir. A. Winfield

November 2006

AbstractAbstract

In order to increase efficiency in software development for controlling robots, tools facilitating
the implementation of distributed control applications are required.

This thesis proposes a solution to this problem with a framework called CoRoBA (Controlling
Robot with CORBA). CoRoBA is made up of component based execution units. It comes with a
3D simulation application and utility programs for distributing and managing the live and run
cycle of multi-process applications.

The implementation of the framework is based on several Design Patterns that make the design
flexible, elegant and ultimately reusable. The execution unit in CoRoBA is a component.
Components are independent execution units that have separated interfaces for the
configuration and the actual functionality they provide. According to the classical control
theory, components are divided in three categories, Sensors, Processors and Actuators. They
form a chain along which information is transferred and like in classic control schemes, the data
flow is unidirectional. Sensors read data from external devices and transmit them to other
components. Processors process received data and forward results to components linked to
output devices, which are called Actuators. This division provides a clear view of the
functionality of each component and consequently facilitates their reuse in new applications.

Communication between components relies on the industry standard CORBA. Using such a
standard simplifies the development and improves the interoperability with existing software.
The framework offers two different communication mechanisms, the first one is based on
classical synchronous communication while the second relies on Events. Event based
communication increases the flexibility of the application because it decreases the coupling
between components.

In order to test and tune applications a simulator is required. As no existing software did satisfy
our needs a 3D multi robot simulator has been developed. It relies on Java3D for the modelling
and rendering of the virtual world. The simulator is responsible for the realistic motion of the
robot by using geometric, kinematic and dynamic models, and takes care of the collision with
fixed and moving obstacles like other robots. The simulated sensors produce measurement data
that are injected in the application control loop. The software integrates seamlessly with the
components of CoRoBA because all robots and sensors have a CORBA interface. The utilisation
philosophy is to develop and tune control algorithms in simulation and to simply replace
simulated by real components once satisfying results have been reached, no further
modification of the Processor components being required.

Several distributed control applications have been implemented in order to validate the
framework. Shared control and autonomous navigation applications involving different robots
have been successfully tested in simulation. Development of multi-robots applications,
distributed simulation and real robots and sensors has also been addressed. A qualitative and
quantitative evaluation of the framework have shown that the proposed solution is efficient,
usable and stable.

v

vi

ForewordForeword

When you begin working on a Ph.D. you don't imagine what it means and how it will influence
your life not only during the Ph.D. but also probably for the remainder of your life.

Computer engineering is a fantastic but also a frustrating discipline. You can spend hours and
days to solve intricate problems and finally discover that the solution was trivial. Most of the
efforts and spent time are hidden in lines of codes that have been written during weeks and
months. The difficulty is to find methods for presenting this work without showing long boring
listings. Graphics are generally the good way for summarising the ideas lying behind the work.
In this text, the Universal Modelling Language has been used where it seemed appropriate.
However, as this communication tool is not universally known, non standard graphics have
sometimes been drawn to clarify the text.

This work gave me the opportunity to learn in many aspects and to improve my knowledge in
Computer Science. Concepts like Design Patterns and Object Oriented languages provide tools
and guidelines that helps in improving software quality.

I wish to thank all the people who have believed in me and who have left me freely choose the
orientation of this work.

I thank my promoters for their implication and their support during this long period.

I also want to thank my wife and my daughter for their support and their patience.

vii

viii

ContentsContents

Chapter I Introduction.. 15
1 Preamble.. 15
2 Motivation... 16
3 Objectives of the thesis..18
4 State of the Art...19

4.1 Frameworks...19
4.2 Simulation... 21

5 Originality and output...24
6 Thesis outline...24

Chapter II Analysis.. 26
1 Introduction... 26
2 Computing and communication issues.. 27

2.1 Operating systems...27
2.2 Distribution and network technology..28
2.3 Communication models... 29
2.4 Programming model and languages..29
2.5 Portability..29
2.6 Modularity ..29
2.7 Integration of existing systems... 29

3 Robot Control Patterns.. 30
3.1 Definition.. 30
3.2 Direct control ... 30
3.3 Monitoring.. 31
3.4 Data processing...32
3.5 Direct telecontrol (teleoperation)..33
3.6 Supervised and Autonomous Control... 33
3.7 Multi-robot systems.. 36
3.8 Multi-user systems.. 37

4 Development and deployment support.. 37
4.1 Development... 37
4.2 Deployment...39

5 Summary..39

Chapter III Framework Architecture... 42
1 Introduction... 42

1.1 Design guidelines..42
1.2 Granularity, partitioning and interfaces.. 42

2 Design Patterns.. 43
2.1 Definition.. 44
2.2 Design patterns and framework.. 44
2.3 Architectural Design Patterns... 44
2.4 Behavioural Patterns... 49
2.5 Concurrency Patterns.. 49

3 Communication... 51
3.1 Communication libraries...51
3.2 Middleware... 51
3.3 Programming models.. 52
3.4 Middleware selection.. 55

4 Architecture support for deployment...57
4.1 Introduction...57

ix

4.2 Event based communication... 57
4.3 Configuration.. 57
4.4 Load balancing..58
4.5 Safety and Reliability..59
4.6 Security... 60
4.7 Logging and monitoring... 60
4.8 Life Cycle and Persistence..60

5 Summary..61

Chapter IV Design and Implementation... 62
1 Introduction... 62
2 Framework Architecture..62

2.1 Design Patterns... 62
2.2 Component architecture.. 64

3 Component categories... 67
3.1 Definition.. 67
3.2 Interfaces and implementation..68
3.3 Component development.. 69

4 Communication models...71
4.1 Synchronous and Asynchronous communication...71
4.2 Remote management of components.. 72
4.3 Event based communication... 73

5 Running modes.. 79
5.1 Sensors.. 80
5.2 Processors... 80
5.3 Actuators... 82

6 Monitoring and logging... 82
6.1 Monitoring.. 82
6.2 Logging... 82

7 Location of Components... 84
7.1 Interoperable Name Service..84
7.2 Locating Services..85

8 Objects creation and initialization... 86
9 Summary ...87

Chapter V Simulation... 88
1 Introduction... 88
2. Simulator Overview..90

2.1 Functionality... 90
2.2 Scene modelling..91
2.3 Simulation process.. 92

3 Graphical User Interface..93
4 Scene Graph...94

4.1 Java3D scene model..94
4.2 Class hierarchy and Scene graph of MoRoS3D..96
4.3 Behaviours and events.. 99

5 Robot models...100
5.1 Nomad ..100
5.2 Robudem... 105

6 Collision detection and response... 107
6.1 Problem... 107
6.2 Collision detection.. 107
6.3 Implementation... 110

7 Sensor modelling... 111
7.1 Perception Sensors.. 111

x

7.2 Linear Sensors...112
7.3 Ultrasonic sensors... 113
7.4 Array of sensors.. 113

8 Integration with CoRoBA..114
8.1 Communication...114
8.2 Interfaces...115
8.3 Registration... 117

9 Simulation engine... 118
9.1 Control Engine.. 118
9.2 Sensor Engine... 118

10 Summary..121

Chapter VI Validation and Evaluation.. 122
1 Introduction... 122
2 Theoretical validation.. 122

2.1 Framework definition..122
2.2 Review of the requirements.. 123

3 Validation through applications...127
3.1 Components integration.. 127
3.2 Control Applications...129
3.3 Real robots.. 153
3.4 Telecontrol application... 155

4 Evaluation..162
4.1 Improvement of applications... 162
4.2 Comparison with other frameworks..162
4.3 Improvement in development time... 165
4.4 Measures of effectiveness... 165

5 Summary..172

Chapter VII Conclusion.. 173

Bibliography... 177

Publications.. 181
Journals...181
Conferences.. 181
Technical reports.. 182

Appendices... 183
Appendix A: Unified Modelling Language Notation ..185
Appendix B: Service Interface... 187
Appendix C :NotificationService Operations...189

xi

xii

AcronymsAcronyms

Acronym Meaning

ACE ADAPTIVE Communication Environment

API Application Programming Interface

BCM Behaviour Coordination Mechanism

COM Component Object Model

CORBA Common Object Request Broker Architecture

CoRoBA Controlling Robots with CORBA

DCOM Distributed COM

DES Discrete Event System

EC Event Channel

GPL (GNU) General Public License

GPS Global Positioning System

GUI Graphical User Interface

IDL Interface Definition Language

IOR Interoperable Object Reference

IPC Inter-Process Communication

IR Infra-red

MFC Microsoft Foundation Classes

OO Object Oriented

ORB Object Request Broker

OS Operating System

RMI Remote Method Invocation

RPC Remote Procedure Call

RT Real Time

SDK Software Development Kit

SSL Secure Sockets Layer

TAO The ACE ORB

UML Universal Modelling Language

US Ultrasonic

XML Extensible Markup Language

xiii

xiv

Chapter I Introduction

 Chapter I Introduction Chapter I Introduction

1 Preamble
As introduction to this thesis we give some definitions that will be useful for a good understanding of
this text.

A class is a unit of abstraction and implementation in an Object Oriented (OO)
programming language.

A component is an encapsulation unit that delivers services and which is
reachable through well-defined interfaces. Components are reusable building
blocks which can be called at run-time and which are unaware of the clients'
implementation.

Software Design Patterns are proven software design solutions to general
problems.

An architecture is composed by sets of related patterns and components.

A framework is an integrated collection of classes that collaborate to produce a
reusable architecture for a family of related applications. It is a design and an
implementation providing one possible solution in a specific problem domain. It
provides generic components that need to be customised and extended in function
of the application.

Classes exist at design time and are instantiated at run-time to form objects. Objects collaborate in
components to achieve the tasks of the application.

Design Patterns capture experience of expert designers. They describe recurring problems and the
core solution to those problems.

A framework is composed by patterns and components; its architecture defines how the different
components are integrated into the framework and how they are interrelated. It defines also how
components communicate with each other. A framework dictates the architecture of applications and
reverses the control paradigm; components written by the programmer are called back by the
framework mechanisms in function of network and User Interface (UI) events. This is illustrated by
Figure 1. The Microsoft Foundation Classes (MFC) [PROS99] and the wxWidgets [SMAR05] are
examples of popular frameworks.

15

Chapter I Introduction

A Control Architecture defines the design of a set of components in which perception, reasoning and
action occur. It also specifies the functionality and interface of each component as well as the
interconnection topology between them. A Control Architecture specifies which components are used
and how they collaborate in a concrete application. As Control Architectures inherit their functionality
from the Framework (Figure 2), the framework architecture must be flexible enough to allow the
design of different control architectures (Classical control, fuzzy logic control, behaviour based
control, etc.).

Rem. Appendix A contains a summary the Unified Modelling Language notations used in this text.

2 Motivation
Many researchers in robotics are nowadays faced with a recurring problem: they have at their
disposal many excellent algorithms but, due to the lack of appropriate standards, it is almost
impossible to easily reuse them in new applications or platforms. Existing programs have to be
modified, translated, ported or even completely rewritten when changing or updating the robotic
platform. If we look at what happens the last years in software engineering, we observe the
emergence of new software techniques. Object-oriented languages, software components and software
Design Patterns have greatly improved software re-usability. What is needed in robotics is a software
framework that enables flexible and dynamic composition of resources and permits their use in a
variety of styles to match present and changing computing needs. Since a couple of years, some
researchers have begun to work in this direction.

16

Figure 1. Framework Architecture

Networking UI

Framework
Core

Application-specific
Functionality

 Call Backs
Event
 loop

Event
 loop

Figure 2. Inheritance diagram for Control Architectures

Framework

Control
 architecture A

Control
 architecture B

Control
 architecture C

Chapter I Introduction

For years, researchers have focused on embedded intelligence providing ad hoc implementation.
Solutions have been tied to existing software and hardware, limited by software and hardware
constraints (processor, memory, OS, communication, ...) or implementation costs. Everything had to
be on-board. Nowadays hardware is far more affordable and wireless communication has become fast
and reliable. It has consequently become easier to communicate and to implement distributed
applications and with the recent progresses of the Internet, the notion of service has become familiar
to many of us. Generally speaking a robot is already by itself a complex system but in order to
perform useful tasks it must be equipped with additional sensors and actuators. These have in most
cases their own control system resulting in a de facto distributed architecture. For non-specialists,
developing software for a single robot, without speaking of multi-robots systems, can rapidly become
a nightmare. What is needed in robotics is a software framework that eases the development of
distributed applications by providing functions that hide and automate low level mechanisms and
provide the developer with a higher level development environment and let him concentrate on
intelligent aspects of the application.

Several organisations are attempting to create standards for the interaction between unmanned
vehicles and control mechanisms to increase interoperability. This is specifically of importance in the
military field. The United States has issued a Joint Architecture for Unmanned Systems1 (JAUS) and
NATO is now ratifying a proposed common interface for unmanned air systems (STANAG 4586).
The UK Ministry of Defence is currently finalising its own Common Interface Protocol (CIP)
specification. In France, the DGA has launched in 2004 a 4 year program aiming at the development
of an open standard for interoperability of autonomous systems.

As other laboratories, we have been facing with the above described challenge. It has been difficult to
leverage existing systems and integrate existing code that has been produced in previous projects. We
have developed many interesting applications involving mobile robots, computer vision systems,
tracking and location systems, 3D modelling,... that cannot be (easily) integrated. One could state that
it is due to a lack of organisation or long term vision. These applications use techniques and
knowledge that were available when they were developed. In the mid 90's no standard
implementation was available for writing distributed applications. There was no universal language
as Java, the Internet was only known by a couple of specialists and Linux was less than one year old.
Les us have a look at some of our past projects.

Corode

The Hudem project (1997-2002) focussed on the development and implementation of techniques for
enhancing the landmine detection. During this project, different robotic systems have been developed.
One of this system is a Cartesian scanner mounted on a mobile robot that was used to acquire data
with different sensors on dummy minefields [COL02a]. An application named Corode (Control of
Robots for Demining) has been written to control the robot, the scanner and to acquire and display
data. While it has given (and still gives) satisfaction to its users, the approach adopted for
implementing the software showed its limitations in terms of flexibility and reuse.

The main drawbacks of Corode are:
• It is written for Windows with Microsoft Visual C++. While the Application Programming

Interface (API) proposes a Model-View-Control paradigm, this one is limited to a single
application.

1 http://www.jauswg.org/vision.shtml

17

Chapter I Introduction

• The Graphical User Interface (GUI) is based on the widgets provided by the MFC and only
runs on Windows.

• The control and visualization codes are mixed and located in several classes.

FuzzyNomad

With the indoor mobile robot Nomad200 interesting results, including navigation algorithms, remote
control and virtual representation of the robot have been obtained. The navigation algorithms are
written in C and run on a Linux platform using the API of the robot [COLO96].
The main drawback of FuzzyNomad is:

• The developed algorithm has been tailored to a specific robot and is mixed with the function
calls to the robot API.

VRNomad

The purpose of the VRNomad application was to control and visualise a mobile robot Nomad200 via
the Internet [COLO98]. Technologies used for implementing this application are VRML2 for the 3D
visualisation, Java for the robot control GUI and C for the socket communication between the Java
applet and the robot.
The main drawbacks of VRNomad are:

• Sockets provide a low level communication library. Programmers have to implement the byte
streaming operations for each object.

• Socket libraries have different syntaxes depending on the platform and programming
language.

Vizir

With Vizir the goal was to develop an augmented reality control of the Nomad200 [COLO99]. This
application mixed 3D views with real time images from on-board cameras. 3D representation was
implemented with OpenInventor.
Drawbacks:

• OpenInventor is a commercial product that is expensive. Paying maintenance licenses is not a
sustainable solution for universities when such a software is used episodically by students for
their thesis.

3 Objectives of the thesis
From the preceding discussion and the definitions it clearly appears that to improve robot control
software and to reduce its development time we need a generic framework that lets different robotic
systems communicate and collaborate.

From the preceding list of limitations and drawbacks, we can already propose a raw list of
requirements for an "ideal" framework:

• Multi-platform communication
• High level communication
• Multi-platform GUI
• Open source software
• Object-oriented

2 Virtual Reality Modelling Language

18

Chapter I Introduction

• Robot independent algorithms implementation
This list will be refined and extend in the next chapter.

It is evident that this effort is not unique and that other researchers and laboratories have been faced
with similar frustrations when developing their control software and have consequently developed
their own frameworks based on similar requirements. However, after having reviewed the State of the
Art in 2001, we did not find any framework that fulfilled all the requirements listed above and we
consequently decided to develop our own.

The main goal of my thesis is the design, implementation and evaluation of a
framework for multi-sensor robotic systems integration.

To validate the chosen approach, typical modules used in robotic applications
have been implemented and tested.

The framework name is CoRoBA, which stands for Controlling Robots with CORBA3. It is not
intended for developing real-time control applications like closed-loop actuator control but instead for
integrating different systems at a higher level. It has been designed to run on high performance
computing systems, that is, normal or embedded computers and not light weight systems equipped
only with micro-controllers.

In the next section we present the State of the Art in control frameworks and simulators. It is evident
that since the start of this thesis, some frameworks have further been developed and have reached
maturity while some new ideas and projects have emerged. The State of the Art presented is
consequently a mix between the situation at the beginning of the thesis and at the writing of this
dissertation.

4 State of the Art

4.1 Frameworks
Not so many tools are freely available for developing generic robotic applications. The ones available
are often limited to specific applications and/or hardware and Operating System. The following
review is limited to the most popular ones.

Telematics Applications

Before beginning any development, we conducted a review of relevant applications presented at the
conference “Telematics Applications” in 2001 [COL02b]. From this analysis it appeared that Java was
the preferred programming language and CORBA (Common Object Request Broker Architecture –
see Chapter 3 for more explanations) the most used software middleware. Web Browsers were
generally used as containers for user interfaces. No generic tools was available for developing
teleoperation applications.

3 CORBA: Common Object Request Broker Architecture

19

Chapter I Introduction

GenoM

One of the best known framework is certainly the module generator GenoM. It is a tool that helps
building real-time software architectures. It allows an easy and rapid integration of functions in
communication-enabled independent modules. Functions can be dynamically started, paused, and
parametrised by asynchronous invocations. Modules are standardised servers which are
automatically generated from a synthetic description. The structure of a module has two parts: a
controller that manages the module according to the clients' requests and the current state and the
execution engines that carry out the activities required by the controller. GenoM corresponds to the
functional level of the architecture developed at the LAAS_CNRS and presented in [ALAMI98]. This
architecture has proven to be efficient and flexible [ALAMI00] and it is clearly devoted to real-time
applications.

MCA2

MCA24 (Modular Control Architecture) is a software framework with real-time capabilities that is
rapidly gaining in popularity It targets control applications of autonomous robots and enables
developers to focus their work on developing control methods. MCA2 is neither an automatic code
generation tool nor does it contain a visual programming tool. All methods are realized by simple
modules with standardized interfaces ("edges") that can be grouped. Input and output interfaces are
limited to arrays of floating point values. MCA modules communicates through low level sockets API.
This architecture offers an homogeneous structure at all system levels. As modules can be integrated
both on Linux and on RT-Linux without changes, they can be developed on Linux-side and then
transferred later to RT-Linux.

DCA

DCA (Distributed Control Architecture) has been developed to control a mobile manipulator. In
[PETE01] Peterson lists and analyses the requirements of this architecture. Actually we find in DCA
many similarities with other projects. The originality relies in the adoption of a process-algebra for
specifying tasks. Concerning the implementation, DCA offers a development environment with a
communication library inspired by ACE5 (ADAPTIVE Communication Environment), and a number
of services. The execution relies on a tree organisation containing supervisors and controllers. The
controller contains a process algebra interpreter that organises the execution of the controller modules.

The main drawback in GenoM, DCA and MCA2 is the proprietary and quite limited communication
mechanism. The frameworks presented hereafter avoid these limitations by building up on
communication middleware.

Since the beginning of this thesis in 2001 some frameworks that are very close to CoRoBA in the
requirements and software implementation have emerged. It reinforced our conviction that the
choices that we have made in the design phase are the good ones.

MIRO

MIRO (Middleware for Robots) is a distributed object oriented framework for mobile robot control,
based on CORBA technology. MIRO core components are developed in C++ for Linux. MIRO
development began earlier than CoRoBA and consequently more GUI visualization and configuration
tools are available. However, in 2001 when I conducted the State of the art review, Event-based

4 http://mca2.sourceforge.net
5 http://www.cs.wustl.edu/~schmidt/ACE.html

20

Chapter I Introduction

communication was not yet implemented in MIRO [MIRO01]. A particular strong point of MIRO is its
configuration capabilities through XML files.

MARIE

MARIE (Mobile and Autonomous Robotics Integration Environment) is a programming environment
allowing multiple applications, programs and tools, to operate on one or multiple
machines/Operating System and work together on a mobile robot implementation. The aim is to
develop an integration framework based on the Mediator Design Pattern6 for distributed systems.
Each application adapter interacts with existing applications independently. MARIE uses ACE as its
communication middleware. All interactions between applications are done asynchronously
[COTE04].

Orca

Orca7 started as part of the EU-funded OROCOS Project which purpose was to develop an Open-
Source Robotic Control System. ORCA is an open-source set of tools for developing component-based
robotic systems. It provides the means for defining and developing components which can be pieced
together to form arbitrarily complex robotic systems, from single vehicles to distributed sensor
networks. In addition it provides a repository of pre-made components which can be used to quickly
assemble a working robotic system.

Player

Player is a device server that provides a powerful, flexible interface to a variety of sensors and
actuators (e.g., robots) [TOBY05]. It defines a set of standard interfaces (Interface specifications), each
of which is a specification of the ways that you can interact with some class of devices. Because Player
uses a TCP socket-based client/server model, robot control programs can be written in any
programming language and can execute on any computer with network connectivity to the robot. In
addition, Player supports multiple concurrent client connections to devices, creating new possibilities
for distributed and collaborative sensing and control. Player control code that works with one robot
will work (within reason) on another robot.
Player makes a clear distinction between the programming interface and the control structure, opting
for a maximally general programming interface, with the belief that users will develop their own tools
for building control systems. Further, most robot interfaces confine the programmer to a single
language, providing a (generally closed-source) language-specific library to which the user must link
his programs. In contrast, the TCP socket abstraction of Player allows for the use of virtually any
programming language. In this way, it is much more "minimal" that other robot interfaces.
Stage and Gazebo are two simulators that present a standard Player interface and comes with popular
robot and sensor models. Gazebo is presented in the next section.

As we will see in the following chapters, CoRoBA tries to merge the strong points of the frameworks
mentioned above while minimizing their weak points.

4.2 Simulation
Having a simulator is essential when developing robot control software because it allows refining
control strategies. Part of my thesis has been devoted to the development of a 3D simulator for multi-
robotic systems that seamlessly interacts with the control framework. The Simulator is called

6 A Mediator promotes loose coupling by keeping objects from referring to each other explicitly.
7 http://orca-robotics.sourceforge.net/index.html

21

Chapter I Introduction

MoRoS3D (Mobile Robots Simulator 3D).

In the reminder of this section, we give an overview of some developments in 3D simulation tools for
mobile robots. This review does not include the numerous Software Development Kit's and game
engines that are available to develop 3D applications.

GSV

A project similar to MoRoS3D is GSV (Graphical Simulation and Visualisation) that has been
developed at the University of Auckland by the Robotics Research Group as a module of their robot
programming environment. Simulation services are exposed as CORBA interfaces (it is actually the
only 3D mobile robot simulator having CORBA interfaces we are aware of). Most of the requirements
of the GSV presented in [TREPA03] are also met in MoRoS3D but as a commercial game engine
Torque® has been selected for the 3D visualization this simulator does not meet one of the
aforementioned requirements. MoRoS3D offers equivalent capabilities but is based on the free library
Java3D.

Other examples of free available simulators that do not use CORBA are:

STAGE/GAZEBO

The Player/Stage project provides two multi-robot simulators: Stage and Gazebo. Since Stage and
Gazebo are both Player-compatible, client programs written using one simulator can usually be run
on the other with little or no modification. The key difference between these two simulators is that
whereas Stage is designed to simulate a very large robot population with low fidelity, Gazebo is
designed to simulated a small population with high fidelity. Gazebo8 is a multi-robot simulator for
outdoor environments. It is capable of simulating a population of robots, sensors and objects in a
three-dimensional world. It generates both realistic sensor feedback and physically plausible
interactions between objects (it includes an accurate simulation of rigid-body physics). Gazebo implies
the use of the Player framework9.

8 http://playerstage.sourceforge.net/gazebo/gazebo.html
9 http://playerstage.sourceforge.net

22

Figure 3. A B21r mobile robot with laser sensors in GSV

Chapter I Introduction

OpenSim

OpenSim10 is a 3D simulator that uses OpenGL for real-time rendering of the robot environment as
realistically as possible. It uses a physics engine to simulate dynamics in real-time (collision between
arbitrary polyhedral objects with friction). Development has been ongoing for a while, however the
simulator is a long way from rendering realistic scenes and only has a limited set of simulated sensors.
It has been mostly used for research into inverse kinematics of redundant manipulators with
constraints for tool use (for environmental restoration, disassembly and dismantlement tasks).

After having reviewed existing software and on-going projects it clearly appeared that implementing
our own simulator would be the easiest way for rapidly getting results and keeping the control of
future developments.

10 http://opensimulator.sourceforge.net/

23

Figure 5. A mobile robot with a manipulator in OpenSim

Figure 4. A Pioneer mobile robot with a Sick laser in GAZEBO

Chapter I Introduction

5 Originality and output
A deep analysis of requirements (user, developer, application) has allowed us to identify Robotics
Control Patterns that represent almost all possible robotic applications. This approach has helped us
to capture generic requirements for the framework.

The design of the framework relies on classical Design Pattern [GAMM95] and Real Time Design
Pattern [DOUG03]. The coding is based on proven Object Oriented methods in order to improve
software quality. This approach provides a solid base for future developments of distributed robotic
applications.

The main output of this work are:
• CoRoBA, a versatile framework for developing distributed multi-sensor robot control applications.
• MoRoS3D, a 3D multi-robot simulator that seamlessly integrates with CoRoBA.

6 Thesis outline
This text is divided in six chapters and a concluding chapter. The present chapter has given the
motivations and the goals of the thesis as well as a review of the State of the Art in the relevant
domains. An overview of other chapters is given below.

Chapter 2 specifies the software requirements for a framework allowing the development of
distributed mobile robots control applications. Two different approaches are considered to identify
the requirements for the framework. The first approach takes into account the functionality of the
applications we want to build with the framework, whereas the second one considers the needs of
potential users. In order to identify reusable components, we introduce use cases that allow us to
derive Robot Control Patterns. From different surveys, we produce a list of general characteristics
owned by telematics applications. In the reminder of this chapter we detail them and infer from them
the consequences for the framework design.

Chapter 3 begins with a presentation of the Design Patterns that form the theoretical foundation for
the software design. It is followed by a section devoted to communication middlewares and justifies
the choice made by showing that it fulfils the requirements presented in Chapter 2. The chapter
continues with a discussion on architecture support for deployment.

Chapter 4 deals with the components architecture, that is their internal structure, representations, how
they communicate with each other, which model they use to synchronize, to handle events, to store,
retrieve and share data,.... The different types of components as well as the component interfaces and
their implementation are covered in this chapter.

Chapter 5 first explains how the simulator interacts with the framework. In the second section, details
of the environment model and scene graph representation are given. The chapter continues with
sections devoted to distance sensors, robots simulation and collision detection. This part deals more
particularly with geometric, kinematic and dynamic modelling for different robotic platforms. The
CoRoBA integration and the description of the simulator engine conclude this chapter.

Chapter 6 is devoted to applications developed to validate the CoRoBA framework. The presentation
describes simple applications like direct Joystick control and more elaborated ones, like autonomous

24

Chapter I Introduction

navigation and multi-robot control. Components involved in each application are explained in detail
and reuse of components is emphasized throughout the chapter.

The last chapter relates the requirements presented in the first two chapters with the actual
framework implementation. It is followed by the results of a detailed performance analysis. Finally,
future research directions are suggested and global conclusions are drawn.

25

Chapter II Analysis

 Chapter II Analysis Chapter II Analysis

1 Introduction
This chapter specifies requirements for a software framework allowing the development of
distributed mobile robot applications. The use of frameworks is beneficial for reaching a high quality
level and accelerating the software development process. Furthermore, frameworks allow developers
to concentrate on applications rather than on ancillary code.

Developing reusable software is an incremental and iterative work as illustrated by Figure 1. It begins
with the conceptual design. In this step, requirements are captured, a high level architecture is
produced and the purpose and function of the components are described. In the second step, the
specification design is created. At this stage, the object model may be created, interfaces and sequence
diagrams defined. In the final step, the implementation design, the final details are laid down and
physical systems and technologies are selected. At this stage we have sufficient details for starting the
implementation. These steps may be repeated several times during the development cycle.

As the needs change, the code must consequently also be adapted. The life cycle of object-oriented
software has typically several phases, namely prototyping, expansionary and consolidating phases
(Figure 2).

During the different phases the code is often re-organized or re-factored. This means that from the
beginning, software has to be designed with change in mind. In order to minimize those modifications
or to simplify them, we need at least to focus on two points: requirements and Design Patterns. As we
will see in the next chapter, using Design Patterns in early stages of software development avoids
later re-factoring. Design Patterns anticipate specific changes by letting some aspects of system
structure vary independently of other aspects [GAMM95]

26

Figure 1. Software development steps

Conceptual Design Specification Design

Implementation Design Development

Requirements

Implementation

Figure 2. Software life cycle phases

Prototyping

More requirements

Expansion

More reuse

Consolidation

Chapter II Analysis

This chapter deals with requirement gathering. Classically, user requirements define the functionality
of the applications. Here we don't consider a specific application but rather application patterns from
which we capture requirements for the framework.
In section 2 we discuss requirements that apply to every networked applications, that is distribution,
communication, computing and performance issues, etc.
Section 3 presents a decomposition of applications based on increasing complexity that leads to the
definition of Robot Control Patterns from which requirements are inferred.
Section 4 considers the needs in development and deployment phases. In this section we will see that
requirements have multiple origins and that users' requirements are totally different from
programmers' ones.

2 Computing and communication issues
The requirements and architecture design should lead to the proper identification of technologies.
Whenever possible the choice of a technology or tools should not constraint the architecture.
Therefore, the following important software aspects must be considered:

• Operating Systems
• Distribution and Networking technology
• Communication model
• Programming model and languages
• Portability
• Integration of existing systems

2.1 Operating systems
Low level control modules may require real-time11 (RT) capabilities as delays in communication can
introduce instabilities in the control loop. In a hierarchical architecture, the closer the modules are to
the hardware layer, the more they have increasing real-time constraints.
Real-time systems are divided in hard real-time (an event is reacted to within a strict deadline) and
soft real-time (will not suffer a critical failure if time constraints are violated). For closed-loop control
of motors, hard real-time systems are required. The control period for such systems lies generally
between 1 and 10 ms. For higher level tasks (path following, obstacle detection, navigation ...) we can
admit control periods varying between 50 an 500 ms. For the highest level (Path planning, terrain
modelling,...), time constraints are less critical (typical control period are between 1 and 10 s).

This work is more concerned with soft real-time and non real-time systems. If real-time capabilities
are required, we may consider using RT OS (RT-Linux, RTAI, VxWorks, QNX,...). Higher levels and
components having a long planning horizon do not need to be real-time and generic OS can also be
used. Graphical User Interfaces (GUI) are typical non real-time components that can run on common
OS and platforms or on Personal Digital Assistants. GUI's can also be based on interpreted languages
as they do not need to be real time.
At this stage we differentiate two kinds of components: synchronous components (time-driven) and
asynchronous components (data-driven). Synchronous components are generally designed to run on a

11 Wikipedia definition: “In computer science, real-time computing is the study of hardware and
software systems which are subject to a "real-time constraint" —ie. operational deadlines from
event to system response. By contrast, a non-real-time system is one for which there is no deadline,
even if fast response or high performance is desired or even preferred.”

27

Chapter II Analysis

single processor (however there exists development tools to distribute real-time processes over several
processors). Asynchronous components can be distributed over a network because they depend less
on real-time synchronisation.

How well synchronous components perform mostly depends on the OS real-time capabilities while
asynchronous components are influenced by communication performances. A common approach to
separate real-time from non real-time tasks is the use of distributed events communication in order to
decouple the data flow from the execution control. This decoupling does not mean that the arrival of
data does not influence the execution control; it only means that it is the called component that
decides how and when to service the event, and not the calling component. As a matter of fact, the
framework must provide asynchronous communications.

In order to keep reactivity, components must be multi-threaded but when different threads have to
access common data the use of synchronisation mechanisms is required. Therefore, the framework
must offer support for easy development of multi-threaded applications.

2.2 Distribution and network technology
In multi robot and sensor networks applications processes are necessarily distributed over different
networked processors. Specific algorithms can run on dedicated hardware (specialized subsystems) or
be split between many computers for better performances. Distribution can also contribute to increase
fault tolerance (a task can be solved in different places and data can be saved on different servers).The
framework must make the distribution of an application over multiple nodes easy for the
developer.

Developing robust, extensible and efficient communication applications is challenging. In particular,
developers must master a number of complex operating system and communication concepts such as:

• Network addressing and service identification.
• Presentation conversions, such as encryption, compression, and network byte-ordering

conversions between heterogeneous end-systems with alternative processor byte-orderings.
• Process and thread creation and synchronization.
• System call and library routine interfaces to local and remote interprocess communication

(IPC) mechanisms.

It is possible to alleviate some of the complexity of developing communication applications by
employing higher-level communication libraries that reside between clients and servers and
automates many tedious and error-prone aspects of distributed application development, including:

• Authentication, authorization, and data security.
• Service location and binding.
• Service registration and activation.
• Demultiplexing and dispatching in response to events.
• Implementing message framing atop byte stream oriented communication protocols like

TCP/IP.
• Presentation conversion issues involving network byte-ordering and parameter marshalling.

The previous discussion leads to the fourth requirement: the framework must rely on a higher level
communication library.

28

Chapter II Analysis

2.3 Communication models
Communication regulation between distributed components can be implemented in different ways.
Classical communication models used in distributed applications are:

• Master/Slave : The Master initiates and controls the communication with the Slaves.
• Client/Server : The Server provides services to the Clients request. The communication is

performed using a well defined interface.
• Peer-to-peer: A peer process contains both a client and a server. Requests and replies go in

both directions between the peer processes.
• Group: Message passing is used to talk to all members of the group. Unicast, multicast and

broadcast are common mechanisms.
The framework should not impose the communication model to the application.

2.4 Programming model and languages
For Services requiring real-time performances or for those who are computation intensive, C is
generally preferred over C++. However, the availability of Object Oriented (OO) design tools based on
UML (Unified Modelling Language) facilitate the modelling phase when using OO languages.
Platform-independent languages like Java or Python are interesting alternative for GUI's and
configuration tools.
It must be possible to mix different programming language in an application.

2.5 Portability
Portability can be reached as long as an abstraction layer for hardware devices and operating systems
functionalities is used. We distinguish two different cases: universal languages (Java, python, ...)
using native interpreters meaning that binaries (byte code) can be used without any modifications on
different computing systems or universal libraries that abstract OS calls to libraries and require the
same (portable) source code to be compiled for different targets (ACE, wxWidget, QT, ...). While most
of the robots are provided with libraries running on Linux, not everyone wants to develop on this OS
and many developers are used to Windows. In order to be able to develop applications running on
both OS, the framework code must be portable.

2.6 Modularity
An important consideration when designing any large, complex system is to break it into pieces for
development and testing. As different users require different sets of features, dividing functionality
in small units allows a developer to select exactly what is needed. Modularity is also essential when
considering simulation and hardware in the loop capabilities that consists in replacing some hardware
by simulated ones or running simulation in parallel with a real system for parameter estimation.
The framework must be modular.

2.7 Integration of existing systems
Beside developing new components, existing systems (Sensors, Robots, Algorithms, Applications) will
need to be integrated into the framework.
Robots can be controlled by computers or micro-controllers. In the former, in order to connect to and
control existing robots, we need to be able to call functions of the robots' native libraries that are
generally written in C or C++.
In the case of micro-controllers, we would need to link them to a more capable computer in order to
integrate the robot into the framework. This generally can be done through serial ports (more and

29

Chapter II Analysis

more with field-buses and means that we must be able to communicate through this kind of
connection. New robots can be developed in such a way that they take into account in their design the
characteristics of the framework. Consequently, the framework must allow using native libraries.

3 Robot Control Patterns

3.1 Definition
In order to gather additional requirements for the framework we should consider a large number of
typical robotics applications. Such applications require the following functionalities:

• Mobility: control of actuators, proprioceptive sensors,...
• User Interface (in and out): control, reporting, visualization and monitoring,...
• Sensors for environment perception: Ultrasonic, Infra-red, vision,...
• Navigation: obstacle avoidance, path following,...
• Localization: dead reckoning, inertial systems, GPS, ...
• Planning: path and trajectory generation, sequencing of actions,...
• Task: specific actions carried on by the system in order to fulfil the mission

The combinatorial explosion that would result when considering all these characteristics has lead us
to take another approach. We propose to define Robot Control Patterns. The list we propose is
actually inspired by the Man-Machine Interaction Patterns proposed by R. Graves in [GRAV00].
Control Patterns classified from the simplest to the most complex one are:

• Direct control
• Monitoring
• Sensor data processing
• Direct telecontrol
• Supervised and autonomous control
• Multi-robot control
• Multi-user control

This classification makes it possible to identify requirements for typical components involved in each
pattern.

3.2 Direct control

Description

The user controls the system through a User Interface (UI) (Figure 3) that can be made up of a
Graphical UI and/or an haptic interface like a 3D joystick or a master arm (mice and keyboards are
included in the GUI).

30

Chapter II Analysis

Problems

The following problems limit the flexibility and reuse of components in control applications:

• GUI's are specifically developed for one application.
• GUI's run on specific OS/platform
• Haptic inputs are generally processed in a global control application.
• Commands are specifically coded for one robot.

These problems have been for example reported by Graves in [GRAV00]. To solve them, he developed
a generic GUI that operates a number of different types of remotely operated robots.

Requirements

From the aforementioned problems we can specify the following requirements:
• Robot control GUI's must be independent of the robot.
• GUI's should run on most popular platforms.
• Motion commands must be independent of the robot.

3.3 Monitoring

Description

We define monitoring as the visualization of relevant data coming from services (Figure 4).
Monitoring allows a person to check the working of a given system. Depending on the circumstances,
this person may or may not influence the monitored process. In both cases the operator should be able
to customize the visualization process.

Examples of services that can be monitored are:
• robots: position, configuration, 3D graphics,...
• sensors: cameras (fixed images, streams), distance sensors, proximity sensors,...
• process: results of data processing or mission status.

Problems

The data visualization is generally embedded in a global application GUI that requires the installation

31

Figure 3. Direct Control

UI Robot

Figure 4. Monitoring

UI Service

Chapter II Analysis

of specific software and if new sensors and/or new data types have to be shown, the application must
be recompiled and redeployed.

Requirements

The listed problems suggest the following requirements:
• It must be possible to select the monitored service at run-time.
• The GUI must display and save data in various formats: video, audio, text, 2D vector

graphics, Bitmap graphics, 3D, etc.
• The GUI must be independent of any application and must adapt itself automatically to

the system capabilities. For instance, if we add a camera component to the application, the
GUI should adapt itself to display the images.

3.4 Data processing

Description

Data produced by sensors must be processed in order to extract relevant information from which
decisions on robot actions can be taken (Figure 5). This case encompasses two different domains:
processing of sensors data that is required for the control of the robot and processing of application
specific sensors data.

Problem

Algorithms are often embedded in a global application and tailored to specific sensors and robots. In
order to change algorithms, programs have to be recompiled and redeployed on distant machines.

Requirements

The framework must allow interchanging algorithms easily. The developer must have the possibility
to add and select processing modules in order to evaluate different solutions and choose the ones that
best suit his needs. It could be interesting to launch parallel data processing that exploit different
algorithms and have the possibility to compare and select outputs from different processing
components. We can summarise these requirements by saying that the architecture of the whole
application must be defined at run-time.

The first three patterns address the basic requirements of the framework and can be combined and
refined to build more complicated patterns. The next pattern is a direct combination of the first two
ones.

32

Figure 5. Data processing

Data Processing

 << Data in >>

 << Data out >>

Chapter II Analysis

3.5 Direct telecontrol (teleoperation)

Description

If the user has no direct visual contact with the robot and its environment, viewing services are used
(Figure 6). We assumed in this application pattern that the user directly interacts with the robot. We
also suppose that the control latency and refresh rates are good enough to assume that the close-loop
user–command–view is fast enough to allow real-time control of the robot(s). The figures depend on
the application and the speed of the robot. Latencies of 0.2 sec and refresh rates equal to 10
images/seconds are practical limits to control a slow moving robot (5 km/h). Image and sensor
resolution are other important limiting factors.

Problem

Control and visualization are embedded in a global application.

Requirements

The command and visualization data flow must be separated from each other.

3.6 Supervised and Autonomous Control

Description

Supervised and autonomous control
Traded, shared and assisted control are different forms of supervised control as defined by Sheridan
in [SHER92].
In the traded control pattern the operator acts as a supervisor but may from time to time assume
direct control. This can be done by giving him the highest priority or by temporary disabling other
behaviours.
In the shared control pattern, the operator may act as a supervisor with respect to control of some
variables and direct controller with respect to other variables. For example he could teleoperate a pan
and tilt camera mounted on a autonomous mobile robot.
Assisted control is another form of supervised control. Navigation assistance is based on
proprioceptive and exteroceptive sensor data processing. Speed regulation and path following is
generally based on dead reckoning or inertial platforms but it could also benefit from external sensors
like GPS or visual tracking systems. Obstacles avoidance and obstacles following requires perception
sensors like IR, US, cameras, radar, lidar,...
We can also provide the operator with assistance through perception (augmented reality and force-
feedback control).

33

Figure 6. Direct telecontrol

UI Robot

UI Sensors

Environment

Chapter II Analysis

In the autonomous control pattern the operator can observe but not influence the process (other than
pushing an emergency stop button).

Deliberative and reactive control architectures
Hierarchical decomposition is the classical approach for developing motion control for autonomous or
semi-autonomous robots. Typical deliberative robot control architectures comprise three levels:
Planning, Executive, and Functional (or Control) (Figure 7). These levels are usually organized
according to the level of abstraction at which they operate.

The Planning level constructs high-level plans utilizing Artificial Intelligence planning search
techniques. In the past, these algorithms have typically been computationally intensive and required a
significant amount of time to respond to new updates or changes. Domain knowledge for this level is
encoded in a declarative model, where it can easily be utilized by different search techniques.

The Executive level is responsible for execution of plans produced by the Planning level. The
Executive level typically performs further expansion of planned activities based on current execution
context. This level is also responsible for monitoring activities and robot conditions as execution
proceeds and for handling exceptions as they arise. This level must quickly react to changes, so it is
usually more responsive than the Planning level. Domain knowledge at the Executive level uses
procedural representations such as looping constructs, conditionals, etc.

The Functional level is responsible for low-level control of the robot. This level typically consists of
real-time control loops that directly command the robot hardware, and that tightly couple sensors to
actuators. This level is not addressed in this work.
Deliberative architectures are usually used to implement autonomous robots. The user interacts with
the highest level and cannot act at lower ones.

In Behaviour Based control sensors are directly coupled to reactive modules that provide basic
behaviours. Behaviour Coordination Mechanisms (BCM) are necessary to produce effective motion
commands. If behaviours are viewed as operands, then BCM's are the operators used to combine

34

Figure 7. Deliberative architecture

Planning

Executive

Fonctional

Humans / Other
Systems

Process

Chapter II Analysis

behaviours into higher-level behaviours. BCM's can be divided into two main classes: arbitration and
command fusion, which are complementary.

Arbitration mechanisms select one behaviour from a group of competing ones and give it ultimate
control of the system until the next selection cycle. This approach is suitable for arbitrating between
the set of active behaviours in accord with the system's changing objectives and requirements under
varying conditions. It can focus the use of scarce system resources (sensory, computational, etc.) on
tasks that are considered to be relevant. Two possible implementations are:

• Priority-based arbitration: which is a subsumptive-style, where behaviours with higher
priorities are allowed to suppress the output of behaviours with lower priorities.

• State-based arbitration: which is based on the Discrete Event Systems (DES) formalism, and is
suitable for behaviour sequencing.

Figure 8 illustrates a typical subsumption architecture as originally proposed by Brooks [BROO85].

Command fusion mechanisms combine recommendations from multiple behaviours to form a control
action that represents their consensus. Thus, this approach provides for a coordination scheme that
allows all behaviours to simultaneously contribute to the control of the system in a cooperative rather
than a competitive manner. This makes them suitable for tightly-coupled tasks that require spatio-
temporal coordination of activities.

Examples of complementary mechanisms for fusion:
• Voting techniques (Action selection architecture, ...)
• Fuzzy command fusion mechanisms
• Multiple objective behaviour fusion (Schema's based architecture , ...)

Both architectures have advantages and drawbacks and it seems legitimate to combine both
approaches to profit from their advantages while trying to cancel their drawbacks. Behaviour based
architecture can be used in different ways to obtain various control scheme. P. Arnaud proposed in
[ARNA00] the Generalized Actions Fusion Architecture that integrates different BCM approaches in
one framework.

On top of the behaviour layers we also need supervisors that can perform scheduling, context
switching, error reporting, ...

35

Figure 8. Typical subsumption Architecture

Bring back objects

Pick objects

Explore environment

Avoid obstacles

Move

Sensors

Actuator

Coordination

Chapter II Analysis

Problems

Recurrent problems are:

• Control architectures are tailored to a given application.
• Links between components are fixed.
• User interaction is limited to a given control level.

Requirements

The framework must allow the implementation of generic control components that can be customized
at design and configured at run-time, that are reusable and that can be easily combined with each
other. The framework must provide the capability to fix priorities or enable/disable behaviours
running in components, to add or remove behaviours, to group and discover them at run-time, that is
to modify the application's functionality at run-time. The framework should make it possible to
implement different BCM's and to interchange them seamlessly. To summarize, the framework may
not impose the control architecture.

3.7 Multi-robot systems

3.7.1 Coordination

Description
When several robots need to work together, it is necessary to manage a given number of
supplementary tasks that are not directly productive but serve to improve the way in which those
activities are carried out.

The coordination of actions is one of the main methods of ensuring cooperation between autonomous
robots. Actions have to be coordinated for four main reasons:

• The robots need information and results produced by other robots.
• Resources are limited.
• We want to optimize costs.
• We want to allow robots having separate but interdependent objectives to meet their

objectives while profiting from this inter-dependence.

Among all coordination methods [FERB99], the coordination by synchronization is one of the easiest
solutions. To synchronize several actions it is necessary to define the manner in which actions are
time-related, in order to time them in the right order and carry them out just at the right moment.
Synchronization constitutes the lowest level of the coordination of actions. Petri nets are generally
used to describe and solve the problems of synchronization.

Problem
Processes run on different machines, having each their own clock that are not synchronized.

Requirement
The framework must provide mechanisms to synchronise processes.

3.7.2 Scalability

Description
A system scales well if its performance reduces not more than proportional to the applied load.

36

Chapter II Analysis

Problem
The communication and control of processes easily become a bottleneck certainly when a central
supervisor or a blackboard concept is used.

Requirement
The system must be scalable.

3.8 Multi-user systems

Description

In some applications, it could be necessary or advantageous to split the control of the robot(s) between
different operators. We consider for example the command and control of a group of reconnaissance
robots for which different functions have to be accomplished:

• Motion control
• Obstacle avoidance
• Navigation
• Observation
• Self-protection

Different approaches are possible:
• One person controls one system
• One person is responsible for one level
• A pyramidal approach is used
• Some functions are shared or autonomous

In such complex applications it could be required not only to divide the workload between different
operators but also to modify this division in function of the performed tasks and of the circumstances.
Obviously coordination between operators will be required.

Problems

Common limitations to flexibility in user control are:
• Commands are provided by a single control centre.
• Only one user can take the control of the whole system.
• Users are not able to communicate with each other to coordinate control actions

Requirements

• The framework must allow splitting the robots' control between different users.
• In order to coordinate control actions, communication between operators may be required

(instant messaging with text, data, voice, video).

4 Development and deployment support

4.1 Development
Besides the needs from users we also have to consider those from other categories of people involved
in the development process. In [BRUY02] Bruyninckx proposes a four level organisation: Framework

37

Chapter II Analysis

builders, Component Builders, Applications Builders and End Users. Lars Peterson divides the users
in 5 groups, namely End users, Application programmer, Module programmer, Interface programmer
and Hardware designer, and describes in [PETE02] what they should expect from a framework. The
correspondence between the two approaches is summarised in the following table.

Table 1. Categories of users
Lars Peterson [PETE02] Hermann Bruininckx [BRUY02]

User User

Application programmer Application Builder

Module programmer

-

Interface programmer

Component Builder

Framework Builder

-

Hardware designer -

Users use programs developed by Application developers. Their focus is on the functionality of the
application. They need therefore an intuitive User Interface. This interface should be developed by
Application Developers and will not be provided by the Control Framework. However, technology
selection made in the design of the Framework should not constraint the development of
application UI's.

Application developers assemble and customise components provided by Components developers to
build an application. Tools must be provided to to facilitate the development of new components and
the integration of existing components into applications.

In order to perform extensive tests of applications, a simulator is required.

In order to identify possible problems monitoring tools are necessary.

For assuring maintainability, high-quality documentation of the system design and
implementation is of prime importance.

Framework developers work on the infrastructure code that will support development of other
categories of developers. They do not target any specific applications but they must keep in mind the
needs of the other categories and the applications that will be developed with the framework.

Interface programmers are closer to the hardware. They need to be sure that device drivers they
develop can be seamlessly integrated in the framework.

Hardware designers have no direct interaction with the framework.

38

Chapter II Analysis

4.2 Deployment
Once it has been developed, a software has to be deployed. A system manager with administration
rights has to install and configures services.

• Once in operation, logging tools are useful to track software activities.
• And finally, the system must be stable and reliable.

5 Summary
This chapter has reviewed and presented requirements for a framework that must facilitate the
development of distributed robots and sensor networks applications. Some requirements have been
derived from Robot Control Patterns while other have been based on general software development
considerations.
In the following table the requirements have been grouped in different categories: Meta-requirements
(M), Functionality requirements (I), Development requirements (D), Application requirements (A), UI
requirements (UI) and Use requirements (U).
Developing a framework that meets all the aforementioned requirements is certainly an utopia. In the
architecture and specification design we will have to make choices and compromises. The
Implementation requirements are off course the key ones because they essentially define the
framework structure and implementation. This work obviously focuses on these requirements. The
Meta-requirements are related to the quality of the software and some measures of effectiveness will
be defined in order to evaluate how these criteria have been met.
Most of the listed requirements are totally or partially addressed in this work excepted those related
to the User Interface and some from the Development and Application categories. In the next
chapters we will see how they are satisfied.

39

Chapter II Analysis

 Table 2. requirements
Title Category

1 Applications developped with the framework must be stable and reliable M

2 The framework must be modular M

3 The system must be scalable M

4 The framework must allow using native libraries F

5 The framework must rely on a higher level communication library F

6 The framework must provide asynchronous communication. F

7 The framework must offer support for easy development of multi-threaded
applications

F

8 The framework must provide the flexibility to make the distribution of an
application over multiple nodes easy for the developer

F

9 The architecture of the whole application must be defined at run-time F

10 The framework must provide mechanisms to synchronise processes F

11 The framework should not impose the communication model to the
application

F

12 The framework must allow splitting the robots' control between different
users.

F

13 The framework must allow access to several users at the same time. F

14 The framework code must be portable F

15 It must be possible to mix different programming language in an application F

16 Technology selection made in the design of the Framework should not
constraint the development of application UI's

UI

17 Robot control GUI's must be independent of the robot. UI

18 The GUI must run on most popular platforms UI

19 The GUI must display and save data in various formats: video, audio, text,
2D vector graphics, Bitmap graphics, 3D, etc.

UI

20 The GUI must be independent of any application and must adapt itself
automatically to the system capabilities.

UI

21 It must be possible to select a monitored service at run-time UI

40

Chapter II Analysis

Title Category

22 Tools must be provided to to facilitate the development of new components D

23 In order to perform extensive tests of components a simulator is required D

24 Tools must be provided to to facilitate the integration of existing components
into applications.

D

25 The command and visualization data flow must be separated from each
other.

A

26 Motion commands must be independent of the robot A

27 In order to coordinate control actions, communication between operators
may be required (instant messaging with text, data, voice, video)

A

28 For assuring maintainability, high-quality documentation of the system
design and implementation is of prime importance

U

29 In order to identify possible problems monitoring tools are necessary U

30 Once in operation, logging tools are useful to track software activities U

41

Chapter III Framework Architecture

 Chapter III Framework Architecture Chapter III Framework Architecture

1 Introduction
The previous chapter focusses on requirements that will serve for the design of the framework
architecture and the main functionality of components. Analysis is driven by what the system should
do while design is characterized by how the system must achieve the requirements. In this
introduction we give some design guidelines and we consider the consequences of granularity and
partitioning on the framework. Section 2 presents Design Patterns implemented by the framework.
Section 3 is devoted to communications. The framework architecture is covered in Section 4. Section 5
considers architecture support for deployment.

1.1 Design guidelines
Besides requirements it is just as important to have a clear set of design guidelines that we can use to
guide the technical decisions that must be taken as we develop the solution that meets those
requirements. The following guidelines concerning the choice and utilisation of tools have been
considered during the development of the framework:

• The selection of open source software (GNU General Public License,...)
• The use of standard tools and technologies (UML, C++,...)
• A framework design based on Design Patterns
• The development of validation applications

With the requirements gathered in the previous chapter and the system guidelines listed above, we
can consider the framework design.

1.2 Granularity, partitioning and interfaces
Granularity, partitioning and interface design are key features of any distributed object model
[BALE00].

Granularity refers to the level of abstraction that is provided by each component through its interfaces
while partitioning is concerned with the location of the objects, that is in which process they run and
where they are located in the network (Figure 1). Interfaces are the public faces of the systems.

Objects in coarse-grained models represent higher level concepts. This representation simplifies the
implementation of applications because it reduces the code and the number of processes but limits the
freedom of the developer. On the other hand a fine-grained model offers more possibilities to the
programmer but also requires more work because the number of interactions is larger. He must learn
more because he has to understand the internal mechanisms of the object model.

A fine-grained model affects performance because more interactions between objects are required to
perform a single task. Even if computers are always improving in speed and gigabit network
interfaces are available, each remote method invocation adds some overhead and increases the latency
of the global system. A general rule is that the cost of the communication should not go beyond the
cost of execution.

42

Chapter III Framework Architecture

On the other hand, a coarse-grained system reduces the flexibility when more than one concept is
embodied in a single interface. A just compromise has consequently to be found to allow developed
components to be reusable in new applications.

A distributed system must be partitioned so as to support evolution. It can be decomposed into a set
of subsystems where each subsystem provides a well-defined service. Effects of partitioning can be
evaluated by using sequence diagrams, which are good indicators of the amount of communication
necessary to perform the tasks required by the system. Partitioning has not only an influence on
deployment but also on interfaces because objects must implement interfaces in order to be remotely
accessible.

When designing an interface the following principles have to be followed:
• Interfaces should support a single concept (cohesion).
• Coupling between interfaces must be kept minimal.
• Exceptions have to be defined.
• A polymorphism strategy has to be chosen.

The next chapter shows how the proposed implementation deals with these issues.

2 Design Patterns
A framework captures the design decisions that are common to its application domain. Applications
based on frameworks can be built faster and have similar structures; they are consequently easier to
maintain. The main drawback is that applications are particularly sensitive to changes in the
framework interfaces but Design Patterns actually help reducing these changes.

43

Figure 1. Effects of granularity and partitioning on system components

Coarse Granularity fine

 P
ar

tit
io

ni
ng

Chapter III Framework Architecture

2.1 Definition
Design Patterns capture good design practices and present them in a systematic way. A pattern
describes a recurring problem and the core solution to that problem. In general, a pattern has four
essential elements:

• The pattern name: it facilitates the discussion and lets us design at a higher level of
abstraction.

• The problem describes when to apply the pattern. It explains the problem and its context and
might include a list of conditions that must be met before it makes sense to apply the pattern.

• The solution describes the elements that make up the design, their relationships,
responsibilities and collaborations. It does not describe a particular concrete design or
implementation because it is a template that can be applied in many different solutions.

• The consequences are the results and trade-off's of applying the pattern. The consequences of
a pattern include its impact on a system's flexibility, extensibility or portability.

Many Design Patterns have been used by different authors but they became very popular after the
publication of the famous book [GAMM95] by what is known as the “gang of four”. In this book
Design Patterns can be classified according to their purpose: creational, structural and behavioural.
Each category can yet be subdivided according to the scope criterion that specifies if the pattern
applies primarily to classes or objects. Patterns for designing control frameworks have been presented
in [DOUG03].

2.2 Design patterns and framework
Sets of interrelated patterns tailored specifically to work well together are called frameworks. Patterns
and frameworks have similarities but are different in three major ways:

• Design Patterns are more abstract than frameworks
• Design Patterns are smaller architectural elements than frameworks
• Design Patterns are less specialized than frameworks

A framework is a set of cooperating classes that make up a reusable design for a specific category of
software. Frameworks provide four primary usage strategies: instantiation, generalization,
parametrization and extension. In a framework-based development effort, the majority of the
application is provided by the instantiated framework.

The disadvantages of frameworks are that they limit the freedom of developers and that they are
much more difficult to design and construct than applications, even though they greatly simplify
application development. [DOUG03, p128-129].

Choosing the right patterns from a catalogue is not straightforward and relies mainly upon the
experience of the developer. A short description of selected patterns is given below.

2.3 Architectural Design Patterns
Architectural Design Patterns that are presented here are divided in two categories: Subsystem and
Components Architecture Patterns on one hand and Distribution Patterns on the other hand [DOUG03].

44

Chapter III Framework Architecture

2.3.1 Subsystem and component architecture Patterns

➢ Name: Hierarchical Control Pattern

Problem: We want to separate the interfaces for the control and configuration of the objects
and the interface for the actual functionality provided by the object.

Solution: This pattern is based on composition. The Hierarchical Control Pattern uses two
types of interfaces: control interfaces that monitor and control how the behaviours are
achieved and functional interfaces, which provide the services controlled by the other set of
interfaces. This pattern is illustrated by Figure 2. The control interface provides services to
manage how the functional services are performed. The functional interface provides the
services of the Controller according to the parameters selected via the control interface. Leaf
elements participate in the realisation of the functionality.

➢ Name: Component-based Architecture Pattern.

Problem: We need an architecture that is robust in the presence of maintenance and is highly
reusable in a variety of circumstances.

Solution: The Component-based Architecture Pattern organises a system into replaceable
units with opaque interfaces. Interfaces are generally divided in Client and Management
Interfaces (Figure 3).

Consequences: Systems may be constructed via assembly, components being selected at run-
time. Opaque interfaces hiding implementation details can be seen as an advantage or a
disadvantage. Components tend to be heavy in terms of required resources (memory, size on
disk).

45

Figure 2. Hierarchical Control Pattern structure

Controller

<<control interface>> <<functional interface>>

*
Leaf Element

Chapter III Framework Architecture

➢ Name: Channel Architecture Pattern.

Problem: We would like an architectural structure that improves throughput capacity with
the replication of units allowing efficient processing of multiple data in different stages of
processing. We would also like an architecture that improves reliability and safety through
the simple addition of redundant processing units.

Solution: The Channel Architecture Pattern is useful when data within a stream is
sequentially transformed in a series of steps. A channel can be thought of as a pipe that
sequentially transforms data from an input value to an output value (Figure 4). It is possible to
find multiple elements of the data stream in different parts of the channel at the same time.

Consequences: The Channel Architecture Pattern improves the flexibility provided by the
Component-based Architecture Pattern by lowering the coupling level between components.
It also greatly facilitates the implementation of Safety and Reliability Patterns because similar
components can run concurrently on different machines.

2.3.2 Distribution Patterns

Distribution, which is an essential aspect of architectures, comes in two primary forms: asymmetric
and symmetric. In asymmetric distribution systems, the binding of objects to the address space is
known at design time while in symmetric distribution system it is not known until run time.
Symmetric distribution is more flexible and allows dynamic load balancing. The patterns presented

46

Figure 3. Component Based Architecture Pattern structure

Component
Client Interface

Management Interface

Client Module

Management Module

*
Collaboration

Figure 4. Channel Architecture Pattern structure

Input Filter

Output sinkInput Source

Output FilterTransformation

Chapter III Framework Architecture

below deal with the collaboration aspects of the architecture and focus on how the objects find and
communicate with each other.

➢ Name: Remote Method Call Pattern.

Problem: The programming model used to invoke local services is very well understood and
what is needed is a means to do the same thing even when the client and the server do not
reside in the same address space.

Solution: The Client does not communicate directly with the Server but via a Client Stub that
contacts the Server Stub, which invokes the specified method on the Server. The low-level
network operations are hidden to the Client and Server (Figure 5).

Consequences: this pattern simplifies the process of Client Server communication over a
network. It offers a pull approach; the server merely responds to a request from a client. There
are many implementations that are based on this Design Pattern. Most of them propose a
mechanism (compiler, macro, ...) that automatically generates the stubs.

➢ Name: Broker pattern.

Problem: Most of the distribution patterns require a priori knowledge of the location of the
servers what limits their use to asymmetric distribution architectures. Ideally, the solution
should provide a means to locate and invoke services at the request of the client.

Solution: The Broker Pattern may be though of as a symmetric version of the Proxy Pattern. It
provides a Proxy Pattern in situations where the location of the clients and servers are not
known at design time. The Broker is an "object reference repository" globally visible to both
clients and servers (Figure 6).

Consequences: The Broker Pattern is a very effective means for hiding remoteness of clients
and servers. While not completely successful in hiding all the details, it nevertheless greatly
simplifies the creation of systems with symmetric distribution architectures.

47

Figure 5. Remote Method Call Pattern structure

Server ProcessorClient Processor

Client

Client Stub

Server

Server Stub

Chapter III Framework Architecture

Commercial Object Request Brokers (ORB) do require a minimum amount of resources that
may exceed those available in small computing systems. For those cases, it may be possible to
use smaller, less capable ORB's or write one from scratch that includes only the desired
capabilities. In the Broker Pattern, the clients may dynamically discover the available services.
This makes the Broker Pattern more scalable than the Proxy Pattern but also somewhat more
heavyweight.

➢ Name: Data Bus Pattern.

Problem: Many systems need to share many different data among a mixture of servers and
clients, some of them might not be known when the client or data is designed.

Solution: The Data Bus Pattern further abstracts the classic Observer Pattern [DOUG03,
pp370-376] by providing a common (logical) bus to which multiple servers post their
information and where multiple clients come to get various events and data posted to the bus.
The Data Bus Pattern is basically a Proxy Pattern with a centralized store into which various
data objects may be plugged along with metadata that describes its contents (Figure 7). It
serves to further decouple the client implementation from the server's. The pattern comes in
both "push" and "pull" versions.

Consequences: The Data Bus pattern offers a single location for clients to go and acquire data
and for servers to publish their data. The Data Bus is extensible; it does not have to
understand the semantics of the data. New servers and clients can be added at run-time.

48

Figure 6. Broker Pattern structure

Concrete
 Client

Client-side
Proxy

Server-side
Proxy

Concrete
Server

Broker

Figure 7. Data Bus Pattern structure

Data Bus

Client Server
Data

Chapter III Framework Architecture

2.4 Behavioural Patterns
Behavioural class patterns use inheritance to distribute behaviour between classes [GAMM95].

➢ Name: Template Method Design Pattern

Problem: Several classes implement an algorithm having a common structure but a slightly
different implementation. We want to reduce the code redundancy.

Solution: The Template Method Design Pattern defines the skeleton of an algorithm in an
operation of a base class and lets subclasses redefine certain steps of this algorithm without
changing the algorithm structure.

Pattern Structure: see Figure 8.

Collaboration roles:
AbstractClass:

• defines abstract primitive operations that concrete subclasses must implement
(example: process, terminate)

• implements a template method defining the skeleton of an algorithm (example: svc)

ConcreteClass:
• implements the primitive operations to carry-out the invariant steps of the algorithm.

Consequences: This pattern is a fundamental technique for code reuse. It is used when
common behaviour among subclasses should be factored and localized in a common class to
avoid code replication. It also leads to an inverted control structure because the parent class
calls the operations of a subclass and not the other way around.

2.5 Concurrency Patterns
Concurrency Patterns provide solutions when the different threads of an applications are not
independent and share resources that must be managed carefully to avoid corruption.

➢ Name: Message Queuing Pattern

49

Figure 8. Template Method Design Pattern structure

AbstractClass

svc()
process ()

term inate ()

ConcreteClass

process ()
terminate ()

...
process ()
...
terminate ()
...

Chapter III Framework Architecture

Problem: In most multi threaded systems, threads must synchronise and share information
with others.

Solution: The Message Queuing Pattern provides a simple means for threads to synchronise
and communicate information among one another using asynchronous communications
implemented via queued messages.

Pattern structure: The structure for the pattern is shown in Figure 9.

Collaboration roles:
Thread
The thread object is active. It can both create messages to send to other threads via the queue
and receive and process messages when it runs.

Queue
The queue is a container that can hold a number of messages.
Some fundamental questions must be answered when implementing such a queue. What is
the (maximum) size of the queue ? Do we allow increasing the queue size ? What do we do
with events in excess ? Do we use a cyclic buffer ? Do we store different sorts of data in the
same queue or do we use several queues ?
The answers to these questions depend mainly from the behaviour we want to obtain.
We can consider two different cases:

• Events produced by components are disposable in the sense that we may lose some
without jeopardising the system stability.

• All events must be processed.

Mutex
The mutex is a mutual exclusion semaphore. It provides non interruptible lock and release
operations that protects data against simultaneous access.
Consequences: This pattern has many advantages and is supported by virtually all real-time
operating systems. The primary disadvantages are that it is a relatively heavyweight approach

50

Figure 9. Message Queuing Pattern Structure

Thread

Queue

Insert ()
remove ()

Mutex

lock ()
release ()

 1
1

1

*

Chapter III Framework Architecture

to information passing among threads and information must be shared by value instead of by
reference.

The way these Design Patterns are used in the framework is described in Chapter IV.

3 Communication

3.1 Communication libraries
Native Application Programming Interfaces (API's) for writing communication software are available
on all platforms. They propose the well-known socket mechanism, which provides an endpoint for
communication between processes. Those API's are written in C or C++ and offer different abstraction
levels in function of the version. The main problem is that the software implementation is different for
each platform. Functions have different names, parameters and initialization sequences. This situation
obliges the programmer to learn different libraries in order to write hybrid network applications. This
option offers the advantage that programmers can optimize the code and write very efficient and
small footprint programs. It is perhaps acceptable for full-time programmers but not for control
application developers who don't have the time to devote to this activity. It is preferable for them to
write intelligent high level applications that perform real tasks than to spend most of the time for
writing low level code. The need for a higher level communication library is therefore evident.

Multi-platform communication library's could eliminate some of the drawbacks listed above.
Incidentally, the ADAPTIVE Communication Environment (ACE) [HUST04] has been considered as a
possible communication library at the beginning of this project. However, it does not provide a higher
level of abstraction like middlewares (see next section) do and much work is left to the programmer
who still has to deal with low level socket operations, data marshalling and unmarshalling,
localisation of services in a network, etc.

3.2 Middleware
A typical distributed software architecture presents a layered structure as shown in Figure 10. The
first two bottom layers constitute the platform; they provide services to the layers above them. Ideally
the application layer should be independent of the platform layer. That is why we find an
intermediate layer named middleware. The aim of this layer is to mask heterogeneity and to provide
developers with an uniform API to implement communication and resource-sharing support for
distributed applications [COUL01, pp31-32].

However, middleware does not solve all problems and sometimes introduces an artificial
homogeneity and delays integration problems. Moreover one should not forget that there exist many
different and incompatible middlewares and that integrating them becomes in itself a new challenge.
One way proposed by S. Vinoski in [VINO02] is the Web Service paradigm. Web Services are based on
the ubiquitous Internet infrastructure while the communication occurs via XML-based messages.

51

Chapter III Framework Architecture

Another drawback of middlewares is the steep learning curve programmers have to cope with. For
this reason, middleware utilisation is only valuable in long term projects.
As performance and flexibility are generally mutually exclusive, middlewares try to offer a good
compromise between both requirements. They must be largely configurable in order to satisfy an
heterogeneous user community. Run-time configuration separates the development from the
deployment and eliminates the needs for software modification by the user.

3.3 Programming models
In distributed applications, programs need to invoke operations in other processes, often running on
different computers. To achieve this, the following programming models are available [COUL01]:

• The Remote Procedure Call (RPC) which allows clients to call procedures in server programs
running in separate processes and generally in different computers from the client.

• The Remote Method Invocation (RMI) that allows objects in different processes to
communicate with each other.

• The distributed Event-based programming model that allows objects to be notified when
events they have registered interest in have been emitted.

As most of the current distributed systems are written in object oriented languages, we only consider
the last two models.

3.3.1 Remote Method Invocation

RMI is mainly represented by three implementations: Java-RMI, DCOM and CORBA. A
comprehensive comparison of these three middlewares can be found in [COLO02].

DCOM
The Distributed Component Object Model (DCOM) is an extension to COM that allows network-
based component interaction. While COM processes can run on the same machine but in different
address spaces, the DCOM extension allows processes to be spread across a network. It is a Microsoft
product that runs almost exclusively on Windows and consequently does not satisfy requirement R14.

52

Figure 10. Layered structure of distributed applications

Platform

Operating system

Middleware

Applications

Computer and network hardware

Chapter III Framework Architecture

Java RMI
The Java platform’s Remote Method Invocation (named Java RMI) system has been specifically
designed to operate in the Java application environment. The choice of Java RMI would oblige us to
use almost exclusively Java and it is certainly not the best choice for developing control applications.
Furthermore, the use of Java makes the integration of existing libraries more difficult12 than by using
the C++ language (requirement R4).

CORBA
The Common Object Request Broker Architecture (CORBA) is an open distributed object computing
infrastructure being standardized by the Object Management Group (OMG). It ensures
interoperability across programming languages, machines and products. CORBA automates many
common network programming tasks such as object registration, location, and activation; request
demultiplexing; framing and error-handling; parameter marshalling and demarshalling and operation
dispatching.

CORBA actually implements the Remote Method Call Pattern and relies on Interface Definition
Language (IDL) compilers to generate stubs and skeletons for clients and servers (Figure 11). This
Design Patterns contributes to fulfil the requirement R8.

An Interface definition written in IDL completely defines the CORBA operations and fully specifies
each operation's arguments. Operations specified in IDL can be written in and invoked from any
language that provides CORBA bindings. C++ and Java are two of the supported languages. Most of
the time, Interfaces are automatically translated into concrete code by an IDL compiler. This code has
then to be customized by the developer with application specific instructions.

CORBA offers different communication solutions that give the developer a large freedom when
implementing distributed applications (requirement R11). Besides the classical synchronous method
call (named 2-way in CORBA jargon), we have at our disposal the Asynchronous Messaging
Invocation (AMI) or the Event based communication services.

The CORBA synchronous method call is the most familiar to the programmer because it applies to
remote calls the same principles as to a local method call. It uses a synchronous communication model
and consequently method invocations block until the response is received from the remote object.
The AMI allows sending processing requests to a remote object without blocking the calling process.
This later receives the response when it is available and a callback or a polling mechanism have to be
used to get the response data. The AMI mechanism requires modifying the client but not the server
which is unaware of the change.

12 It is however possible to use C++ libraries via the Java Native Interface API.

53

Chapter III Framework Architecture

The servant, visible only to the server, is the executing CPU and memory resource that performs an
object's operation. It is activated and deactivated according to the pattern selected by POA policies.
The Portable Object Adapter (POA) is the piece of the ORB that manages server-side resources for
scalability. It deactivates objects' servants when they have no work to do, and activates them again
when they're needed.

3.3.2 Distributed event notification

Jini
Jini cannot be compared to Java RMI and CORBA. Java RMI and CORBA can be seen as middleware
technologies that enable components and objects to communicate over a network. Jini, on the other
hand, provides an interaction model and the infrastructure for distributed objects to cooperate with
each other, or to work in a coherent, robust, and scalable way.

The servant, visible only to the server, is the executing CPU and memory resource that performs an
object's operation. It is activated and deactivated according to the pattern selected by POA policies.
The Portable Object Adapter (POA) is the piece of the ORB that manages server-side resources for
scalability. It deactivates objects' servants when they have no work to do, and activates them again
when they're needed.

3.3.2 Distributed event notification

Jini
Jini cannot be compared to Java RMI and CORBA. Java RMI and CORBA can be seen as middleware
technologies that enable components and objects to communicate over a network. Jini, on the other
hand, provides an interaction model and the infrastructure for distributed objects to cooperate with
each other, or to work in a coherent, robust, and scalable way.

Jini specifies functionalities that allow to set up a network of objects that dynamically link together
and perform useful work. Jini does not specify how the server and client objects communicate. This

54

Figure 11. CORBA Remote Method Call Pattern implementation

ORB Core

Stub

Client

Skeleton

Portable Object Adapter

Servant (Object
 Implementation)

Interfaces
Definition

IDL
Compiler

Chapter III Framework Architecture

kind of work is the speciality of the other two technologies. In Jini RMI and CORBA do no compete
against each other but are complementary and can be mixed to build up a complex network. The Jini
distributed event specification allows a potential subscriber in one Java Virtual Machine (JVM) to
subscribe to and receive notifications of events in another JVM. Java RMI is used to send events
between objects.
Despite its interesting characteristics it seems that Jini has not reached the level of popularity that was
awaited by its developers.

CORBA Event and Notification Service
There are many situations where the standard CORBA (a)synchronous request/response model is too
restrictive. For instance, clients have to poll a server repeatedly to retrieve the latest information.
Likewise, there is no way for the server to efficiently notify groups of interested clients when data
change. For these reasons the Object Management Group first introduced the Event Service. The Event
Service supports asynchronous exchange of messages between clients. It introduces event channels
which broker event messages, event suppliers which supply event messages, and event consumers
which consume event messages. The CORBA specifications define different methods for sending and
receiving events: consumers and suppliers can push or pull events via Event Channels (Figure 12).
Implementations of the Event Service act as “mediators” that support decoupled communication
between objects. Events are typically represented as messages that contain optional data fields.

A primary goal of the Notification Service is to enhance the Event Service by introducing the concepts
of filtering and configuration according to various quality of service requirements. Clients of the
Notification Service can subscribe to specific events of interest by associating filter objects with the
proxies through which the clients communicate with Event Channels. Furthermore, the Notification
Service enables each channel, each connection and each message to be configured to support the
desired quality of service with respect to delivery guarantee, event ageing characteristics, and event
prioritization. The advantages of this communication method is counterbalanced by the complicated
consumer registration (multiple interfaces, bidirectional object reference handshake, ...). Not all
CORBA libraries implement the Notification Service.

3.4 Middleware selection
The CORBA middleware have been selected for implementing the framework communication
functionality. CORBA is actually a specification of the Object Management Group (OMG) and
presently more than 30 implementations coexist on the market. Some are freely available others are
commercial products. Their common characteristic is that none of these versions implements all

55

Figure 12. CORBA Event Service communication principle

Supplier
Event

 Channel
Supplier

Consumer

Consumer

Consumer

Chapter III Framework Architecture

specifications. While the third version of CORBA has been published, most of the CORBA
implementations conform partially to the version 2.3 to 2.6 of the specifications.

The TAO13 (The ACE ORB) implementation has been chosen among others as the CORBA library for
C++ developments. For developers of distributed and embedded applications who have stringent
performance demands, TAO is a freely available, open-source, and standards-compliant real-time
implementation of CORBA. TAO applies the best software practices and patterns to automate the
delivery of high-performance and real-time QoS to distributed applications. TAO has been ported to
many operating systems including almost all UNICES, Win32, VMS, QNX, ...

One could ask the question if middleware is really usable for building distributed robotic systems ?

In [GILL02] C. Gill reports results of a comparative performance experiment that partially answer this
question: using CORBA for data transmission instead of raw sockets adds an overhead that is mostly
prominent for small data packets. Those results are explained by the operations added by CORBA and
the extra information contained in a GIOP14 frame.

Jay Gowdy [GOWD00] reviewed a wide variety of communication toolkits. He has qualitatively
compared them based on criteria such as suitability for implementation of typical data flows in
robotics, portability and ease of use. According to this review, CORBA (and particularly the TAO
implementation) performs very well for every criteria but the "ease of use". According to him, it
should be considered in "... long-term projects with nebulous, possibly changing goals...". Similar
projects like Miro and Orca, presented in the first chapter, are also based on CORBA.

The weakness of the CORBA standard lies in the management of a system of distributed objects that
has to be developed by the programmer. It lacks services that enable the user to monitor the
distributed objects, manage those processes and interacts with network management tools [BALE00,
p30]. Each CORBA implementation offers a proprietary solution for doing this.

Before taking the final decision, a test application has been developed. A CORBA serial server has
been implemented using the different available communication models. A complete description of
this application has been reported in [COLO04]. From this test application we concluded that CORBA
would suit our needs.

Different language mappings have been defined in the CORBA standards and we are not limited to
C++. For instance, Java provides comprehensive API's to communicate with CORBA objects. As long
as we use the 2-way communication scheme, the SUN implementation coming with the Java
Development Kit is sufficient but for the AMI or the Notification Service we must use another CORBA
implementation as explained in Chapter V.

13 http://www.cs.wustl.edu/~schmidt/TAO.html
14 The General Inter-ORB Protocol has been defined to allow interoperability between different

CORBA implementations.

56

Chapter III Framework Architecture

4 Architecture support for deployment

4.1 Introduction
Besides application components (navigation, vision,...), which are the building blocks of an
application, a framework has also infrastructure components (Name server, Time server,...) that
provide services that are used by application components once deployed. TAO includes many generic
services that can be directly reused as infrastructure components in numerous applications. Services
that are used by the framework are described below.

4.2 Event based communication
Event based communication is not part of the core of CORBA but is supported by OMG Event and
Notification Services. Once started the services offer interfaces for managing communication channels
through administration objects. The Notification Service attempts to preserve all of the semantics
specified for the OMG Event Service, allowing for interoperability between basic Event Service clients
and Notification Service clients.

4.3 Configuration
A flexible system has more chance to survive the permanent changes of the computing world. In order
to improve the flexibility of components, it is advantageous to push configuration as far away as
possible in the development and deployment process. Late binding consists in selecting object
implementation at run-time and is based on the Factory and Strategy Design Patterns [GAMM95].

The key to providing flexible systems lies in the amount of self-description within the system. This
requires adding meta-information15 management capabilities. Meta-information allows to increase the
flexibility of the system and brings in dynamic capabilities. The downside to building a system using
meta-information is the increase in complexity. The more generic a piece of code is, and the more
reliance on runtime information, then the greater the chance of unexpected error situations. We need
obviously to weigh the expected benefits with the cost.

Configuration information are generally provided on the command line or read from a configuration
file but other possibilities are offered by CORBA for managing meta-information:

• Interface Repository
• Naming Service
• Trading Service
• Implementation Repository
• Meta-Object Facility

4.3.1 Interface Repository

Interfaces in CORBA are designed using an Interface Definition Language (IDL) and can be seen as
both a contract and meta-information. The Interface Repository provides run-time information about
IDL interfaces. Using this information, it is possible for a program to encounter an object whose
interface was not known when the program was compiled, yet, be able to determine what operations
are valid on the object and invoke requests using the Dynamic Interface Invocation (DII). DII provides
the tools to create and invoke requests at runtime. This capability can be used to implement

15 Meta-information is information about information.

57

Chapter III Framework Architecture

“intelligent” clients that discover interfaces at runtime or gateways between different protocols.

4.3.2 Naming Service

Object References16 are used to locate the distributed objects in CORBA. The Naming Service provides
a mechanism for the publication and dissemination of Interoperable Objects References (IOR). It
contains a database of name-to-object-reference mappings that can be organised as a directed graph.
Anything, but typically the server process hosting an object, may bind an object reference with a name
in the Naming Service by providing the name and object reference. Interested parties (typically
clients) can then use the Naming Service to resolve a name to an object reference. It is also possible to
create federated Naming Services by cross-referencing the services running on different machines.

4.3.3 Implementation Repository

It is the responsibility of the ORB to ensure that an implementation of a distributed object is active
when it receives a request for that object. It needs to keep track of which object implementations are
available and whether they are activated or not. It does this by working with the server to keep track
of when it is activated and stores information on how to reactivate it. Method invocations on the
server will actually be sent to the Implementation Repository, which will then be able to start the
server process if it is not already running and forward the invocation to the real server.

We may also have more than one implementation of a given server and each implementation may be
located on different machines. This information can be incorporated within the Implementation
Repository and used by the ORB for load balancing. The Implementation Repository itself may also be
distributed and replicated among a set of machines, allowing for redundancy. In this case, the Object
Reference of an object will contain the addresses of the various Implementation Repositories.

4.3.4 Trading Service

The Trading service allows to find other objects on the network that match a set of criteria. Within the
trader an object is associated with a set of properties. Rather than locating an object based on its name,
an object is located based on its capabilities. The service type name, the object reference and a list of
name-value pairs describing the capabilities of the object must be provided to the trader by an
exporter (server). An importer (client) will make a request for a service using a constraint language
consisting of Boolean expressions. Since the properties of an exporter can be dynamic, searches can be
based on the state of the object. Traders can also be federated and provide the core mechanism for the
dynamic use of objects.

4.3.5 Meta-Object Facility

The Meta-Object Facility (MOF) is a recent addition to the services provided by the CORBA
specifications. It provides the necessary functionality to describe relationships between the distributed
objects. A standard based on XML has also been proposed to represent meta-information on a MOF
repository: The XML Metadata Interchange (XMI).

4.4 Load balancing
In control applications, we can distinguish two types of processes: those which may run on any
computer and those that are constrained to specific ones. This is the case for machines that are
physically linked to sensors and actuators. In order to be able to distribute components without
additional constraints, executables must be able to run on every available platform. Another

16 An Object Reference is an identifier that can be used throughout a distributed system to refer to a
particular unique remote object.

58

Chapter III Framework Architecture

parameter is the number of event channels created when an event based communication scheme is
used. Each possible case corresponds to a given cost that comprises the processing cost and the
communication cost.
Apart from trivial cases, it is necessary to study the way processes are distributed. Load-balancing
tries to optimize resources allocation. Optimization requires the definition of metrics as computing
load (memory, CPU utilization, file IO), network bandwidth, space storage, ... The load can be
balanced statically and/or dynamically. Static load balancing relies on expected usage patterns of the
proposed services and can be updated based on off-line analysis of metrics. Dynamic load balancing is
based on instantaneous load metrics.
The Naming Service and the Implementation Repository can be used to perform basic load balancing
[BALE00, pp237].

4.5 Safety and Reliability

4.5.1 Definition

A safe system will no cause any accident or loss in case of failure while a reliable system has a high
probability to function for a specified period of time. Both Safety and reliability requires redundancy
in the designs of systems.

4.5.2 Failure Models

Even if programmers try to produce bug free software, failures and errors will always occur and
because they cannot be totally eradicated, we must deal with them. Object Oriented Languages have a
mechanism called Exception handling. Exceptions are errors that can be foreseen at design time and
for which we can provide special handling code from which we can recover.
In a distributed system both processes and communication channels may fail. Failures can be
classified as omission, arbitrary and timing failures [COUL01, p53].

Omission failures happen when a process or a communication channel fails to perform what it is
supposed to do. For processes it generally means a crash while a communication channel produces an
omission failure if it does drop messages. This is generally caused by a lack of buffer space on the
receiver or by a network transmission error.
The crash of a local application can generally be easily detected; its GUI does not longer respond to
users' actions or it does not produce any more output on screen. Using an appropriate mechanism the
failed program can be manually stopped and started again.
Detecting that a distributed application has crashed is not a trivial task. The basic detection method
relies on time-outs. If the remote process has not replied to invocations after a given period of time,
we may assume that it has stopped functioning. In an asynchronous system a time-out does not mean
necessarily that the other process has crashed.

Arbitrary failures refer to the worst possible semantics, in which any type of error may occur (false
data is produced by the system). They are generally produce by bugs in a program and cannot be
detected by seeing whether the program responds to invocations. Arbitrary failures in communication
channels are rare as they can be easily rejected by the communication software.

Timing failures are applicable in synchronous distributed systems where time limits are set on
execution time, message delivery time and clock drift time.

59

Chapter III Framework Architecture

4.5.3 Dealing with failures

Patterns described in [DOUG03] provide solutions for improving safety and reliability of a software
system. Most of them are based on redundancy or on watchdog mechanisms.

CORBA encapsulates communication errors in networked exceptions [HENN99]. A number of system
exceptions are defined to capture common error conditions. The developer has also the possibility to
define his own exceptions in IDL.

For processes controlling a physical system, a crash could leave it in a dangling state. That is why
most of the robots use time-outs and stop moving if no commands have been received after a given
period of time. What is true for abnormal termination also applies to normal program shut-down. A
stopped program should always leave the system in a safe state.

4.6 Security
The simplest security solution is undoubtedly isolation. The more distributed and interoperable the
system, the more it is open for potential compromises. Security should always be designed as an
integral part of the system because it touches every component and layer. The security of a distributed
system can be achieved by securing the processes and the channels used for their interaction. It should
be in the infrastructure to ensure authorized access between components. Information sent over
communication lines should be encrypted.

One of the goal of the CORBA Security Service is to provide security for applications and users in a
transparent manner. The features provided by the OMG security service can be added to an ORB in a
non-intrusive manner because it is implemented with interceptors. Existing distributed applications
that make use of a CORBA ORB can thus run without alteration using a secure ORB. The Secure
Socket Layer can also be easily integrated in any CORBA application.

4.7 Logging and monitoring
Knowing what is going on at any time in a system is the first step in managing it. There are three
major forms of tracking:
• Logging captures runtime data and control flow information that is typically archived and often

centres on one service at a time.
• Monitoring provides runtime information that is dealt with at run time and that captures the state

of the system as a whole.
• Auditing records purely business-related information throughout the system.
The best pattern for implementing these tracking mechanisms is to have a single service where all
information is gathered. At the life cycle points of any entity to be tracked, a message is sent to the
central information-gathering service. In a more sophisticated, distributed version, local gatherers can
be federated, feeding to the central gatherer, which can provide a centralised archive and user
interface.
TAO provides a highly configurable DEBUG/TRACE mechanism as well as a distributed logging
service named Telecom Logging Service.

4.8 Life Cycle and Persistence
Life cycle refers to the meaning of implementing an entity that may exist beyond the scope of a single
process while persistence considers the fact that an entity may exist but not its implementation.

60

Chapter III Framework Architecture

CORBA Objects can be Transient or Persistent. Often new CORBA programmers are confused by the
distinction made between CORBA objects and their implementation. CORBA objects are represented
by Interoperable Object References (IOR) and are implemented by servant that create code objects
corresponding to these references. For objects that will only be referenced once Transient IOR's are
created. The CORBA specifications assure that each IOR is unique so that after object deletion, this
reference will never be used again. Persistent IOR's on the other hand must survive their
implementation and the state of the objects, if any, are stored in a file or a database.

5 Summary
Basing the architecture of the CoRoBA control framework on proven Design Patterns is a good
strategic choice because the implementation of these patterns will improve the software flexibility,
maintainability and reliability.
The second decision concerns the choice of the communication library. Some framework developers
have opted for low-level socket libraries. While this is a good choice with regard to performance, it is a
bad one concerning portability and maintenance. The need for a higher-level communication library is
clear. CORBA has been selected because of its language and platform independence. Among different
CORBA implementations, we have chosen TAO because it is widely adopted, it implements most of
the CORBA specifications and is free open-source software.

The last section of this chapter considered what the deployment implicates for the architecture. It also
presented the most important CORBA services that are useful for deploying applications.

Now the theoretical foundations have been defined, it is time to present the design and
implementation of the framework and of its constituting components.

61

Chapter IV Design and Implementation

 Chapter IV Design and Implementation Chapter IV Design and Implementation

1 Introduction
The proposed software is a solution package for developing distributed applications and is
composed of:

• A framework of components called CoRoBA.
• A 3D simulation application that interacts seamlessly with the framework components,
• Utility services for distributing and managing the live and run cycle of components.

The framework and the utility services are described in this chapter while the simulator is
presented in Chapter V.

From the definition given in Chapter I, we know that a framework is a generic solution to a family
of problems. CoRoBA can effectively be called a framework because it proposes solutions for
building distributed multi-robots control applications. Because a framework is also an
implementation, CoRoBA offers classes that constitute the building blocks of components. These
classes contain most of the repetitive and error-prone operations that are reused without any
modification in all components.

The implementation extensively uses the property of Object Oriented languages: inheritance,
encapsulation and polymorphism. The structure is furthermore based on classical Design Patterns.
As all components derive from the same parent classes, they all have the same internal structure.
And as the basic structure is systematically reused we are sure that it has been tested many times
in different situations, it is consequently a guarantee of stability and robustness. The
communication mechanisms are for instance managed by the framework. The developer has
however the possibility to use classic synchronous calls or a more advanced Event based
communication scheme.

As components developed with CoRoBA are independent they can easily be reused in different
applications. Similar components are exchangeable; a component can be instantaneously replaced
by an other one having the same Interface.

All these characteristics allow to decrease the learning and the development time and to increase
the software reliability.

2 Framework Architecture

2.1 Design Patterns
A framework is actually an abstract concept that is characterized by the architecture of the
components and the communication patterns. In this section we explain how the selected Design
Patterns presented in Chapter III are implemented in CoRoBA. The next section is devoted to the
component architecture

It is important to keep generic functionality separate from specific functionality so that changes

62

Chapter IV Design and Implementation

made on one part has a limited impact on the other one. For reaching this goal, CoRoBA
implements the Component-based Architecture Pattern and the Hierarchical Control Pattern
(Chapter III, section 2.3).

The execution unit in CoRoBA is a component. Components are independent and have separated
interfaces for the configuration and the actual functionality that they provide (Figure 1). The
interface allowing the remote configuration is called Service. The Client interface on the other way
provides access to component functionality. Each component has a dedicated CORBA interface
that allows to clearly identify it. This approach combined with the interface inheritance makes it
possible to develop generic and specific tools, that is, tools tailored to specific interfaces. This
design choice defines a fairly coarse granularity (Section 1.2 of Chapter III) that clearly separates
functionality and facilitates partitioning of components.
These patterns provide the framework with the modularity required by the requirement R2.

Components form a chain along which information is transferred (Figure 2). Like in classic control
schemes, the data flow is unidirectional. It is an implementation of the Channel Architecture
Pattern (Chapter III, section 2.3). Data can be transferred synchronously if operations of the Client
Interfaces are used or asynchronously as it will be explained in section 4. This Design Pattern
participates in improving the modularity (R2) and the reliability (R1) of a system.

Two other Design Patterns implemented by CoRoBA will be subsequently presented.

63

Figure 2. Chain of Components

Figure 1. Component Based Architecture Pattern structure

Component A IClientA

 IService

Component B IClientB

 IService

Component C IClientC

 IService

Component
Client Interface

Service Interface

Client Module

Management Module

*
Collaboration

Chapter IV Design and Implementation

2.2 Component architecture
The Service interface defines the remote management operations that control the life and run-cycle
of components (Figure 3). Other operations allow to change the running mode (see section 5), to
read and change the period (in the Periodic mode), to get general information like the creation
date, the author, etc. The complete IDL definition of this interface can be found in Appendix B. It
is the base interface all other interfaces are derived from.

The operations defined by the Service interface are implemented by the class RMA_Service_i that
inherits from the abstract Service class generated automatically by the IDL compiler. In CoRoBA all
servant objects are subclasses of the RMA_Service_i class.

The definition of separate interfaces as required by the Hierarchical Control Pattern is the first step
for separating the process logic from the management logic. To complete the separation, the
management data flow is decoupled from the process data flow by using different threads.

RMA_Servide_i also inherits from the ACE class ACE_TaskBase that facilitates the creation of
portable multi threaded applications (Figure 4). The ACE_Task_Base is an ACE utility class that
implements the Active Object pattern [GAMM95]. It contains four virtual methods that are used
to manage the execution cycle of a thread: close, svc, suspend and resume.

The four management operations defined in the Service interface are mapped to the
ACE_Task_Base methods allowing to control the thread remotely. The start activates the thread,
pause, wakeup and stop respectively call the suspend, resume and close methods.
A special component called Component Remote Control (CRC) has been develop to interact with this
Service interface. This is illustrated by Figure 5.

64

Figure 3. Operations defined by the
Service Interface

<<interface>>
Service

get_mode ()
set_mode ()
get_period ()
set_period ()

start ()
stop ()
pause ()

wakeup ()
get_duration ()

trigger ()
get_info ()

Chapter IV Design and Implementation

65

Figure 4. RMA_Service_i inheritance diagram

ACE_Task_Base

svc ()
suspend ()
resum e ()
close ()

Service

start ()
stop ()
pause ()
wakeup ()
trigger ()
...

RMA_Service_i

<<constructor>>
RMA_Service_i ()
RMA_Service_i(orb: CORBA::ORB_ptr)

init ()

process ()
terminate ()

CORBA
 operations

Figure 5. The interaction diagram of the RMA_Service_i class

CRC Service_i

start ()

activate ()

svc ()

pause ()

wakeup ()

suspend ()

resume ()
stop ()

close ()

Chapter IV Design and Implementation

The core functionality of all components relies on two methods: process and terminate. The process
methods is called at regular interval in the loop of the svc method that runs in the separate thread.

The method svc is executed by the thread when the object is activated. The loop calls the method
process which is declared virtual in the Service base class and must be implemented in child
classes. The loop is run conditionally and flags allow pausing or stopping it. These flags are set
and reset by the Service methods already mentioned. The sequence diagram of the svc loop is
represented in the figure 6.

Defining the structure of an algorithm in the base class is advantageous if some of the methods
are declared virtual, the concrete implementation being deferred to subclasses. This mechanism is
actually known as the Template Method Design Pattern that has been presented in the preceding
chapter in the section 2.4. It leads to an inverted control structure because the parent class calls the
operations of a subclass and not the other way around.

The svc loop is therefore implemented in the class RMA_Service_i and is reused without any
modification by derived classes. The two methods performing the concrete work (process and
terminate) are virtual and implemented by subclasses. Because those methods are virtual the most
heavily derived version will be invoked at run-time. This mechanism allows to implement an
immutable algorithm structure while allowing an easy extension of its subparts.

The run cycle of the CoRoBA components is controlled by a Finite State Machine (Figure 7), which
is a common way to give structure to the execution of computer tasks.
A process can be in a number of possible states, performing a particular function in each of these

66

Figure 6. Sequence diagram of the svc loop

Close Service

Suspend Service

Measure loop duration

Process

Sleep

 No

 No

Terminate
Yes

Sleep Yes

Chapter IV Design and Implementation

states and making a transition to another state caused by an external event or internal state logic.
This object state machine does guarantee that all state functions are executed atomically within the
context of the state machine, state functions are properly serialised with state transitions. The state
transitions are caused by the invocation of the four CoRoBA operations start, pause, wakeup and
stop already mentioned.

3 Component categories

3.1 Definition
There are obviously many different ways for developing applications but it seems appropriate to
define three fixed categories of components in order to provide a default implementation for each
of them. The components composing the CoRoBA framework are split in Sensors, Processors and
Actuators that form a chain along which information is transferred (Figure 8). Like in classic
control schemes, the data flow is unidirectional.

Sensors and Actuators make the link between the Processor components and the physical
elements. Sensors are connected to physical systems and retrieve information that is forwarded to
processing components. For instance, in a robotic control application, Sensor components read
data from navigation and environment perception systems and transfer them to Processors that
use this information to produce navigation commands. These commands are then sent to
Actuators who are connected to physical output devices. Actually in the context of CoRoBA, the
term Actuator regroups all components that produce data going out of the network of
components. Displaying data on a screen is for instance performed by an Actuator.

67

Figure 8. Closed-loop chain of Sensor, Processor and Actuator components

<<Sensor>>

<<Actuator>><<Processor>>

Figure 7. Finite State Machine of the CoRoBA components

Idle

Running

Suspended

Start Pause
Wakeup

set_mode

set_period
trigger

Stop

Stop

Chapter IV Design and Implementation

3.2 Interfaces and implementation
At the second level of the interface hierarchy we find three Interfaces corresponding to the three
types of components defined above (Figure 9). They inherit from the Service interface and
consequently a component implementing a derived interface will automatically implement the
base interface, allowing to invoke management operations on it.

The operations defined in those three interfaces are generic operations that can be used to
implement default synchronous 2-way calls for components.

We distinguish classes inheritance from CORBA interface inheritance. Interface inheritance gives
rise to polymorphism and has the same semantics as for C++; a derived interface can be treated as
if it were a base interface. The main difference is that C++ inheritance means inheriting
implementation while IDL inheritance applies only to interfaces; the implementation of inherited
interfaces is completely unconstrained, that is derived interfaces are not necessarily implemented
by derived classes.

The framework proposes classes implementing common operations required by the three types of
components. For instance the Interface Sensor is implemented by the class RMA_Sensor_i (Figure
10). This class inherits from the class Sensor (automatically generated by the IDL compiler) and
from the RMA_Service_i. The class RMA_Sensor_i is associated with the class
RMA_StructuredPushSupplier that is responsible for sending data to Processor components. This
class will be presented in details in section 5.3.4.

68

Figure 9. Sensor, Processor and Actuator interfaces inheritance diagram

<<interface>>
Service

<<interface>>
Sensor

get_value ()

<<interface>>
Processor

get_processor_result ()

<<interface>>
Actuator

set_actuator_value ()

Chapter IV Design and Implementation

3.3 Component development
The first step for developing a new component using synchronous calls is to define the
corresponding interfaces with the required data structures, the operations and the exceptions. This
Interface must be derived from one of the three Interfaces presented above. Each concrete
component must then implement the operation defined in this new interface.
On the other hand, the Event based scheme only requires the definition of data structures used for
representing data embedded in Events. For a component using events, the developer defines the
data structure in IDL; the structure of the events being directly defined in the implementation
code.
We give the example of a Sensor that reads commands from a joystick. The interface definition is
listed below. The data structures MotionCommand and McmdSeq are used for transmitted data in
events. The Motion_Command_Sensor interface inherits from the interface Sensor. The interface
contains two synchronous methods, get_motion_command and get_number_of_axis.

#include "./../CoRoBa_Sensor_Lib/RMA_Sensor.idl"
module RMA {

typedef long MotionCommand;
typedef sequence<MotionCommand> McmdSeq;

interface Motion_Command_Sensor : Sensor {
typedef short NumberOfAxis;
MCmdSeq get_motion_command();
NumberOfAxis get_number_of_axis();

};
};

69

Figure 10. RMA_Sensor_i inheritance diagram

Sensor

get_sensor_value ()

RMA_Service_i

<<constructor>>
RMA_Service_i ()
RMA_Service_i(orb: CORBA::ORB_ptr)

init ()

process_data ()
terminate ()

CORBA
 operations

RMA_Sensor_i

mp_supplier *RMA_StructuredPushSupplier

<<constructors>>
RMA_Sensor_i ()
RMA_Sensor_i (orb: CORBA::ORB_ptr,
*supplier: RMA_StructuredPushSupplier)

Chapter IV Design and Implementation

The following picture represents the class and interface inheritance diagram for the
Motion_Command_Sensor interface
The class RMA_Motion_Command_Sensor_i implements this interface. It must also implements the
virtual methods process and terminate.

The following code presents the implementation of the operations of this class. Exception
handling code has been omitted for simplicity reasons.

// Constructor
RMA_Motion_Command_Sensor_i::RMA_Motion_Command_Sensor_i (...)
{
 // Initialize variables and acquires the Joystick
 }

// Destructor
RMA_Motion_Command_Sensor_i::~RMA_Motion_Command_Sensor_i (void)
{

// Unacquire the joystick
}

::RMA::MCmdSeq * RMA_Motion_Command_Sensor_i::get_motion_command ()
 ACE_THROW_SPEC ((CORBA::SystemException))
{
 // Read joystick data and put it in the variable js

g_pJoystick->GetDeviceState(sizeof(DIJOYSTATE2), &js)))

// Copy the data into a MCmdSeq variable
m_MCseq.length(3);
m_MCseq[0] = js.lX;
m_MCseq[1] = js.lY;
m_MCseq[2] = js.lRx;

return m_MCseq;
}

RMA::Motion_Command_Sensor::NumberOfAxis
RMA_Motion_Command_Sensor_i::get_number_of_axis ()
 ACE_THROW_SPEC ((CORBA::SystemException))

70

Figure 11. Interface and Class inheritance for the Sensor RMA_MotionCommand

<<Interface>>
Service RMA_Service_i

<<interface>>
Sensor RMA_Sensor_i

<<interface>>
MotionCommand

RMA_Motion_Command_Sensor_i

<<implements>>

typedef short NumberOfAxis;
MCmdSeq get_motion_command();
NumberOfAxis get_number_of_axis();

MotionCommand_i()
process()
terminate()
MCmdSeq get_motion_command();
NumberOfAxis get_number_of_axis();

Chapter IV Design and Implementation

{
read NofAxis of the joystick;
return NofAxis;

}

void RMA_Motion_Command_Sensor_i::process(){

// Read joystick data and put it in the variable js
 g_pJoystick->GetDeviceState(sizeof(DIJOYSTATE2), &js)))

//copy the data into a MCmdSeq variable
m_MCseq.length(3);
m_MCseq[0] = js.lX;
m_MCseq[1] = js.lY;
m_MCseq[2] = js.lRx;

// Put the sequence in a CORBA any
any <<= m_MCseq;

// Send the joystick data to the Event Channel
send_event(TYPE_JOYSTICK_SENSOR, "Joystick",++eventId, any);

}

void RMA_Motion_Command_Sensor_i::terminate(){
// Send values corresponding to the neutral position of the Joystick
m_MCseq.length(3);
m_MCseq[0] = 32600;
m_MCseq[1] = 32600;
m_MCseq[2] = 32600;
CORBA::Any any;
any <<= m_MCseq;
send_event(TYPE_JOYSTICK_SENSOR,"Joystick", ++eventId, any);

};

4 Communication models

4.1 Synchronous and Asynchronous communication
The communication between components is based on two different mechanisms: a synchronous
communication mechanism for all management operations and an event based mechanism for
exchanging application data. Event based communication has numerous advantages. It decouples
data producers from data consumers; it is no longer necessary to know who will use the data and
it does not matter how many clients want to receive data produced by a server. Furthermore, it
reverses the data communication scheme. In classical client-server applications, the client has to
constantly poll the server to check if new data is available. In a supplier—consumer mechanism,
data is sent when needed. This is advantageous in control applications, where data is produced by
sensors and forwarded to processors.

For operations that are rarely called and are not periodical, classical synchronous calls are lighter
and simpler to use. That is why this mechanism is used in CoRoBA for management operations.
Synchronous calls are also used internally for utility operations like locating and registering with
CORBA Services, locating other components, creating and connecting to Event Channels, etc.

71

Chapter IV Design and Implementation

The Figure 12 shows where the data exchange happens in the component architecture. The main
thread receives the management events that are used to control the service (Svc) thread. Events are
exchanged between Svc threads of components.

4.2 Remote management of components
As explained in section 2.2, the Service Interface uses synchronous communication and provides
operations for remotely managing components. A special component called Component Remote
Control (CRC) has been developed in order to facilitate the remote management of the live and
run-cycle of the components. The data is transported between the component by the ORB
mechanism as illustrated in Figure 13 and explained in Chapter 3.

72

Figure 13. Service interface uses synchronous communication for management operations

ORB

Synchronous Event based

ORB

Synchronous Event based

ORB

Synchronous Event based
CRC

ORB

Synchronous

Figure 12. Component architecture

<<Component>>
Main

 Thread
Svc

Thread

<<Component>>
Main

 Thread
Svc

Thread

Life cycle events

Applications events
Management events

Chapter IV Design and Implementation

The CRC component invokes operations defined by the Service Interface (see Figure 2). As these
operations are implemented in a parent class that all CoRoBA components are derived from
(RMA_Service_i), all newly created components deriving from this class can automatically be
managed without modifying the application.

4.3 Event based communication

4.3.1 Principle

The basic communication model proposed by CORBA is a synchronous one. However, blocking
calls are not the most appropriate way to communicate in control software and the Data Bus
Design Pattern (Chapter III) provides a better solution. Asynchronous communication in CoRoBA
is based on the Event Service and its extended and improved version, the Notification Service that
implements this pattern. Components exchange data by pushing Events through Event Channels
(Figure 14). These can be seen as pipes connecting suppliers and consumers of Events. Obviously
several producers and consumers can share an Event Channel and several Event Channels can be
used in an application in order to rationalise the communication efficiency. Asynchronous
communication is one aspect of the requirement R6 expressed in the Chapter II.

The event based communication mechanism is used a little bit differently by the different
component types. Sensors produce Events by retrieving data from physical systems they are
linked to and injecting it into the network (Figure 15). For instance, in a mobile robotic application
Sensor components read data from navigation and environment perception systems.

73

Figure 14. Event based communication between components

ORB

Synchronous Event based

ORB

Synchronous Event based
Notification

Service

Event Channel

ORB

Synchronous Event based

Chapter IV Design and Implementation

An Actuator component is an Event consumer. It receives Events from one Processor component
and adapts the data to the physical device it is connected to (Figure 16). It is important to mention
that they only receive Events having the properties they have specified during a registration
phase.

Processors are at the same time consumers and suppliers of events. They perform computations by
exploiting data they receive from Sensors or others Processors and produce new data that is sent
as output Events (Figure 17). These components are the ones that actually process the data and
generates new events, instead of merely translating it into another medium.

74

Figure 15. Sensor communication structure

Sensor

Management ProcessCRC Event
Channel

External coms

Figure 16. Actuator communication structure

Actuator

Management ProcessCRC Event
Channel

External Coms

Figure 17. Processor communication structure

Processor

Management ProcessCRC

Event
Channel

Event
Channel

Chapter IV Design and Implementation

4.3.2 Structure of Events

Events have a standard structure that can basically be divided in identification and application
fields. Each field contains an identifier and the corresponding value. The identification part is
called Header and is itself divided in Fixed Header, which is present in all CORBA Events, and
Variable Header, which is specific to the application. The data is composed of Filterable Data and
the Remainder of Body (non filterable data) (Table 1).

Table 1: Event Structure
Fields

Header Fixed Header Domain

Type

Name

Variable Header

Data Filterable data

Remainder of body

In order to be able to distinguish two events of the same type generated at different time, a time
stamp stored in the Variable Header field is used. Managing a global clock in a distributed
application is not trivial and it is generally easier to associate each event with an identifier that is
incremented for each new emitted event. On the other hand, the NotificationService guarantees
that each Event is only sent once to each Consumer.

4.3.3 Definition of Events

While the contains of events is directly defined in applications, user data structures must be
defined in IDL in order to be correctly encoded and decoded by CORBA libraries. Several
formats, some specific to CORBA, are available for defining data structures (structure, arrays,
sequence, ...).
Defining event fields (domain, type, ...) directly in applications is not a limitation because in order
to write the functional code of components, a developer has obviously to know which data is
needed to perform the work.

In CoRoBA, the Domain field is used to group components logically (for example all components
involved in the control of a single robot) while the Type defines the type of Event, that is what
kind of information it contains (MotionCommand, LaserData,...). The Name field contains the name
of the component. It is possible to identify the origin of an event with the Domain and the Name
fields. For instance, this is necessary if we have two identical sensors in the network or in the case
where different processors would produce the same kind of events but with different algorithms
or also for comparing results of redundant components.

4.3.4 Transmission of Events

Event Channels
An Event Channel is an abstract concept that is actually implemented by the NotificationService.
Each supplier or consumer connects to an Event Channel and receives a reference to a proxy that
serves as the communication endpoint for the Event Channel (Figure 18). Each event received by
the Event Channel is forwarded to all Consumers that want to receive this type of Event. This is
not a real broadcasting because it is based on a TCP/IP connection and consequently the server has

75

Chapter IV Design and Implementation

to successively send the same data to all Consumers connected to the Event Channel.

Creation and management of Event Channels
In order to create an Event Channel, an object has to contact the NotificationService via the
NotificationFactory object. This object proposes operations for creating and managing Event
Channels. All available operations on Event Channels are presented in appendix C.

Emission of events
Events Suppliers (Sensors and Processors) send events to Event Channels. Each Sensor is
associated with a supplier object of type RMA_StructuredPushSupplier Object that is responsible for
sending data to the Event Channel. The Figure 19 shows the inheritance diagram of this class.

76

Figure 18. Structure of a CORBA Event Channel

Event Channel

Proxy
Consumer

Proxy
Supplier

SupplierAdmin ConsumerAdmin

Supplier ConsumerFilter

Figure 19. RMA_StructuredPushSupplier class inheritance diagram

POA_CosNotifyComm::
StructuredPushSupplier

subscription_change ()
disconnect_structured_push_supplier ()

PortableServer::
RefCountServantBase

_add_ref ()
_remove_ref ()

RMA_StructuredPushSupplier

proxy_consumer
proxy_consumer_id

Connect ()
disconnect ()
send_event ()

Chapter IV Design and Implementation

The method send_event is responsible for pushing events to the Event Channel. It is a method that
is called by the method process in the svc loop (see Figure 6). This method is called when the trigger
operation is invoked (TRIGGER mode – see section 6) or at each iteration of the loop of the svc
method that runs in a separate thread (PERIODIC mode). This case is illustrated by the Figure 20.
The event is then forwarded to the Event Channel via the Proxy Consumer
(StructureProxyPushConsumer_var).

Event registration
Each Event Channel is associated with two Administration interfaces (One for the consumers and
one for the suppliers) that contain operations allowing to configure it. Consumers can select which
events they want to receive by registering with the Administration Interface of the Event Channel
and specifying the data that Header fields (Domain, Type) must contain. This is an improvement
in comparison with the original CORBA Event Service where all incoming events were forwarded
to all connected consumers. In CoRoBA Processors and Actuators contain a consumer object.
Sensors have only a supplier object while Processors have both because they receive events from
Sensors and send Event to Actuators.

Reception of Events
Events are transferred by the transport mechanism of CORBA to the component where they are
identified (events of different types can be received) and stored in member variables of the correct
type for further processing. This transfer happens between different thread and is thus protected
by mutexes. It is further explained below in the case of Actuators.

An event is sent by the proxy_supplier of the Event Channel to the consumer object in the
Actuator component. From there, it is transferred to the RMA_Actuator_i object that stores the
event in its notification member (Figure 21). The data is actually extracted from this variable and
sent to the physical actuator by the method process. As these actions happen in different threads
(events are received in the ORB thread and pass to the svc thread) synchronization mechanisms
are required.

77

Figure 20. Object interaction diagram for the event emission

Event Channel

Sensor

Sensor: RMA_Sensor_i

supplier:
 RMA_StructuredPushSupplier

proxy_consumer_:
StructurePrxyPushConsumer_var

push_structured_event (event)send_event (event)

svc ()

Chapter IV Design and Implementation

Threads are associated with a stereotype of objects, called "active" objects. Generally an active
object is created for each thread. The "passive" objects are then added to the "active" objects via the
composition relation. The role of the "active" object is to run when appropriate and call or delegate
actions to the passive objects that it owns. The passive objects execute in the thread of their active
owner. Threads are usually not independent and must therefore coordinate, synchronise and
share information. Concurrency patterns like the Message Queuing Pattern presented in Chapter
III, provide solution to avoid corruption and erroneous computation when information is shared
[DOUG03].

In the current implementation, we consider that Events produced by components are disposable
in the sense that we may lose some of them without jeopardising the system stability. Only the
most recent event of each type is actually stored and is overwritten by a new incoming one.
Consequently, queues are 1 data length buffers for each type of events received by a component. It
could be possible to extend the length of the buffers if several consecutive events are required by
the algorithms implemented by the components.

Transfer of Events
A processor component combines the characteristics of an actuator and of a sensor. It receives data
as events via the consumer object, transfers it to the RMA_Processor_i instance via the
transfer_event method where it is stored in the notification member variable. The data is exploited
in the process method and the result is passed to the supplier object that sends the new event to the
proxy_consumer object of the output Event Channel. This process is illustrated by Figure 22.

78

Figure 21. Object interaction diagram for the event reception process

Event Channel

 Actuator

actuator: RMA_Actuator_i

consumer:
 RMA_StructuredPushConsumer

proxy_supplier_:
StructurePrxyPushSupplier_var

push_structured_event (event)
 transfer_event (event)

Svc ()

Chapter IV Design and Implementation

5 Running modes
Three different running modes have been defined for the transmission of events: PERIODIC,
SYNCHRO and TRIGGER.

• PERIODIC means that components produce events at regular time intervals.
• In SYNCHRO mode, new output events are produced by the component when an event is

received.
• In TRIGGER mode, an external component must invoke the trigger method that will itself

call the processing method that produces output events.
These different modes have been defined and implemented in order to be as exhaustive as
possible. Each mode is actually useful in a different context.

The table below summaries what it happens for each component type in the different modes.

79

Figure 22. Object interaction diagram for the event processing

Processor

Event Channel

Event Channel

processor: RMA_Processor_i

consumer:
 RMA_StructuredPushConsumer

proxy_supplier_:
StructurePrxyPushSupplier_var

push_structured_event (event)

transfer_event (event)

svc ()

supplier:
 RMA_StructuredPushSupplier

proxy_consumer_:
StructurePrxyPushConsumer_var

push_structured_event (event)

send_event(event)

Chapter IV Design and Implementation

Table 2: Actions performed in the 3 mode
Sensor Processor Actuator

SYNCHRO Push an event each time
new sensor values are
available

Process data and push
events each time a new
event is received

Sends data to an
external system each
time a new event is
received

PERIODIC Reads the sensor values
and push events at
periodic intervals

Process data and pushes
event at periodic intervals

Sends data periodically
to an external system

TRIGGER Reads sensor values and
push events when
externally triggered

Process data and push
events when externally
triggered

Sends data to an
external system when
externally triggered

5.1 Sensors
Sensors are generally proactive components that needs to read data from external devices.
Periodic and Trigger mode are the two modes that are generally used by such components.

5.2 Processors
Processors can be used in all of the three modes. In the Synchro mode, processors produce new
data when an input event is received. When a component receives data from different sources, a
synchronisation problem can occur. As events arrive asynchronously, different reactions are
possible:

• New data is produced each time an event is received.
• New data is produced when all data have been updated.
• A local or a global clock is used to trigger event production.

These different situations are illustrated by Figure 23 where 3 different types of events (A, B and
C) are received by a Processor. Output events are represented for the three possible
aforementioned reactions (denoted Each, All and Clock). In the first case, an event is produced
each time the component receives a new event, no matter its type. In the second case, an output
event is sent once a new event of each type has been received. In the third case outputs events are
sent at regular intervals.
Output events are labelled according to the number of input events they correspond. Ex: the
output event A1B1C1 has been produced with the data coming from input events A1, B1 and C1.
We see that output events are constituted by different combinations of input events in function of
the chosen reaction.

80

Chapter IV Design and Implementation

Rem. In the Figure 23 not all output events have been labelled.

The first solution could lead to a large amount of data if the period of received events is short or
many different events are received. The advantage is that all incoming events are processed. This
works well if the processing period is shorter than the mean period of events arrival.

The second case works well when all events have similar production periods. If events of one type
are not periodic, some events of another type could be ignored because we wait that new
occurrences of all events have been received before processing them and transmitting an output
event. This situation is due to the fact that the data processing is combined with the event
transmission. In order to avoid this situation, the data processing should be decoupled from the
event transmission. This is not the case in the current implementation.
The choice between the two reactions is left to the programmer. They correspond to the
SYNCHRO mode. A processor receiving many events (of the same of different type) could be
overwhelmed with the quantity of data. One solution is to decrease the emission frequency of the
incoming events or to select the PERIODIC mode. The period must off course be so that the data
processing can complete within the selected period.

The third case corresponds to the PERIODIC mode in the case of a local clock or to the TRIGGER
mode if we use a global clock.

81

Figure 23: Output events produced as a function of the reaction strategy.

A B C Each All Clock

Output EventsInput Events

A2B2C2

A7B5C5

A4B3C3

A2B2C1

A4B2C3

A7B4C5

A2B1C1

A3B2C2

1

2
1 1

A1B1C1

2
3 2 3

4
3

3

4
4 5

5

5
6

A5B4C4
A5B4C4

7

Chapter IV Design and Implementation

5.3 Actuators
Actuator components can also work in all modes. The reason for selecting the PERIODIC mode
would be to provide the external device with data at regular intervals so it can use it as a security
check, stopping the machine when the communication is broken. If this function is not used, the
SYNCHRO mode generally consumes less resources and is a good choice.

By default all services are in the PERIODIC mode with a period of 50 msec. By calling the set_mode
operation, the service manager component (CRC) can modify the period and the operation mode.
The operation mode can only be changed when the component is in idle state (Figure 7) otherwise
a user defined CORBA exception is thrown. An exception is also thrown if the service manager
component tries to set the period and the mode is not PERIODIC or if an unknown mode is sent to
a component. If the component is not in the TRIGGER mode, invoking the CORBA trigger
operation also results in an exception.

6 Monitoring and logging

6.1 Monitoring
It is possible to check, add or delete components registered with the NameService with some
utility program coming with CORBA implementations, as for instance the application nmg that is
written in Java and comes with JacORB. The CRC application can also be used to check if
components are still alive. This does not however imply that the component is still working
correctly. As a general rule, and in order to improve reliability, each component has to check the
validity of the data it receives.

In case of problem with one component other components are not affected but off course the
application will not work any more. The user can then stop the faulty component with the CRC. If
it is a hardware problem the component on the faulty computer could be restarted on another
machine.

Detecting failures in asynchronous communications is difficult to implement. However, time-outs
can be used to detect communication breakdowns or problems with other components if events
are received at periodical intervals.

6.2 Logging
The logging mechanism in CoRoBA relies on the Telecom Logging Service (TLS) of CORBA. A
central Logging server manages as many logging databases as required to store the information
sent by the components. Each component creates its own logging facility through the
LoggingFactory that is registered with the NameService. The logging facility can be used for
debugging or for off-line processing of data (visualisation, learning, ...).

There exist two types of Log, BasicLog and NotifyLog. BasicLog allows “event unaware” clients to
access a log directly without any knowledge of events. NotifyLog is a consumer and a producer of
events. It supports filtering on incoming, logged an outgoing events (Figure 24).

The Logging Service stores the received information in a standard format defined in the TLS
specifications (Table 3).

82

Chapter IV Design and Implementation

Table 3: Log Record Format
Field Description

id Unique number assigned to the record by the log

time Time stamp indicating the time the event is logged

attr_list User defined name/value pairs

info The event stored in a CORBA any17

All events passing via the Event Channel is recorded. A client can also log information that is not
event based. The client can query the Log to extract recorded data.

Each component is associated with its own log. All events are logged after they have been sent to
the event channel. In order to trace events along the components network, some extra information
are added to the events.
We have seen that each event contains a header and a data section (Table 1). Besides a fixed header
defined by the CORBA specifications, the developer can add arbitrary name-value pairs to the
header.
As this header has a variable length, it can be extended each time the event is processed by a
component. At the end we obtain an event containing all the processing chain information.
This capability is used in order to add extra information to the events when they moved from
component to component. At each step an Id generated by the component is added to the event as
well as a time stamp corresponding to the emission time (Table 4). The use of this mechanism will
be illustrated in Chapter VI.

17 any is a type that can contain any legal IDL type at runtime.

83

Figure 24. Log structure

Event Channel Proxy
Supplier

Proxy
ConsumerSupplier Consumer

Log Filter

Log
LOG

Client <<write>>
<<query>>

Chapter IV Design and Implementation

Table 4: Extended Event Format
Header Fixed Header Domain

Type

Name

Variable Header (1) “Id” Id value

“TimeStamp” timestamp

Variable Header (2) “Id” Id value

“TimeStamp” timestamp

...

Data Filterable data

Remainder of body

Actuators also log information but in a slightly different form. They replace the time stamps by the
time intervals between the emission an reception of events.

A utility program has been developed to retrieve and store in files the logged information.

7 Location of Components

7.1 Interoperable Name Service
The CORBA specification describes the Interoperable Name Service that contains several
procedure for locating CORBA objects. Interoperable Object References (IOR) can be passed on the
command line or read from a file but in order to implement a true and versatile distributed
system, the NameService is the best choice.

The CORBA NameService provides:
• An implementation of the Object Management Group (OMG) Interoperable Name Service

(INS) specification.
• Application programming interfaces (APIs) for mapping object references into an

hierarchical naming structure (referred to as a namespace).
• Commands for displaying bindings and for binding and unbinding naming context

objects and application objects into the namespace.

The Name Service object provides access to a CORBA Name Service which allows CORBA server
applications to advertise object references using logical names. CORBA client applications can
then locate an object by asking the CORBA Name Service to look up the name. When a component
registers with the NameService, its identity and location, which are encoded in the IOR, are
automatically registered in a database that has a graph structure (Figure 25). One component can
consequently easily discover and use services offered by other components. What is important to
note is that the location is not known in advance by other components but discovered at run time.
It is thus possible to transparently move components participating in an application. This is one of
the big advantage of using CORBA, the migration of components is transparent to the other ones.

84

Chapter IV Design and Implementation

7.2 Locating Services
The Figure 26 illustrates a typical utilisation sequence of the NameService. The NameService has
to be started first, then the server and finally the client. The operations required are numbered and
must all complete before a client can invoke an operation on a server.
The server has first to locate (1) the NameService by calling the method
resolve_Initial_Reference(“NameService”). This initial location is done with a bootstrapping method,;
the location of the NameService can be passed on the command line or read from a file or by using
a multicast call or, contacting a web server.
Secondly, the server binds (2) the name of the object with the IOR in the database of the
NameService. After that the server waits for incoming calls.

85

Figure 25. Components registered with the NameService

Figure 26. Using The NameService

2: bind ("ObjectName")

1: resolve_Init ial_reference
("NameService")

5: Operat ion

-ORBInitRef IOR file or
corbaloc

4: resolve ("ObjectName")

3: resolve_Init ial_reference
("NameService") -ORBInitRef IOR file or

corbaloc

Client (3)

NameService (1)

Server (2)

Chapter IV Design and Implementation

After having located the NameService (3), the client has to retrieve (4) the IOR of the CORBA
object he wants to use by using the resolve method with as parameter the object name (that must be
known by the client). Once the client has received the IOR and verified that it corresponds to the
object interface he wants to use (this operation is called “narrowing”), it can invoke operations (5)
on the distant object implemented by the server.

In the CoRoBA Event based communication (Figure 27), The NotificationService has first to
register with the NameService (1). When components are started they locate the NameService (2)
in order to get the reference of the NotificationService and resolve it (3). Once this last operation is
completed, components communicate with the NotificationService and never directly with other
components.

The Telecom Logging Service is located the same way.

8 Objects creation and initialization
The general structure of an application with the creation of a typical Processor component by a
main program is briefly presented. The main function of each component creates a concrete factory
object derived from the abstract RMA_Processor_Factory. This factory creates and returns a pointer
to a concrete implementation object (RMA_Processor_i). This pointer is then passed as argument to
the RMA_Processor_Object constructor. Such a class exists for each component category. Only the
RMA_Processor_Object is presented hereafter.

RMA_Processor_Object is a utility class that is used by all Processor components and whose
purpose is to create the CORBA utility objects (ORB, POA, policies) and to implement utility
functions, namely NameService, NotificationService and LoggingService location and narrowing.
Specialized versions of this class exist for Sensor and Actuator components.
The register_event method is then called for each event the component wants to receive. The
create_consumer method creates the consumer objects. Finally, run simply calls the run method of
the ORB object.
The sequence of operations executed by this main object is described below and illustrated by
Figure 28.

86

Figure 27. NameService and NotificationService location phase

Sensor ActuatorProcessor

NameService NotificationService

2

1

3

Chapter IV Design and Implementation

9 Summary
The proposed model is a fairly coarse-grained partitioning one as defined in section 1.2 of
Chapter III. It is decomposed into a set of subsystems providing well-defined interfaces.
Interaction between the components is obvious thanks to the use of the Interface Definition
Language. The distributed system is partitioned so as to support evolution. There is also a clear
separation of the component functionality thanks to the Sensor-Processor-Actuator decomposition
model.

The principles stated in Chapter III have been respected:
• Interfaces are cohesive, they support a single concept (sensor, processor or actuator).
• The only coupling between interfaces are limited to the exchanged data.
• Exceptions have been defined.
• Polymorphism has been extensively used in interface and class inheritance.

The three abstract implementation interfaces could be fused to form a single interface whose
functionality could be selected at run-time. However, the existence of the three interfaces is not
only justified by semantics reasons but serves to identify components.

We show in this chapter that the implementation of the Design Patterns helps fulfilling the
requirements listed in Chapter II. The use of Design Patterns facilitates the developments and
limits the amount of code programmers have to write when implementing components with this
framework.

87

Figure 28. Object creation and initialization
sequence for the main process

main

main_object:
RMA_Processor_Object

<<create>>

init ()

run ()

register_event ()

create_consumer ()

Chapter V Simulation

 Chapter V Simulation Chapter V Simulation

1 Introduction
Having a simulator offers many advantages. First of all it is tremendously cheaper than real robots
and sensors, particularly when experimenting with multi robots systems. It allows focusing on
intelligence and control and disposing of other, less interesting problems. It makes possible
reducing the development time by trying different scenarios and algorithms before experimenting
them in a real environment. A simulator also increases safety when developing and testing new
control applications. Developing a simulator can be easier or harder than building (or buying)
hardware. For instance, simulating a high fidelity stereo vision system would require a lot of work
and could cost much more money than buying equivalent hardware.

As no free simulator with CORBA interface was available, the only solution has been to
implement a new one. While realistic models have been used to represent mobile objects, the
simulator has not been developed as an engineering software but more as a tool for testing and
validating the proposed CoRoBA framework.

Simulating a physical process can be typically decomposed in three steps: modelling, resolution of
equations and visualization of the results. These steps can be mixed in a global application or
implemented in different programs.

Different approaches are possible for the modelling step. In some implementations the user has to
write equations representing the dynamical behaviour of the simulated system or to draw a 3D
model including physical properties, this model being also used for the visualization of the results.
In the former solution a separate 3D model has to be provided and the visualization is generally
handled by a separate animation application. Commercial software's are generic tools and must
consequently be versatile and provide easy to use interfaces for model creation and results
visualization.
For instance, in the commercial software “Universal Mechanism”18 (UM) the user draws the model
and defines the constraints in a program called “UM Input” while the simulation and the
visualization are provided by the “UM simulation” application. UM must be combined with
Matlab® if the multi-body simulation has to be embedded in a global control scheme.
In the simulation library EasyDyn [VERL05] the user has to provide the position equations and the
applied forces. Accompanying tools automate the creation of the motion equations and generate a
C++ program that the user has to complete with additional control equations. Results are saved in
files that can be read by third party applications (GNUPlot, EasyAnim, ...).
The Open Design Engine (ODE)19 is a library that proposes a mixed approach. The user writes a
program (in C++ or Python) that describes the simulated system by using objects provided by the
library (world, nodes, joints, forces, torques, ...). This library also provides methods for resolving
the implicitly generated equations. The visualization part is the responsibility of the developer
who has to use third party libraries like Opengl.

18 Http://www.umlab.ru
19 Http://www.ode.org

88

Chapter V Simulation

Simulators can be divided in off-line and on-line simulators. Off-line simulators compute motion
of objects at their own pace and produce data that can be visualized as a movie once the
simulation is completed. The aforementioned examples enter in the off-line simulation category.
On-line simulators are interactive; the motion of the objects can be modified in real-time by control
algorithms or by a user via a GUI or a joystick. The motion of the controlled object are visualized
in real-time in 2D or 3D.

The Java based simulator, called MoRoS3D, that has been developed in this work enters in the on-
line category. Control commands and environmental conditions can be changed interactively.
Furthermore, it runs in real time using any available communication systems and replaces the real
hardware in the application control loop in order to test the control components (Processors).

The utilisation philosophy is to develop and tune control algorithms in simulation and to simply
replace simulated by real components once satisfying results have been reached, no further
modification of the Processor components being required. In Figure 1, the concept of integrating
MoRoS3D in the CoRoBA framework is shown. Sensor and Actuator components developed with
CoRoBA can be seen as interface components that have to be specific for the simulator or the
hardware they are linked to.

The block named “Intelligent Control” on top of Figure contains Processors. This part does not
care if real or simulated hardware is used. The Processor components are the key-stone of the
control architecture and exhibit the largest potential of reuse between applications involving
different robots while Sensors and Actuators, that serve as interfaces or translators between the
software and external modules, are specific to these devices. The more abstract a Processor is, the
greater the possibility of reusing it without any modification.

The middle block corresponds to interface components that make the link between the Processors
and the simulated world. Sensor and Actuator components implement the same interfaces as those
implemented by components linked to physical systems, allowing to instantaneously switch
between simulation and reality.

89

Figure 1. Simulator and CoRoBA integration

Interface Components

Intelligent Control
Processor A Processor X

Sensor (s) Actuator(s)

Simulator

Sensor
Simulation

Environment
Model

Robot
Simulator

Robot
Model

Sensor
Model

CoRoBA

Chapter V Simulation

The last block represents the simulator. It is constituted by different elements that are described
hereafter. First of all it contains models of the physical elements. The robot model deals with the
geometric, kinematic and dynamic aspects of the robot. The sensor model encodes information
about the sensors like the radiation model, the minimum and maximum distances, the precision,
etc. The environment model contains the 3D geometrical representation of the environment. The
robot simulator is responsible for the realistic motion of the robot and takes care of the collision
with fixed and moving obstacles like other robots. It receives motion commands from Actuator
components.

The simulated sensors produce measurement data that are injected in the application control loop
by the Sensor components as explained in the section 4.3.4 of Chapter IV. The data is forwarded
to Processor components where they are exploited to finally produce motion commands that are
sent to the Actuator Components. These Actuator Components adapt and send this information to
the robot objects. The sensors affect the vehicles motion through Intelligent Control and vehicles
motion affect sensors through the Simulator taking into account the model of the environment.

After this introduction, the next section presents the simulator in detail. Section 3 describes
applications that have been developed with this simulator.

2. Simulator Overview

2.1 Functionality
For the user, the visible output of the simulator is a synthetic image. Actually, it is not only an
image but it is also a model that is built with algorithms based on physical laws and using well
defined data structures.

The simulator provides the following functionalities:
• Real-time simulation of multiple robots concurrently
• 3D real-time visualization of the simulation
• User interaction through a GUI
• Dynamic control of mobile robots
• Detection of and appropriate reaction to collisions between mobile and fixed objects
• Simulation of position and distance sensors
• Integration with the CoRoBA framework

The simulation process is divided in two main steps: the modelling of 3D scenes and robots by a
human and the utilisation of the modelled objects in the simulator. These two steps are explained
in the following sections and illustrated by the diagram of Figure 2.

90

Chapter V Simulation

2.2 Scene modelling
Starting from a real or an hypothetical robot, the creator uses a 3D drawing program to generate a
virtual model. Other information like colours, material and texture can be applied to the objects to
improve the realism. Real or imaginary environments (terrain and obstacles) are created
separately from the robots.

There exist different models for representing 3D objects: wireframe, surfaces or solids. In our case
a surface representation is created with a surface modeller application, Wings3D20. The model is
formed by geometrical primitives that can be transformed to obtain the desired shape. It is
possible to manipulate the whole primitives, the surfaces, the edges and the points constituting the

20 Http://www.wings3d.com

91

Figure 2. Simulation process

Modelling

Geometrical
data of objects

Geometrical
 Modelling

3D Model
 files

3D Modeller

Colour, material,
texture

Simulation

Control

Motion control
Collision detection
Sensors response

Robot Motion
Commands

Sensors
data

Timers

3D Scene

Rendering
CameraLights

Projection
Model

Lighting
Model

Display

CoRoBA
Interfaces GUI

Chapter V Simulation

model. Besides classical transformation operations like rotation, translation, scaling,... more
advanced operations are available like extrude, bevel, twist, torque, etc.

Wings3D uses its own format for internal and external representation but models can also be
exported in other popular formats. The exported model is encoded in VRML (Virtual Reality
Modelling Language). VRML is a language that has been developed for describing 3D virtual
environments for Web based applications. The 3D objects are organised as a tree and are described
with low level VRML nodes. In Table 1 a VRML example of a scene representation is given. Each
object is represented by a named Transform node that has a single child. This child is defined by its
Shape containing appearance and geometry information. The appearance defines the used
material, the colour, transparency and shininess properties of the object. The geometry is
represented by an IndexedFaceSet node that contains coordinates of vertices. Faces are defined by
references to these coordinates in a coordIndex node. The same way, colours can be defined for
each vertex.

2.3 Simulation process
The VRML file is read by the application and transformed by the Java3D [WALS02] import library
into a Java3D scene graph and inserted in the global 3D scene.

The process flow (control-rendering-display) represented in Figure 2 continuously runs until the
application finishes. It is briefly described here; an extended presentation is given in section 9. The
control process updates the Scene (section 4), controls the motion of the robots (section 5),
performs the collision detection and response (section 6) and finally computes the output of
position and distance sensors (section 7). The Control also receives motion commands for the
robots and sends sensors' data via the CoRoBA interfaces (section 8). It can also control the camera
motion in automatic tracking mode. The GUI (section 3) lets the user chose the camera mode and
position and gives the possibility to position the robot in the virtual world.

The execution of the control process is triggered by timer events. As each robot and sensor is
represented by separate objects, the events are propagated to all of them. This means that all
motion and measurements are synchronized.

Once all transformations of the 3D scene have been performed, the scene is rendered by the
Java3D rendering engine. This engine uses different information in order to produce an image that
can be displayed on the screen:

• The lights present in the scene (ambient, directional, ...).
• The lightning model. Here a Gouraud shading is used for calculating the illumination of

the scene.
• The point of view given by the camera position and other viewing information (field of

view, near and far clipping distances, ...).
• The projection model, which is a perspective projection in our case.

The rendering engine of Java3D can use the DirectX or OpenGL libraries.

92

Chapter V Simulation

Table 1: VRML scene representation
DEF cylinder1 Transform {
 children [
 Shape {
 appearance Appearance {
 material DEF default Material {
 diffuseColor 1.0 1.0 1.0
 emissiveColor 0.0 0.0 0.0
 specularColor 1.0 1.0 1.0
 ambientIntensity 1.0
 transparency 0.0
 shininess 1.0
 }
 }
 geometry IndexedFaceSet {
 colorPerVertex TRUE
 coord Coordinate { point [
 0.340617 0.403290 5.25329e-2,
 ...
 0.294284 0.403290 -4.53464e-2]
 }
 coordIndex [
 0, 3, 2, 1, -1,
 ...
 1, 5, 4, 0, -1
]
 color Color { color [
 1.00000 1.00000 1.00000]
 }
 colorIndex [
 0, 0, 0, 0, -1,
 ...
 0, 0, 0, 0, -1
]
 }
 }
]
}

3 Graphical User Interface
MoRoS3D allows to place a robot in a 3D environment and to let it interact with that environment
in a manner similar to robots situated in the real world. Although the user visualizes the entire
surroundings of the robot, the robot software only ”sees” the information it collects through its
sensors, just like a real robot would do.

As can be seen in Figure 3, the main part of the Graphical User Interface (GUI) is off course
devoted to the 3D view. On the right of the GUI lie several widgets for managing cameras, robots'
position and trajectory plots. The user can choose several viewpoints corresponding to virtual
cameras in the 3D scene. There are also two mobile cameras, one on board (button BOARD) and
one at the vertical of the robot that points downward (button TRACK). With the NEXT button the
user jumps from robot to robot when in tracking or on-board mode.

93

Chapter V Simulation

The user can also specify the robots' location and reset one or all robots in a single operation.
There is also a button to erase the trajectory plots left behind moving robots. Under the 3D view,
name, position and orientation of the selected robot are displayed.

4 Scene Graph
Many free and open-source toolkits are available for building 3D applications21. However, most of
them focus on visual aspects and few offer high level facilities for managing scenes. This is one
reason justifying the use of Java3D for the development of the simulator. The following subsection
describes the fundamentals of the Java3D scene model. The simulator scene graph and class
structure are presented in section 4.2. Section 4.3 presents the Behaviour mechanism of Java3D and
how it is used for synchronising robot motion and sensor detection. The last section deals with
collision detection and explains why the built-in Java3D collision detection mechanism is not
appropriate for realistic motion simulation.

4.1 Java3D scene model
Java3D is a full-featured API for interactive 3D graphics which manages the display of the scene
described basically by a high-level scene graph programming model. Scene graphs are treelike
data structures used to store, organize and render 3D scene information [WALS02]. They are made
up of objects called nodes, which represent objects to be displayed, aspects of the virtual world or
group of nodes.

SimpleUniverse

Java3D provides a utility class called SimpleUniverse (blue components in Figure 4) that manages
the VirtualUniverse and Locale objects holding the virtual world. The ViewPlatform (VP) is where
the viewer is located in the world, it represents the viewpoint. Changing the transformation
matrix (see below) for the ViewPlatform moves the viewpoint. The View object tells how to turn
what the viewer sees into a 2D picture. The Canvas3D tells where to draw the 2D picture on the

21 More than 230 engines are recorded in the database of the site http://www.devmaster.net

94

Figure 3. GUI of the simulator

Chapter V Simulation

computer screen.
The content branch (yellow components in Figure 4) containing the nodes of virtual world is
attached to the Locale.

Nodes and NodeComponents

Nodes and NodeComponents are the basic elements of the scene graphs. Nodes can be divided
into the following basic categories:

• Shape nodes, which represent 3D objects in the world.
• Environment nodes, which represent characteristics of the world such as light, fog,

sounds, etc.
• Group nodes, which organise the scene graph.
• The ViewPlatform, which is a place where a viewer can look at the world.

Group is the base class for a number of classes that position, orient and control scene graph objects
in the virtual universe. The two subclasses used in MoRoS3D are BranchGroup and
TransformGroup. BranchGroup holds sub-graphs that can be added and removed while the scene is
being displayed. TransformGroup changes the transformation of its children, giving them a
different position, orientation and size.

By default, each object in a Java3D scene is initially stationary and remains at its starting location
unless code specifies otherwise. A TransformGroup is associated with a Transform3D structure that

95

Figure 4. Typical scene graph diagram

TGroup

Shape3D

BGroup

VirtualUniverse

Locale

BGroup

TGroup

VP

BGroup

View Canvas3D

Viewer

Viewing Platform

Platform
Geometry

Behavior

Geometry Appearance

SimpleUniverse

Chapter V Simulation

corresponds to a 4x4 transformation matrix. A single Transform3D object can represent a
translation, a rotation, a scaling or a combination of the three. A transformation turns the X,Y and
Z coordinates of a point into a new set of coordinates:
This relations can be expressed with 4x4 matrices, where [x y z 1]t are the original and [x' y' z' 1]t

the transformed coordinates:

There are many methods to create and modify Transform3D objects. These include methods to
make a Transform3D have a translation, scale or rotation. When a TransformGroup is the child of
another TransformGroup, the effects of their Transform3D objects are multiplied so that all the
children of the child TransformGroup are affected by both sets of transforms.

NodeComponents are nodes that hold properties or data. Shape nodes are NodeComponents that
consist of two properties: the geometry, which specifies the 3D coordinates and the appearance,
which specifies the colour and other properties of the shape.

Java 3D offers several ways for defining how an object looks like: geometry nodes can be created
in the program or by loading files. The most basic way is to work with geometrical shapes, add
them together and reshape them to create a complex object. Another one is to import a modelled
object from an external file. VRML is one of the format supported by Java 3D. As explained in the
overview section, objects are manually drawn with an external program and exported in VRML
format. While the full VRML specifications are not supported by the Java3D loader, it is rich
enough for building realistic 3D objects and scenes. Colours, textures, transparency effects,
sounds... can be used to improve visual appearance of the rendered objects. Besides geometry
features the Java3D API supports behaviours that allow programming logic (animations, reaction
to events, ...) to be embedded into a scene graph.

4.2 Class hierarchy and Scene graph of MoRoS3D
The scene organization and some essential high level classes are presented in Figure 5. Objects
constituting the 3D tree structures are split in different classes that do not necessarily derive from
Java3D classes. The scene graph structure (light links) is independent of the class organization
(bold links).

At the top level we find an instance (frame) of the MoRos3D class that represents the main object
of the application. This object of type Jframe includes two instances of classes derived from Jpanel,
namely InfoPanel and View3DPanel. InfoPanel is used to display text information at the bottom of
the windows while View3DPanel is the main display panel where the 3D scene and the camera
control widgets are drawn. The View3DPanel class contains instances of other classes. It also reads
and decodes the command line to extract command parameters.

96

[x '
y '
z '
1]=[m00 m01 m02 m03

m10 m11 m12 m13
m20 m21 m22 m23
0 0 0 1][x

y
z
1]

Chapter V Simulation

97

Figure 5. Classes hierarchy and 3D scene graph

frame
MoRoS3D
(JFrame)

infoPanel
InfoPanel
(JPanel)

viewPanel
View3DPanel

(JPanel)

simpleU
SimpleUniverse

canvas3D
Canvas3D ViewPlatformworldBGroup

terrainTransformGroup
TransformGroup

MouseZoom
MouseRotate

MouseTranslate

LigthsBGroup

ambLight

dirLight

sceneBGroup

terrainBGroup
VRMLTerrainFileBGroup

(TerrainBGroup)

timerBehaviourSim,
timerBehaviorSensor

TimerBehaviour
(Behavior)

robots[]
MoRoS3D*

(MoRoS3DRobot)

moveBehaviour
RobotMoveBehaviour

(Behaviour)

robotBGroup
VRMLRobotFileBGroup

(RobotBGroup)

robotTransform
TransformGroup

obstaclesBGroup
VRMLO bstacle sFileBGroup

(ObstaclesBGroup)

obstacleTransform
TransformGroup

cameraTrackBehavior
CameraTrackBehaviour

(Behavior)

fog

backGround

trajectGroup
goalGroup

robotsBGroup

vrmlSscene
VRMLScene

vrmlSscene
VRMLScene

vrmlSscene
VRMLScene

markerGroup

Chapter V Simulation

SimpleUniverse is a Java3D utility class that manages low level functionality as for instance 3D to
2D mapping. The SimpleUniverse renders the image in a 3DCanvas, which is a drawing widget
added to the View3DPanel. The ViewPlatform is a member of the SimpleUniverse used to transform
the viewpoint with the mouse via predefined behaviours (MouseZoom, MouseRotate,
MouseTranslate).

The worldBGroup (BranchGroup) contains environmental node such as lights, fog and background
and the sceneBgroup (BranchGroup).

The objects of the 3D world have been divided in three groups: the terrain, the obstacles and the
robots. This separation provides flexibility in the composition of the scene. The sceneBGroup
therefore contains the terrainBGroup, the obstacleBGroup and the robotBGroup. It also contains three
BranchGroup's used for marking the trajectory followed by the robot, the trajectory that it should
follow and the goal he has to reach.

The MoRoS3D* (on the right of Figure 5) correspond to concrete container classes for the different
robots and inherit from the MoRoS3DRobot class. This class contains objects that specify the
geometry of the robot (RobotBGroup), the robot motion laws (RobotMoveBehavior class) and the
sensors associated with the robot (CircSensorBGroup). The RobotBGroup instance is initialized in
derived classes (for instance MoRoS3DRobudem) with a derived class constructor, namely
VRMLRobotFileBGroup (Figure 6).

The RobotMoveBehavior instance is initialized with a NomadMoveBehavior or a RobudemMoveBehavior
with respect to the instantiated MoRoS3D* class. The sensors are defined in these derived classes.

The TerrainBGroup is a generic class for creating terrains that inherits from the Java3D
BranchGroup class. The VRMLTerrainFileBGroup class derives from TerrainBGroup and imports 3D
terrain objects from VRML files22. The Java3D API allows to import objects from other file formats
but the VRML importer seems to be the most robust. It could also be possible to create 3D terrains
from geometry entities (polyhedra, fractals, ...) or elevation grids.

22 While all objects are 3D, the ground is actually flat in the current implementation.

98

Figure 6. Main classes inheritance diagram

CircSensorBGroupMoRoS3DRobot

robotBGroup
moveBehavior
laser

MoRoS3DRobudem

RobotBGroup

RobotMoveBehavior

VRMLRobotFileBGroup

RobudemMoveBehavior

CircSensorBehavior

Chapter V Simulation

Similarly the VRMLObstaclesFileBGroup inherits basic functionality from the base class
ObstaclesBGroup and VRMLRobotFileBGroup from the RobotBGroup class. The same comments as for
the VRMLTerrainFileBGroup applies for these two classes.

4.3 Behaviours and events
The physics engine in Moros3D has been implemented using what is called a behaviour. A
behaviour is a piece of code that can manipulate the transform at the top of a group of objects.
Behaviours are nodes that make changes to the scene graph in response to events, such as user
input or the passing of time. A behaviour indicates interest in a set of events, called the
behaviour's WakeUp criterion. When an event occurs that matches the criterion, Java3D calls a
method on the behaviour to process the event, making changes to the scene graph or performing
any required task. Besides predefined behaviours, Java3D allows the programmer to set up its
own custom behaviours. One of the advantages of using behaviours is that the performed
operations are synchronized with the rendering engine, ensuring that all the computations are
done before a new frame is displayed. Nothing new will be rendered before the handling methods
of the behaviours have finished.

Custom behaviours inherit from the class Behavior and specify its action by implementing the
methods initialize and processStimulus. The method initialize is called when the behaviour is first
made live while the method processStimulus is called when there is an event for the behaviour to
process. The wakeupOn (WakeupCondition criterion) method is called by both methods to indicate
which events should wake up the behaviour.

In MoRoS3D, a hierarchical structure has been defined in order to synchronize the behaviours
(represented by dash lines in Figure 5). At the top level we have instances of the custom
TimerBehavior class that generates time events, typically every 50 msec but different periods can
be used for the motion simulation and the sensors. These time events are received by behaviours
embedded in each robot, sensor and tracking cameras (Figure 7).

The robot motion control and the movement of the tracking cameras have to be synchronized

99

Figure 7. Time events propagation

Timer TimerSensor::
Behavior

SensorA::
Behavior

SensorB::
Behavior

TimerSim::
Behavior

RobotA::
Behavior

RobotB::
Behavior

TrackCamera::
TrackBehavior

Chapter V Simulation

otherwise it generates discontinuities in the visualization process (the camera springs). Each
sensor can be controlled by a different timer in order to reproduce the measurement rate of real
sensors. For example a US sensors produce data every 50ms or a laser line sensor every 200 ms,
etc. At the reception of the time event, the processStimulus method of each of them is called and the
appropriate actions executed: computation of the robot's motion and detection of collision,
measurement of distances for sensors, modification of the position and orientation of the camera.
If the same value is used for all timers, all modifications to the 3D scene happen at the same time.

5 Robot models
In order to model robot motion with a scene graph, the shapes must be placed under a transform
group with the transformation being modified at each frame. This needs to be coded by the
programmer because the behaviours built into VRML/Java3D are not appropriate as they require
start and end points which are generally not known in advance.

5.1 Nomad

Geometry

The geometry of robots is determined by their shape and dimensions. The 3D models have been
drawn with a 3D modelling application (Wings3D) and exported in the VRML format. The Nomad
(Figure 8) has a simple geometry and only visible parts have been modelled.

Reference frames

The coordinates systems are represented in Figure 9 with:
• the World coordinate system on the left
• the Object coordinate system on the right

100

Figure 8. 3D model of the Nomad

Chapter V Simulation

The transformation between the two coordinate systems is given by:

Kinematics

The Nomad is actuated by a synchronous mechanism, each wheel is capable of being driven and
steered. The three steered wheels are arranged as vertices of an equilateral triangle and all the
wheels turn and drive in unison. The translation speed is v(t) and the steering speed is w(t) (Fig.
10) Actually the real Nomad has a third degree of freedom, the turret can turn independently of
the base but this mechanism has not been implemented in the model.

The Euler algorithm [JAME85] is used as integration method to obtain the position from the
velocity. The standard Euler integration method requires a single forcing function evaluation, and
produces a first order accurate solution. That algorithm assumes that you have a value of a
variable, x(t), a state equation that allows you to compute dx/dt, and that you want to compute x(t
+ Δt). The algorithm for a single variable is simple:

x t t =x t  t dx
dt

where dx/dt is the speed of the robot that is obtained from the dynamical equation. This is actually
the continuous form of the algorithm. When implemented in a computer, the discrete version has
to be used as explained below.

The algorithm is applied repetitively to compute a solution for the state at equally spaced intervals
of time. The Euler method is known for accumulating errors at each integration steps. We neglect
these errors here as we are more interested by global behaviours and environment interaction than
by exact trajectories.

101

Figure 9. World and robot reference frames

[x
y
z]=[1 0 0

0 0 1
0 −1 0][x '

y '
z ']

Z'
Y'

X'

Z

Y

X

Chapter V Simulation

The state vector is defined as:

The motion of the robot in the global frame is described by the following differential equations:

(1)

that we replace by the finite difference approximation:

(2)

and the discrete formulation can be written as:

(3)

The Java3D API proposes classes to represent homogeneous transformations and to perform
classical matrix operations. At each position of the robot we can associate a reference system that
can be represented by a 4x4 transformation matrix:

102

[xk1

yk1

k1
]=[xk

y k

k
][vk cos k

vk sin k

w k
]⋅h

Figure 10. Kinematic model of the Nomad

v(t)

w(t)

y

x

θ

[x th− x t 
y th− y t 
th−t ]=[v t cost 

v t sint 
w t ]⋅h

[x t 
y t 
t ]

[ẋ t 
ẏ t 
̇t ]=[v t cost 

v t sin t 
wt ]

Chapter V Simulation

(4)

The next position of the robot results from an elementary translation and rotation that is expressed
by the following matrices:

(5)

(6)

where
(7)

The matrix product trans * rot gives the elementary motion:

(8)

and the transformation matrix is obtained by multiplying this matrix (4) with the matrix (8):

(9)

 and, as
(10)

we finally obtain the following transformation matrix:

103

[cosk −sink 0 vk h
sin k cosk 0 0
0 0 1 0
0 0 0 1

]

[coskk  −sinkk  0 xkvk h cosk

sin kk cos kk  0 ykvk h sink

0 0 1 0
0 0 0 1

]

rot=[cosk −sink 0 0
sink cosk 0 0
0 0 1 0
0 0 0 1

]

k1=kk

k=w k h

trans=[1 0 0 v k h
0 1 0 0
0 0 1 0
0 0 0 1]

cur=[cosk −sink 0 xk

sink cosk 0 yk

0 0 1 0
0 0 0 1

]

Chapter V Simulation

(11)

that contains a rotation matrix characterized by an angle θ giving the orientation and a translation
matrix giving the new position of the reference frame associated with the robot. This expression is
coherent with equation (3).

Dynamics

Determining the real dynamic behaviour of such a robot is not a trivial task. As the speed of the
real robot is controlled by a proportional controller we can represent the system by the model in
Figure 11, with m the mass of the robot and Kpt the proportional gain of the controller. It
corresponds to the closed control loop for the translational speed, where vc

 is the command speed.

The system equation in the Laplace domain is:

(12)

or

(13)

and in the time domain:

(14)

With τt equals to m/Kp

The steering speed and the translation speeds are consequently updated according to the
following finite difference equations:

104

[cosk1 −sink1 0 xkvk hcos k

sin k1 cosk1 0 y kvk h sink

0 0 1 0
0 0 0 1

]

Figure 11. Proportional control loop

Kpt (ms)-1

vc vfe

-

V =V c−V 
K p

ms

v̇=v c−v .1
t

Vs=V c−V 
K p

m

Chapter V Simulation

(15)

Where τs and τt are the estimated time constants of the system and vc and wc are the command
speeds. These constants have been adjusted for the typical dynamic behaviour of the Nomad
taking into account the usual values used for maximum accelerations (These values can be
changed by calling the appropriate function of the Nomad API).

5.2 Robudem

Geometry

The geometry of the Robudem is more complex than the one of the Nomad. The Robudem has
four wheels actuated individually by electrical motors. The two axles are steerable and actuated by
two linear electrical motors via an Ackerman mechanism. The following figures show the real
robot and its 3D model.

Figure 12 a. Picture of the real Robudem Figure 12 b. 3D model of the Robudem

Kinematics

The trajectory control of the real Robudem is based on two parameters: the instant desired speed v
and the instant desired steering lock α. Indeed, at each time, the vehicle trajectory can be expressed
with those two values that are given by the user through a joystick interface or by a control
program. Three modes can be used to control the motion of the real Robudem (Figure 13).
In the simulator only the “single drive” mode has been implemented as it is the most used one on
the real robot. Other modes are more difficult to control and are less efficient because of the larger
friction of the wheels with the ground. In the dual mode, the centre of rotation is different for the
front and rear axles, and in the park mode, the wheels are not parallel.
Supposing a perfect Ackermann steering mechanism for the front axle results in the instantaneous
centre of rotation lying on the axis of the rear axle. In this case we can use a bicycle model for
representing the kinematics of the vehicle (Figure 14): the four wheels are replaced by two wheels
located in the middle of the vehicle.

105

v k1=v kvc−vk h /t

w k 1=w kw c−w k h/s

Chapter V Simulation

Single drive mode: only the
front axle is controlled during
motion and the rear axle is
fixed

Dual drive mode: the
remote software controls the
front and rear axles during
the motion

Park mode: Both axles are
steered in the same direction

Figure 13. Control modes of the Robudem

Let the angular velocity vector along the body z axis be ̇ . Using the bicycle model
approximation, the radius of curvature R and the steer angle α are related by the wheelbase L. By
definition of the curvature:

(16)

106

d 
ds

=1
R
=

tan
L

Figure 14. Kinematic model of the Robudem

 α

α

R

L

X

Z
Y

Chapter V Simulation

The rotation rate is obtained from the speed v as:

(17)

The finite equation deriving from this equation is:

(18)

Once the incremental angle has been obtained, The model of the equation 7 to 11 can be used.

Dynamics

Simulating the dynamic behaviour of Robudem is based on the same model as for the Nomad
(Equation 15). Off course the time constants have been adapted to reflect the dynamics of this
robot. Another particularity of the real controller that has been taken into account is the following:
when the user suddenly puts the joystick in neutral position, the controller immediately stops the
robot while when he pulls it gently, the speed is reduced by applying a linear profile.

6 Collision detection and response

6.1 Problem
The previous section has presented the motion control of robots in open environment, that is
without any obstacles. Off course in any realistic application robots have to cope with static and
dynamic obstacles. In the developed simulator, dynamics obstacles are other mobile robots while
the environment is static. It this then necessary to be able to detect and to react to collisions.
Moving autonomously implies detecting and avoiding obstacles. One of the basic requirement of
the simulator is consequently to provide collision detection to detect when the control algorithm
fails and the robot collides with the environment or with other robots and to provide adapted
response.

Java3D provides classes for detecting collisions between objects. However, this API works
asynchronously and does not offer any guarantee when the detected collision will be reported,
what happens generally after the object has entered into another one. This is not an appropriate
mechanism and therefore a collision detection algorithm exploiting Java3D Behaviours has been
implemented.

6.2 Collision detection
Collision detection is more a geometric problem than a physical one. To make sure that any area of
space cannot be occupied by more than one object, collision detection based on the geometry of
the objects is required [ERIC04].

For any realistic environment and even if simplified shapes are used, the collision detection needs
a lot of mathematical operations. So the big issue with collision detection is the number of tests

107

̇=
d 
ds

ds
dt

=1
R

v=v tan
L

k=vk h
tank

L

Chapter V Simulation

that have to be made and therefore the CPU resources used. For example if we have n objects then
the first object could collide with n-1 objects (since we don't check if an object has collided with
itself), the second object could collide with n-2 additional objects not counting the possible
collisions we have already counted. If we keep going like this the number of possible collisions
between objects is:

n−1n−2n−3...1

That is equal to:

nn−1
2

In reality each object is composed of hundreds of triangles and the collision detection would
required too much time if it had to be performed for any triangle. During the simulation we need
to check for collisions at every frame therefore it is important that collision detection be very
efficient. We therefore need to apply a method to speed up the computation. Hopefully, there exist
different optimization methods for reducing the amount of operations. For instance, bounding
volumes can be used to reject non intersecting objects.

In the scene of Figure 15, objects are surrounded by an Axis Aligned Bounding Box (AABB) . If
any of the boundaries overlap then the shapes may, or may not, overlap and further tests are
required, if the boundaries do not overlap then the shapes have not collided. This allows to
eliminate some of the CPU intensive tests for checking overlap of complex shapes.

It is indeed very easy to test boxes for overlap, provided they are all oriented in the same
direction, we just need to compare their minimum and maximum x,y and z coordinates.

For instance if box 'A' is defined by AxMin, AxMax, AyMin, AyMax, AzMin, and AzMax.
and box 'B' is defined by BxMin, BxMax, ByMin, ByMax, BzMin, and BzMax.
Then the boxes overlap if all the following conditions are true:

However this only applies if the bounding boxes are axis aligned. If the bounding boxes were

108

Figure 15. Bounding boxes

AxMinBxMax∧AxMaxBxMin
AyMinByMax∧AyMaxByMin
AzMinBzMax∧AzMaxBzMin

Chapter V Simulation

defined in the local coordinates and one of the boxes were under a transform group with a
rotation then we would have to either:

• use an algorithm to detect the intersection of arbitrary Oriented Bounding Boxes (OBB), in
absolute coordinates, which would be much more complex.

• or recalculate the AABB at every frame in axis aligned absolute coordinates and doing
things at every frame is a big overhead.

If a single box around the object does not give accurate enough collision detection for the shape
then it is possible to use multiple boxes in a hierarchical way to more accurately match the shape
of an irregular object.

A simpler technique consists in defining a bounding spherical envelop around all objects and to
calculate distances between the centres of the bounding spheres (Figure 16). This method
transforms a complex 3D problem in a simple distance calculation.

It is very easy to detect if bounding spheres overlap, for instance:
• Object A has centre at ax, ay, az and radius ar
• Object B has centre at bx, by, bz and radius br

Then the bounding spheres intersect if:

The advantage of this method is that it is independent of orientation. So this does not have the
problem mentioned for bounding boxes where the axes need to be aligned. The disadvantage with
bounding spheres is that it may not fit a long thin object very well, there will be some false
detection of collisions, but in that case we can use a secondary check to test the boundary more
carefully.

Using bounding volumes reduce the computing cost by eliminating objects that do not collide but
it may not be good enough to rely on the bounding box or sphere alone especially if the objects are
complex shapes. However they can at least filter out those objects that do not overlap. Another
reason that we cant rely on bounding rectangle or sphere alone is that in order to go on to the next
stage of working out the collision response we also need to know the points of impact.

If we want to test for collision of meshes, made up from triangles, and we want to check for

109

ax−bx 2ay−by 2az−bz 2arbr 2

Figure 16. Bounding spheres

A

B
brar

Chapter V Simulation

collisions accurately, using all the information from the geometry, we may need to test each
triangle on object 'A' with each triangle on object 'B' for intersection. Currently the most efficient
test is the algorithm of Moller [MOLL97] that is explained below.

We first determine the equation of the planes containing the triangles and work out the
intersection line for the two planes (Figure17). Intervals Ia and Ib are are computed. If Ia ∩ Ib ≠ ф
than the two triangles intersect.

6.3 Implementation
Java3D offers methods for calculating intersection between bounding boxes of objects. However as
explained in section 6.2, the automatically computed bounding boxes have always their axes
parallel to the global reference frame. This gives an unrealistic representation for any real object.
Therefore the method used in the simulator is a compromise between the two approaches
presented above. It consists in replacing mobile robots by a good approximation and checking for
collision with the real geometry of other objects. The Nomad is for instance simply replaced by a
cylinder. The Robudem has basically a box shape and it is more suited to define its contour
manually by specifying a bounding box defined by six orthogonal plans what in the Java3D jargon
is called a “Polytope”.

In order to render realistic collision occurrences we must be able to predict these events before
they effectively happen in order to avoid that a robot enters into an object. Knowing the actual
speeds we compute for each frame the pose of the robot by applying equations 3 and 15. With this
prediction we check if a collision occurs with any fixed or mobile obstacles.
Once we have detected a collision between two objects, we can compute the reaction by using
physical laws and by considering for each object the velocity, the mass, the centre of mass, the
inertia, ... As in targeted applications real robots are moving slowly we do not need complex
collision response because most of the time robots are simply blocked when they move into an
obstacle. So in case of collision we stop the robot by disregarding the last transformation. This
algorithm is illustrated by Figure 18.

This collision detection is implemented in MoRoS3D by using Java3D utility classes originally

110

Figure 17 Testing a possible intersection between two triangles

Chapter V Simulation

developed for picking23 actions. These classes have methods for defining the bounding shapes
(sphere, cylinder, box) and test for collision with object geometry. If the result is not null it means we
collided with something and we stop the robot as explained in the previous paragraph.

7 Sensor modelling

7.1 Perception Sensors
Two kinds of sensors are necessary for developing intelligent control applications in mobile
robotics: position and environment perception sensors.

Global position sensors can be easily implemented within the simulator because we perfectly
know the position and orientation of the robot and of all its components. Relative position sensors
and low level encoder signals can also be derived from this global position knowledge.
A mobile robot can only act intelligently if it perceives its environment. Distance sensors are
mandatory for seeing what stands around the robot. Three models of such sensors have been
implemented in the simulator, namely laser, infra-red and ultrasonic sensors. To implement the
measurement process we have used Java3D's picking routines. The idea is to cast a ray into the
space around the robot. This ray has a length equal to the maximum distance the sensor can
measure.

23 Picking is the process of selecting shapes in the 3D virtual world using the 2D coordinates of
the mouse on the Canvas3D

111

Figure 18. Position update algorithm

Compute new pose

Check for collision

Collision ?

Update robot position

Leave robot position
unchanged

Chapter V Simulation

7.2 Linear Sensors
IR and Laser signals can be simulated with linear beams. The measurement process is based on
collision detection between a segment of line with startpoint (s) the current position of the sensor
and endpoint (e) the maximum measurable distance (Figure 19).

The collision detection requires the following operations to be performed (Figure 20):
• To determine if the endpoint (e) crosses the plane of any triangle.
• To find out where exactly the intersection (p) is on that plane and determine if that point

of intersection is actually within the boundaries of the triangle.

This process has been implemented with the Java3D Picktool class that is the base class for picking
operations. Two useful methods for simulating a linear sensor are setShapeRay that takes two
arguments, startpoint and direction and pickClosest. The first method allows to define the location
and the direction of the virtual laser beam while the second returns the closest object that
intersects with the ray. From this object it is now possible to get the distance (d) from the origin (s)
of the picking ray and the closest intersection point (p) (Figure 19).

112

Figure 20. Intersecting with a triangle

p
s

 e

n

Figure 19. Schematic view of a distance measurement
operation

 p

e

 S
d

Chapter V Simulation

7.3 Ultrasonic sensors
Ultrasonic sensors have a radiation pattern (Figure 21a) that is generally modelled by a cone
(Figure 21b). Complex reflections phenomena's can also happen: specular reflection, multiple
paths, cross detection between adjacent sensors,... Only the simple reflection case is considered in
this simulator. The value returned by the sensor is the distance between the top of the cone and
the closest intersection point between the cone and any triangle of the geometry.

7.4 Array of sensors
The classes LaserCircSensorBGroup and USCircSensorBGroup allow to create several sensors and to
geometrically arrange and position them in function of different parameters passed to the
constructors. They can form a ring (Figure 22a and c) or an arch or in the case of the Laser be
grouped at the same location to simulate a 2D laser range finder (Figure 22 b). It is also possible to
define the height, the distance from the reference point and the tilt angle of the sensor group.

These classes contain Transform3D instances that store the position and orientation of the sensors,
an instance of the LaserBehavior or USBehavior classes that perform the distance measurement for
each individual sensor and geometry information for representing the sensors' housings and
beams. The display is updated after each measurement.

113

Figure 21a. Typical emission pattern of US sensor
Figure 21b. 2D view of the US cone

intersection with a triangle

US cone
d

Chapter V Simulation

Figure 22 a. A ring of laser sensors Figure 22 b. A simulated laser range finder

Figure 22 c. Ultrasonic sensors

The range of the different sensors can be
adjusted in the program. Typical values are:

• Laser: 0,20 to 10 m
• US: 0,3 to 7 m
• IR: 0,1 to 0,6 m

8 Integration with CoRoBA

8.1 Communication
As the simulator has been designed to provide CORBA interfaces for all robots and sensors, its
integration in the framework is straightforward. Two possibilities exist for a CoRoBA component
to communicate with the simulator: via CORBA synchronous call or via events.

In the first case Sensor and Actuator components communicate with the Simulator via
synchronous calls using operations defined for every sensor and robot (Figure 23 left).

The second possibility is to use event based communication what means that servants also have to

114

Chapter V Simulation

implement the StructruredPushConsumer or StructuredPushSupplier interfaces. In this case the
Simulator directly acts as a Sensor or an Actuator (Figure 23 right). The implementation is more
complicated because we must locate the NotificationService, connect to Event Channels, etc. The
advantage is that we don't need Sensor and Actuator components.

The first approach has been privileged for implementing applications because we keep the same
structure in simulation as in real applications for which we necessarily have Sensor and Actuator
components.

As the SUN implementation of CORBA does not support Notification Events, another ORB has
been used. JacORB24 is a free Java ORB that comes with full source code, a couple of CORBA
Object Service implementations, and a number of example programs. JacORB implements the
Notification specifications and works perfectly with TAO.

8.2 Interfaces

Robots

A base interface has been defined for a generic robot as well as derived interfaces for the different
simulated robots. The interface Robot provides generic operations for placing the robots in the
simulated environment without taking account of any control. The derived interfaces (Figure 24)
provide operations that have the same signature as operations of real Actuator components. For
the Nomad, the operation is vm that takes as parameters three integers corresponding to the
translation speed, the rotation speed of the wheels and the rotation speed of the turret.

CORBA interfaces are mapped to JAVA interfaces that must be implemented by servant object
classes. The details of this mechanism is described for instance in [Li00]. The constructor of the
class NomadImpl receives as parameter a reference to the MoRoS3DNomad object that is copied into
a member variable of this type. When an object invokes the CORBA operation vm implemented
by this class, to modify for instance the speed of the robot, the corresponding Java method vm of
the MoRoS3DNomad class is called, resulting in the adaptation of the speed in the simulator.

For each robot model there are an interface and a class implementing this interface.

24 Available at http://www.jacorb.org

115

Figure 23. Synchronous (left) and Event based (right) communication between the simulator and CoRoBA
components

Processor Processor

Sensor Actuator

Simulator
Sensor
Object

Robot
Simulator

Processor Processor

Simulator
Sensor
Object

Robot
Simulator

Sensor
Interface

Actuator
Interface

Chapter V Simulation

Laser interface

The Laser interface gives the possibility to remotely get the data of the simulated laser. The data
type and the operation are similar to those defined for the CoRoBA sensor component and are:

typedef long Laser_data;
typedef sequence<Laser_data> Laser_Seq;

interface Laser {
Laser_Seq get_data();

};

Defining the data vector as a sequence increases the flexibility of the simulated sensors because
this length is defined by the implementation and discovered at run-time by components invoking
the get_data operation and testing the sequence length. The LaserImpl class implements this
interface and its get_data method returns the distance measured by the simulated sensor. The
Infra-red and Ultrasonic interfaces have a similar structure.

Trajectory and Goal interfaces

The aim of these two interfaces is to provide remote access to the display capability of the
simulator (Figure 25). MoRoS3D is able to show objects representing goals the robot has to reach
and trajectories it has to follow. The CORBA interfaces for the Goal and the Trajectory
functionality are listed below.

struct traject_pts{
double x;
double y;
double teta;

};

116

Figure 24. Robots Interface inheritance diagram

<<interface>>
Robot

move_rel ()
move_abs ()

<<interface>>
Nomad

vm ()
pr ()
dp ()
da ()
get_rc ()
get_rv ()

<<interface>>
Robudem

vm ()
get_rc ()

Chapter V Simulation

typedef sequence <traject_pts> trajectory_Seq;

interface Trajectory {
void display(in trajectory_Seq traject);
void append(in trajectory_Seq traject);
void delete ();

};

interface Goal {
void display(in traject_pts goal);

};

They are respectively implemented by the GoalImpl and TrajectoryImpl classes. Their use will be
illustrated in the following chapter.

8.3 Registration
All CORBA objects of the simulation register with the NameService and each simulator uses its
own name context (Sim1, Sim2, ...) allowing multiple instances to run simultaneously (Figure 26).

Sensor and Actuator components obtain the IOR of the simulator objects by contacting the
NameService.

117

Figure 25a: The goal is represented by a blue cylinder Figure 25b: The trajectory the robot must follow

Figure 26. NameService directory tree

Chapter V Simulation

9 Simulation engine

9.1 Control Engine
The algorithm implemented by the control engine is represented in Figure 27. The algorithm is
identical for all robots, it contains all operations required for computing the motion of a robot and
to detect and react to collisions. These operations are performed in the processStimulus methods
that are called at regular time intervals by time events.

Each block of the diagram is commented below with references to the preceding sections:
• As timer values are not perfectly constant, the time (Δt) elapsed between two consecutive

executions of the method is measured. We obtain so a more regular motion.
• The command speeds (Vt, Vs) are copied from the robot object (MoRoS3DNomad). These

variables are modified via the invocation to the vm operation (implemented by the
NomadImpl class see section 8.2) by the CoRoBA Nomad_Actuator component.

• The real speeds of the robot are computed with the dynamical model of the robot (section
5 – dynamics).

• The kinematic model (section 5 - kinematics) allows now to compute the Transformation
matrix (Tnew) of the position the robot should occupy. But before really modifying the
position we must check that no collision actually occurs between the robot and other
robots or with fixed obstacles.

• The first operation consists in computing the characteristics of the bounding cylinder for
the new coordinates of the robot.

• With this information we can now check for collision by using methods presented in
section 6.

• If no collision is detected then the Transformation matrix of the robot (robotTransform – see
figure 5) is updated with the values of the previously computed Tnew. This value is used
by the Java3D rendering engine after the execution of all the Behaviours' processStimulus
methods.

• In case of collision, the robot is stopped, that is its Transformation matrix is left
unmodified and the current speeds are set to zero.

• The last operation concerns the internal timing mechanism. It resets the WakeUp criterion
so that the processStimulus will be executed at the next time event (see section 4.3).

9.2 Sensor Engine
Figure 28 illustrates the algorithm for the laser sensor. After having obtained the Transformation
matrix of an individual laser beam, the startpoint and the direction are computed and used by the
collision detection function. If the laser beam hits an object, the distance is obtained via the
reference to this object.

The minimum distance is computed for this sensor and used to update the geometrical
representation of the beam. These operations are repeated for all sensors. After the loops have
been executed, the distance array contains the measured distances.

These data can be retrieved by an external Sensor component by invoking the operation get_data()
on the instance of the LaserImpl class.

118

Chapter V Simulation

119

Figure 27. Motion Control algorithm of the simulator

ProcessStimulus

Measure Elapsed
 time

Copy
command speeds

trans_speed (Vt)
steer_speed (Vs)

MoRoS3DNomad

NomadImpl

Compute
current speeds

Dynamic
model

Compute
new position

Compute
new bounding volume

Collide with
other robot

Collide with
fixed obstacle

Update
robot position

ResetWakeUp
criterion

TimerSim
Behaviour

 Δt

 Vt, Vs, Δt

 Vtc, Vsc,

 Tnew

 Bounding cylinder

 No

 No

Robot
Transformation

Java Rendering
Engine

vm(tr_s,st_s)

Nomad
Actuator

vm(tr_s,st_s)

Kinematic
model

Chapter V Simulation

120

Figure 28. Sensor control algorithm of the simulator

ProcessStimulus

Get Transform3D
of sensor[i]

Compute startpoint
and direction

sensorTransformGroup[i]

LaserCircSensorBGroup

Compute intersection

Compute
distance

All robot and
all obstacles

All sensors

Update
beam length

ResetWakeUp
criterion

TimerSim
Behaviour

 T

 s, dir

 Intersection

 d

 Yes

 Yes

distance[i]

Java Rendering
Engine

LaserImpl

Laser
Sensor

beam[i]

get_data()

Compute minimum
distance

 dmin[i]

Chapter V Simulation

10 Summary
This chapter presented MoRoS3D, a multi-robot and sensor simulation application that simulates
3D environment for developing mobile robots applications. This simulator is versatile enough to
simulate different types of robots.

The 3D scene modelling and rendering is based on Java3D and is therefore platform independent.
It is extensible and users can easily change the environment (terrain and obstacles) as they are
passed as command line parameters, they do not need to recompile the application.
Finally, it integrates seamlessly into the CoRoBA framework thanks to the CORBA middleware.

Despite this tight integration, the simulator can also be used independently of the framework and
control applications can be written in any language supporting CORBA interfaces.

Keeping the control algorithms out of the simulator has the advantage that an application
developer does not need to deal with Java3D programming.

121

Chapter VI Validation and Evaluation

 Chapter VI Validation and Evaluation Chapter VI Validation and Evaluation

1 Introduction
This chapter is devoted to the validation and evaluation of the framework. Validation relates the
developed software to the requirements while evaluation aims at making a qualitative and
quantitative judgement over the performances of the framework.

In the first part of this chapter, we relate the requirements presented in the first two chapters with
the actual framework implementation:

• We compare the characteristics of CoRoBA with the definition of a framework.
• We review the list of requirements that have been met and we propose solutions to

implement requirements that have not been addressed in this work.

The second part of this chapter presents applications that have been developed to validate the
functionality of the framework and the simulator presented in the two previous chapters.

The last part deals with the evaluation of the framework. In the qualitative evaluation:
• We explain how applications presented in the introduction could be improved by using

CoRoBA.
• We compare CoRoBA with other frameworks.

On the other hand, for the qualitative evaluation we have defined and applied evaluation criteria
and measures of effectiveness.

2 Theoretical validation

2.1 Framework definition
In the motivation section of the first chapter we pretend that what is required is "a software
framework that enables the easy development of distributed applications...". That is what has been
developed and presented along the different chapters. We come back to the definition of a
framework:

A framework is an integrated collection of classes that collaborate to produce a
reusable architecture for a family of related applications. It is a design and an
implementation providing one possible solution in a specific problem domain. A
framework is a reusable, "semi-complete" application. It provides generic
components which generaly need to be customised and extended in function of
the application.

For each statement underlined in this definition we show the solution proposed by CoRoBA:

Collection of classes:
The units are programmed in C++ and are off course organised in classes with base classes
providing a skeleton implementation for the components.

122

Chapter VI Validation and Evaluation

Reusable architecture:
What is provided is effectively an architecture because it is composed of families of related
patterns and components. CoRoBA is based on the Design Patterns presented in Chapter III.
Execution units deliver services and are reachable through well-defined interfaces and can
consequently be called components.

Family of related applications:
Distributed control applications and sensor networks are family of applications targeted by
CoRoBA.

It is a design and an implementation:
Besides the design that has been presented in Chapter IV, an implementation is also proposed.
This chapter presents applications that have been developed with the framework.

It is a reusable, semi-complete application. It provides generic components:
Existing components can be directly reused as is, as long as they conform to the required
interfaces. The developer has naturally to fill in empty components with code specific to the
application. Generic services are available to support any application (Naming Service,
Notification Service, Logging Service, Name Manager, remote control component, ...).

2.2 Review of the requirements

R1: Stability and reliability
The skeleton implementation of components has been tested extensively and components have
run during several days without suffering from any stability problems or memory leaks. The
communication relies on an extensively tested library (TAO).

R2: Modularity
The definition of hierarchical component interfaces and the fact that one component implements a
single interface make the framework largely modular. The evaluation of the modularity can be
expressed in terms of reuse. It is shown in the section 3 that applications can be built incrementally
by reusing components. Actually most of them can be reused as is, as long as they conform to the
required interfaces.

R3: Scalability
The TAO CORBA implementation is a high efficient communication library that has been
designed to handle thousands of communication at the same time. TAO has been designed
carefully using architectural, design, and optimization patterns that substantially improve the
efficiency, predictability, and scalability of communication systems. TAO's ORB Core concurrency
models are designed to minimize context switching, synchronization, dynamic memory allocation,
and data movement.

One possible bottleneck in the current implementation is the Notification Service. Each component
has to contact this service in order to connect to an Event Channel. That means that all data transit
by this service that redistributes them to the connected clients. If the number of components and
the traffic increase too much the Notification Service could become the bottleneck of the
application. One solution to reduce this potential limitation would be to use several Notification

123

Chapter VI Validation and Evaluation

Services. This would necessitate to modify the implementation by allowing a component to be able
to find and narrow different Notification Services.

R4: Native libraries
As the framework is implemented in C++, it is straightforward to integrate native libraries that are
generally developed in C or C++.

R5: High level communication library
The choice of TAO the implementation of the communication has allowed to fulfil this
requirement.

R6: Asynchronous communication
The TAO implementation of CORBA proposes an efficient interprocess communication library
that allows synchronous and asynchronous communication (Event based communication) thanks
to the Event Service and the more advanced Notification Service.

R7: Multi-threaded applications
TAO is based on the ACE library that offers support for easy development of multi-threaded
components and their synchronisation.

R8: easy distribution of applications
The NameService defined by the CORBA specifications allows a client to discover and locate
CORBA objects at run-time. This capability along with the implementation of a component model
provide all the elements to distribute an application over different nodes.

R9: Definition of the application architecture at run-time
The links between the components is provided as command line parameters (Event Channel id.,
the NameService id., etc.) when components are started. As far as components support the same
interface, there are perfectly interchangeable.

R10: Process synchronisation
In the framework the synchronisation issues are actually embedded in the data flow and the
component network. Examples are given in section 3 of this Chapter. Another possibility is to use
a global time reference. This capability is for instance provided by the CORBA Time Service.

R11: Free choice of the communication model.
An application developer can choose the communication model (synchronous or asynchronous) in
function of its needs as this is not imposed by the framework. He can select classical two-ways
operations defined in IDL files or an event driven model provided by the Notification system. The
first model is privileged by client-server paradigms while the second method promotes
decoupling between processes.

124

Chapter VI Validation and Evaluation

R12 and R13: Control is distributed over different users
These requirements are solved by the distribution of components and nothing precludes different
users of interacting with the application. Each user can control a robot or a functionality of a robot
with its own UI (Joystick, mouse, ...).

R14: The code must be portable
Portability is assured by using only standard C++ libraries. TAO is a very portable library that
runs on more than 20 different platforms/compilers.

R15: Different programming languages can be mixed in an application
The framework has been implemented in C++ and the simulator in Java. It could also be possible
to use other CORBA compatible languages to develop clients, GUI, simulators...

R16: The framework implementation should not constraint the development of applications' UI's.
The choice of CORBA as communication library lets the developer with free hands for writing
UI's. UI components can connect to Event Channels and send or receive data from/to other
components.

R17: Robot control GUI's must be independent of the robot.
This requirement can be met by sending only abstract motion commands to the robots. Each robot
has then to interpret these commands for its own. A Joystick Sensor and a console control
command component have been implemented to illustrate this principle.

R18: The GUI's must be platform independent.
GUI's can be written in platform independent languages for which there exists a CORBA mapping
(C, C++, Java, Python, ...). The GUI's can be made platform independent if a multi-platform
language (Java, Python, ...) or a multi-platform API is used (wxWidgets, QT, ...).
No specific GUI has been developed in the work.

R19: The GUI's must display and save data in various format.
This requirement has not been addressed in this work.

R20: The GUI must be independent of the application and must adapt itself to the application
capabilities
This requirement has not been addressed in this work.

R21: It must be possible to select a monitored service at run-time.
This requirement has not been addressed in this work.

R22: Tools are required to facilitate the development of new components.
Template sand wizards are usual tools that are provided to facilitate application development.
There is no such tool for CoRoBA at the moment. However, as all components have a similar
structure , it is very easy to start from an example, to clone and modify it, in order to develop a

125

Chapter VI Validation and Evaluation

new component or to alter its original behaviour.

R23: A simulator is required in order to perform extensive tests of components
The 3D simulator that has been presented in Chapter V has been developed in order to test
components.

R24: Tools must be provided to facilitate the integration of existing components into
applications.
What is needed to fulfil this requirement are editors to graphically connect components and
graphical applications to manage the life and run-cycle of component. In the current version, only
a command line application (CRC- see Chapter IV) is provided to manage components.

R25: The command and visualization data flow must be separated from each other.
By defining three classes of components, CoRoBA provides a clear separation of functionality. The
components are generally connected together to form a closed control loop. The command and
visualisation data flow transit by different Event Channel and are consequently not tightly
coupled.

R26: Motion commands must be independent of the robot
This requirement can be met by sending only abstract motion commands to the robots. Each robot
has then to interpret these commands for its own. The demonstration applications described in the
next section illustrate this principle.

R27: In order to coordinate control actions, communication between operators may be required.
This requirement was out-of-focus of this thesis.

R28: High quality documentation of the system design, implementation, development and use
This text fulfils the first two aspects of this requirement. The Doxygen application can be used to
automatically generate documentation about implementation. A tutorial document about the
usage of CORBA communication models with TAO and JacORB has also been written [COLO06a].
Another report describes the software required to develop applications with CORBA as well as its
installation[COLO06b].

R29: Monitoring tools
Monitoring provides runtime information that is dealt with at run time and that captures the state
of the system as a whole. The CRC application can be used to configure/check component
configuration, the JacORB namemanager application can be used to read the contains of the name
service and allows knowing if a component is running, which interface its objects implement and
on which machine it is.

R30: Logging tools
Logging capabilities is based on the Logging Service. Each component and Event Channel can log
information containing the data transferred and time stamps. This makes possible to trace
message in order to analyse data processing and transmission, to post-process data off-line or to

126

Chapter VI Validation and Evaluation

debug applications. This tools have been used to display information transferred in demonstration
applications presented in section 3.

From this review we note that most of the requirements that have not been addressed in this work
are related to the GUI and the security. CoRoBA does not impose any GUI for data visualization
or to let the user enter information or commands. Actually the framework implementation does
not restrict the developer in its choice. A platform specific (MFC on windows) or a platform
independent widget API like wxWidget or QT25 could be used for developing GUI's. Components
can also be developed in platform independent languages like Java or Python, taking profit of
their graphical libraries.
Security aspects have been presented in Chapter III. The CORBA Security Service provides
security for applications and users and can be added to an ORB in a non-intrusive manner because
it is implemented with interceptors [SCMI00]. Existing distributed applications that make use of a
normal CORBA ORB can thus run without alteration using a secure ORB. The Secure Socket Layer
can also be easily integrated in any CORBA application.

3 Validation through applications
This section begins with a discussion over components integration and continues with typical
control applications operating in simulation. Components involved in each application are
explained in detail and reuse of components is emphasized throughout this chapter. Finally an on-
going development that consists in porting an existing teleoperation application to the framework
is presented. Multi-robots, distributed simulation and real robots are also covered in this chapter.

3.1 Components integration
In control applications we mainly integrate existing applications and libraries. When integrating
libraries, there are two important points that should be considered: if the library is not written in
object-oriented languages, it is necessary to evaluate the degree of coupling between the functions
and if the library is not thread-safe, integrity will need to be ensured by providing locks.
Integration with an existing application is generally a hard work unless some form of
communication mechanism is available. Sometimes it is simpler to rewrite the application than
trying to integrate it into the distributed architecture. Developing with a framework facilitates the
integration and the reuse of components as it will be demonstrated in this chapter.

As presented in the previous chapter, the components composing the CoRoBA framework are
divided in Sensors, Processors and Actuators that form a chain along which information is
transferred (Figure 1). Like in classic control schemes, the data flow is unidirectional.

We give now examples of the three component categories, Sensors, Processors and Actuators
whose architecture has been presented in Chapter V.

25 QT is a GUI software toolkit developed by Troll Tech and available at http://www.trolltech.com

127

Chapter VI Validation and Evaluation

3.1.1 Sensors

There exist numerous useful sensors that are used in robotic applications. They can be grouped in
different categories:

• Motion and attitude (encoders, gyroscope, angle, tilt, accelerometer, ...)
• Global Position sensors (GPS, Compass, triangulation...)
• Distance sensor (US, laser, radar, ranging)
• Vision sensors (video, IR, UV)
• Users' input (Joysticks, mouse, Haptic interfaces, ...)
• Other sensors: temperature, pressure, force, microphones, gas, light, humidity, tactile,

switches...

In order to validate the proposed framework different sensor components have been
implemented. Some are adapters to real sensors while other are linked to virtual sensors in
relation with the simulator presented in Chapter V. These components are listed in the table below
and covered in the next sections.

Table 1: Sensors integrated in the framework
Category Type Robot Simulation/Real

Motion Wheel encoders Nomad,
Robudem

Simulation and
Real

Global position GPS - Simulation

Dead reckoning Nomad Real

Distance Laser and Laser line scanner - Simulation

Ultrasonic - Simulation

Ultrasonic, Infra-red and
bumpers

Nomad Real

User input Joystick - Real

A GPS and a Laser sensor have been recently acquired and will be integrated in the framework.

3.1.2 Actuators

This work targets the integration of multi-robotic systems and consequently most of the integrated
actuators are actually robots. Other kind of actuators that could also be integrated within the

128

Figure 1. Closed-loop chain of Sensor, Processor and Actuator components

<<Sensor>>

<<Actuator>><<Processor>>

Chapter VI Validation and Evaluation

control framework are for instance motors, solenoids, speakers, grippers, linear actuators, ...
Two simulated and real robots actuator components have been implemented: the Nomad and the
Robudem
However, Actuator components are not limited to mechanical systems but also abstract all
components that produce output data. Displaying images coming from a camera (with or without
pre-processing) or updating data information in a GUI or in the simulator are examples of
operations that can be done with Actuators.

3.1.3 Processors

Processors are the keystone of any control architecture. While Sensors provide data to the
Processors and Actuators forward data to output systems, Processors are the intelligent part of the
network. Processors are intended to be reused with different robots while Actuators and Sensors
can be reused in different applications involving the same hardware. The more abstract the
function of the Processors the greater the possibility that a component can be reused without being
modified. Thanks to the modular architecture of CoRoBA, switching between simulation and
reality only requires changing Sensor and Actuator components, while Processor components stay
unchanged.

In order to demonstrate the capabilities of the framework processors have been developed for the
following applications

• Shared control and obstacle avoidance applied to the Nomad.
• Goal navigation in an obstacle free environment applied to the Robudem.
• Behaviour based Fuzzy Logic navigation applied to the Nomad.

Other kind of processors that could be implemented are for instance:
• Control algorithms: PID, Fuzzy logic, kinematic inversion,...
• Path planning, trajectory computation, ...
• Data processing (vision, ...), filtering, ...

3.2 Control Applications
This section presents applications that have been developed with CoRoBA and tested with the
simulator. These applications are representative of typical robotic applications and implement two
different modes of supervised and autonomous control as described in Section 3.6 of Chapter II.
They have been developed to explain how to use the framework and to prove its reliability. To
conclude this section, multi-robot applications and distributed simulation are discussed.

3.2.1 Nomad Shared control

Description
This application demonstrates how to use CoRoBA for implementing shared autonomy It uses
two Sensor components: a Joystick component and a Sim_Laser component that reads laser
distance data, one Processor, named Avoid and a Sim_Nomad Actuator. Figure 2 represents the
application structure, the relation between the components and the information that they
exchange.
The user gives general motion commands [x y] with the joystick and the Processor combines these
commands with the distances measured by the Laser [d1 d2 d3...] in order to avoid collision. It
produces speed commands [Vt Vs] that are sent to the Sim_Nomad Actuator. This component is in
charge of sending the speed commands to the robot in the simulator.

129

Chapter VI Validation and Evaluation

The screen capture in Figure 3 shows the simulator GUI and the console outputs of the different
components. The yellow windows are Sensor components (a third sensor is used for recording the
robot kinematics data but it does not play any function in the actual application), the blue one
corresponds to the Processor and the red one to the Actuator.

130

Figure 3 Screen output of the application

Figure 2. Shared control application structure

Simulator

<<Sensor>>
Joystick

<<Actuator>>
Sim_Nomad

 <<Processsor>>
Avoid EventChannel 1

<<Sensor>>
Sim_Laser

EventChannel 0

<<MCmdSeq>>
[x y]

<<Laser_Seq>>
[d1 d2 d2 ...]

<<MCmdSeq>>
[Vt Vs]

vm (Vt, Vs)
get_data ()

Chapter VI Validation and Evaluation

To perform the simulation, a number of scripts are launched to ensure the communication
between the different programs, the robot and the environment in which it navigates.
First, a script named ”ns” (or NameService) is launched to create the process and to name the
computer. The second script to launch is ”not” (or NotificationService). This script launches the
Event communication server. The simulator is then launched by running a script ”Nomad_1_1”.
This script launches the graphical user interface of the simulator. After that, the script ”launchall”
is run. This script launches the different CoRoBA programs. The script ”startall” starts the
execution of the different processes. The robot moves according to the control commands sent by
the Actuator component. To stop the simulation, the script ”stopall” is run, then ”xtroyall” closes
all the programs.

Components
Sensor Joystick
In order to promote re-usability, the idea is to define motion commands that are independent of
any robot geometry and kinematics. Each Actuator component will actually have to interpret them
for its own.

The general structure of events is defined by the CORBA specifications [CORBA00]. The values of
the fixed Header for the Joystick component are listed in Table 2. By default the Domain is set to
GLOBAL. Processors and Actuators use the Domain and Type information during the registration
with the Event Channel to define the events they want to receive (see section 5.3.4 – Event
registration in Chapter IV) .

Table 2: Motion_Command events structure
Header Fixed Header Domain GLOBAL

Type MC_Sensor

Name Joystick

Variable Header -

Data Filterable data -

remainder of body MCmdSeq

The actual joystick data is contained in the “remainder of body” field. Two CORBA types have been
defined for representing the data: MotionCommand that contains individual values and McmdSeq
that is a sequence of MotionCommand instances. A Sequence is a special CORBA format that can
contain any element type and can be bounded or unbounded. The length of the sequence can be
determined at run-time. The sequence type offers more run-time and development flexibility in
regard to arrays, which are fixed-length [HENN99].

The motion command values range from 0 to 65535 and vary as showed in Figure 4. The
component is programmed to control three degrees of freedom but it could be extended as
necessary and in function of the axis available on the joystick.

131

Chapter VI Validation and Evaluation

When this component starts, a separate thread is created that runs the method svc .This structure
is common to all components (section 4 – Chapter IV). At each iteration, the method process is
executed: the joystick values are read, transformed to events and sent to the appropriate Event
Channel (Figure 1). The details of the event production mechanism can be found in the section
5.3.4 - Production of Events of Chapter IV.

Sensor Sim_Laser
This sensor invokes operations on the Laser object of the simulator to receive distance
measurements from the simulated laser sensor as explained in the section 8 of Chapter IV and
illustrated by Figure 2.

Specific data structures have been defined for containing the simulated laser distance sensor data.
Because the number of sensor can be modified in the simulator, a sequence data type has been
used again. The event type is Laser_Sensor and the data format is Laser_Seq.

The component contacts the NameService to get the IOR of the simulated laser. This process is
explained in the section 8 (Location of components) of the Chapter IV. The method process invokes
the method get_data of the Laser object in the simulator, puts the information into a Laser_Seq
variable and sends the event to the Event Channel 0 (Figure 2).

Processor Avoid
This processor is intended to work with the Nomad or other robots having an equivalent
geometry. It is a pure reactive component whose purpose is only to avoid obstacles. We suppose
that the environment is perceived through distance sensors that are uniformely distributed around
the robot (only the five front sensors are actually used). This component also receives motion
commands from another component (here a Joystick Sensor).

In this shared control mode the Processor Avoid has the responsibility of the local navigation. To
accomplish this task an obstacle avoidance controller based on command fusion mechanism is
included in the Processor. The output from the distance sensor is combined with the input
direction from the operator. This combination should be seen as a weighted sum of two vectors:

• the operator’s reference command Ft

• the obstacle avoidance feedback Fr generated by the distance sensor signals.

132

Figure 4. Values generated by the joystick
X en Y axis

65535

655350

0

32768

Y

X

Chapter VI Validation and Evaluation

F res=F tF r

The repulsive force is active when the distance (d) to the obstacle is smaller than 1 meter. It can be
seen as the force generated by a spring with a coefficient K being chosen so that the robot can
move up to the obstacle with a decreasing speed and stops when it comes in contact with the
obstacle.

F r=K∗1−d 

The steering of the robot is aligned with the direction of the resultant vector Fres and yields
continuous and smooth motion (see Figure 5). In the absence of obstacles, Fr = 0, the robot follows
the operator’s directions. If the robot approaches an obstacle, Fr gradually increase in magnitude
and cause a progressive avoidance manoeuvre. This gradual shift in control is completely
transparent for the operator. Depending on the configuration of the obstacles the robot slows
down, goes back if it is too close of an obstacle or turn right or left.

Input events are of type MC_Sensor and Laser_Sensor, both are in the Nomad1 Domain. When
events are received by the consumer object via the ORB, they are transferred, to Processor_avoid_i
class via the transfer_event method where data is extracted from the received event and stored in
local member variables. This transfer is protected by mutexes because the data is also accessed
asynchronously by the process method. More details about this mechanism can be found in the
section 5.3.4 – Reception of Events of the Chapter IV. The Type of the output events is
MC_Processor. The component produces motion command sequences (McmdSeq).

Nomad Actuator
The Nomad Actuator component actually receives events from motion command Sensors like the
Joystick component described above or from a navigation Processor like the Processor Avoid used
in this application. The formats for the motion command data are obviously the same as the ones
defined for the joystick sensor, MotionCommand and McmdSeq.

As input events can come from two different kind of components, namely Sensors and Processors,
this component registers its interest for two different events when subscribing with the
consumer_admin of the Event Channel (Domain Nomad1, Type MC_Processor and MC_Sensor).
Both events are propagated by the Event Channels and received by the consumer object of the
Actuator component (section 5.3.4 – Reception of Events of the Chapter IV).

The origin of the event is determined in the method process allowing a different processing in
function of the data origin. The length of the command sequence is also tested because it could
contain 2 or 3 parameters and a correct data handling is required in both cases.

The generic motion commands are also adapted to the kinematics of the robot according to the
following equations:

133

Chapter VI Validation and Evaluation

t vm=
−255∗y

127
255

svm=
−255∗x

127
255

where x and y are the motion command values coming from the Processor that vary from 0 to 255
and tvm and svm are the desired translation and, base rotation speeds.

After this adaptation the data is sent to the simulated robot (Figure 2) by invoking the vm method
of the Nomad Interface (see section 8 – Chapter V). The method terminate stops the robot by
sending null speeds.

Results
Figure 5 shows the robot avoiding the wall while the input command corresponds to a straigh
motion.

The following graphics show the data produced by the Joystick, the measurements of the 3 front
sensor of the Sim_laser and the motion commands produced by the Avoid component. The last
graphic depicts the trajectory followed by the robot.

134

Figure 5. Avoiding manoeuvre

Chapter VI Validation and Evaluation

Figure 6a.

Figure 6b.

Figure 6c.

Figure 6d.

135

1

1

2 3

0

0

Chapter VI Validation and Evaluation

The sequence of events for the starting phase is showed in Figure 7. Numbers correspond to the
sequence id's as explained below.

The name of the components is in italic and the event type is in bold. The elements of the
recording have the following meaning:

Log Id, time of log in milliseconds, Cluster name, Event Type, Component name,Time of
event transmission in seconds and microseconds, event id, data.

Rem. Cyan and Magenta colours correspond to the colours of the curves in the graphics. Green
indicates the Events Id.

The joystick becomes active from the second sample. (Marked as 0 in Figure 6a).

1, 800236, GLOBAL, MC_Sensor, Joystick, 1154000795, 850545, 1, 32767, 32767
2, 800767, GLOBAL, MC_Sensor, Joystick, 1154000800, 737572, 2, 32767, 1279
....

The Processor reacts to the command input variation (Figure 6c) and the robot begins to move.
This is visible on the data below: the motion commands vary from 127, 127 to 127, 4. This sequence
corresponds to the upper part of Figure 7.

...
3, 799816, NOMAD1, MC_Processor, Sensor_Sim_Laser, 1154000799, 776190, 2,
Processor_Avoid, 1154000799, 786204, 2, 127, 127
4, 800226, NOMAD1, MC_Processor, Joystick, 1154000795, 850545, 1, Processor_Avoid,
1154000800, 226838, 3, 127, 127
5, 800336, NOMAD1, MC_Processor, Sensor_Sim_Laser, 1154000800, 326982, 3,
Processor_Avoid, 1154000800, 326982, 4, 127, 127
6, 800747, NOMAD1, MC_Processor, Joystick, 1154000800, 737572, 2, Processor_Avoid,
1154000800, 737572, 5, 127, 4

136

Figure 7. Sequence diagram of events

Joystick Laser Avoid Actuator

MC_Processor (3)

Laser_Sensor (2)

MC_Processor (4)

Laser_Sensor (14)

MC_Processor (5)

MC_Sensor (1)

MC_Sensor (2)

Laser_Sensor (3)

MC_Processor (26)

MC_Processor (2)

Chapter VI Validation and Evaluation

At the point 1, the robot approaches the wall and the distance sensor values decreases. At the
Laser sample 14, the right sensors makes the Avoid Processor reacts. The robot turns to the left
(Point 1 on Figure 6). This sequence corresponds to the lower part of Figure 7.

14, 806255, NOMAD1, Laser_Sensor, Sensor_Sim_Laser, 1154000806, 215449, 14, 34,
118, 118, 118, 118, 118, 118, 118, 118, 118, 92, 89, 69, 38, 29, 28

27, 806245, NOMAD1, MC_Processor, Sensor_Sim_Laser, 1154000806, 215449, 14,
Processor_Avoid, 1154000806, 215449, 26, 0, 100

At points 2 and 3 , the left sensor detects the wall and consequently the robot turns to the right.

These results have been obtained with the Sim_Nomad in Periodic mode (100 ms) and the other
components in Synchro mode. The data has been recorded with the Log mechanism explained in
Chapter IV, section 6.2.

3.2.2 Robudem Autonomous navigation

Description
The purpose of this application is to let the Robudem move autonomously from a given position
to succession of goals in an obstacle free environment.
The application comprises the following components:

• Sensor: Sim_Robudem
• Processors: Goal_Provider, Goal_Controller, Goal_Scheduler
• Actuators: Sim_robudem, Goal_Display

The components involved in this application and the transferred data are shown in Figure 8 .

137

Figure 8. Components and data flow of the Robudem Navigation application

Simulator

<<McmdSeq>>
[Vt Vs]

goals.dat

0 0
2 5
5 10
-3 4

<<Processor>>
Goal

Scheduler

<<Processor>>
Goal

Provider

<<Sensor>>
Sim_Robudem

<<Actuator>>
Sim_Robudem

<<Processor>>
Goal

Controller<<RobudemKinematics>>
[x y θ αf αr]

<<trajet_pts>>
[Xg Yg θg]

<<Any>>
[]

RobotSensor

get_rc ()

<<Actuator>>
Goal_Display

Goal

vm (Vt, αf , αr) display (x,y)

Chapter VI Validation and Evaluation

Components
Sensor Sim_Robudem
This component connects to the Robot object of the simulator to read the pose and kinematic data
of the Robudem. The event Type is Robudem_MotionSensor and the event data is of type
RobudemKinematics, a specific structure defined to store the kinematic data of the Robudem.
The component implements the inherited virtual methods process and terminate. The method
process invokes the method get_rc on the Robudem object in the simulator that returns the pose
and kinematic data of the robot.

GoalProvider
This component is intended to be used with the GoalController and GoalScheduler components
described below. When this component is started, it opens a file, reads a list of points and sends
the first goal as an event to the Event Channel it is connected to.
This component may receive two types of events: GoalScheduler and GoalProducer (Figure 9).
Receiving an event of type GoalScheduler means that it has to send the next goal. The type
GoalProducer is reserved for future use where goals could be sent by a goal producer component
implementing a path planning algorithm. Output events have the type Goal.
The method transfer_event (section 5.3.4 - Tranfer of Events of Chapter IV) is overloaded and
implements the logic of the goal sequencing. When an event of type GoalScheduler is received, the
private method next_goal is called. This method replaces the current goal with the next one. After
that the method process formats the data and sends it to the Event Channel.

GoalScheduler
The role of the GoalScheduler is to compare the goal position with the current position of the robot.
When the robot has reached the goal an event is issued from the GoalScheduler to the GoalProvider.
The GoalScheduler receives two types of events: Goal and Robudem_MotionSensor and sends events
of type GoalScheduler (Figure 10). The method transfer_event is overloaded because this component
receives two kinds of events, namely Goal and Robudem_MotionSensor. The comparison between
the current position and the goal is performed in the method process.

138

Figure 10. Events received and sent by the Goal_Scheduler Processor component

Goal_Scheduler

<<Robudem_MotionSensor>>

<<Goal>>
 <<Goal_Scheduler>>

Figure 9. Events received and sent by the Goal_Provider Processor component

Goal_Provider

<<Goal_Producer>>

<<Goal_Scheduler>>
 <<Goal>>

Chapter VI Validation and Evaluation

GoalController
The GoalController issues motion commands to the Sim_Robudem component taking into account
the current position of the robot and the goal. A fuzzy controller has been implemented for this
purpose.

The variable inputs are the distance and the angle between the robot current position and the goal
position. A classical Suggeno method is used to obtain the direction and speed of the robot. The
method transfer_event is overloaded because this component receives two kinds of events, namely
Goal and Robudem_MotionSensor (Figure 11). The motion commands are generated by the Fuzzy
Inference System in the method process. The method terminate is called when the application
terminates; it sends null speeds to the robot to safely stop it.

Actuator Sim_Robudem
This component has the same implementation as the Actuator Sim_Nomad presented in the section
3.1.2 of this chapter. Motion command transformation equations are similar to those defined for
the Nomad. Only the semantic for the motion command parameters is different. The Robudem
expects a global translation speed and two directions angles, one for each axle (Actually only the
first angle is used for the Single Drive mode as explained in the Robudem Modelling - section 5.2
of Chapter V).

Actuator Goal_Display
This component receives the Goal Events from the Goal_Producer and invokes the operation display
of the Goal Interface implemented by the class GoalImpl in the simulator (This Interface has been
described in the section 8 of the Chapter V). Each time a new goal is received, the Goal_Display
sends this information to the simulator in order to update the display.

Operations
During the execution of the application, the following operations are executed (the steps refer to
Figure 12):

• At initialization, the Goal_Provider reads a list of goals from a file (goals.dat).
• When the components are started, the first goal position [Xg Yg θg] is sent to the

Goal_Controller and to the Goal_Scheduler (1).
• These components also receive the global position of the robot [x y θ αf αr] from the

Sim_Robudem Sensor component (2).
• The Goal_Controller uses this information to produce steering and driving commands [Vt

Vs] in order to reach the goal (3).
• These commands are received by the Sim_Robudem Actuator that adapt them to the

controlled robot.
• The Goal_Scheduler compares the goal position received from the Goal_Provider with the

139

Figure 11. Events received and sent by the Goal_Controller Processor component

Goal_Controller

<<Robudem_MotionSensor>>

<<Goal>>
 <<MC_Processor>>

Chapter VI Validation and Evaluation

instantaneous position of the robot. When the robot is sufficiently close to the goal, the
Goal_Scheduler sends an event to the Goal_Provider to inform it that it has to provide the
next goal (4).

• A new goal is sent to the Goal_Controller and Goal_Scheduler (5).
• These operations are repeated until the last goal is reached.

Events received by the Actuator follow two different paths. The chain can be initiated by an event
produced by the Sensor Sim_Robudem and processed directly by the Goal_Controller (sequence 2 –
3) or pass through the Goal_Scheduler and the Goal_Provider before reaching the Goal_Controller
and finally the Actuator (sequence 2 – 4 – 5 – 6).

The logged data reproduced below illustrates both sequences. The name of the components is in
italic and the event type is in bold. Colours indicate the Event Id. The elements of the records have
the following meaning:

Log Id, time of log in milliseconds, Cluster name, Event Type, Component name,Time of
event transmission in seconds and microseconds, event id, data.

For the short squence (2 -3):

49, 9886632, ROBUDEM1, Robudem_MotionSensor, Sensor_Sim_Robudem, 1154009886,
602404, 49, 1480, -197, -79, -1, 0

52, 9886632, ROBUDEM1, MC_Processor, Sensor_Sim_Robudem, 1154009886, 602404,
49, Processor_GoalScheduler, 1154009886, 602404, 52, 129, 123

140

Figure 12. Sequence diagram of events

Goal
Provider

Start

Goal
Controller

Goal
Scheduler Sensor Actuator

Goal (1)

MC_Processor (3)

MC_Processor (6)

Goal_Scheduler (4)

Goal (5)

Robudem
_MotionSensor (2)

Chapter VI Validation and Evaluation

We can see that the sequence <Component name, Time of event transmission in seconds and
microseconds, id of event> is repeated for each step of the transmission sequence.
For the long sequence (2 – 4 – 5 - 6):

50, 9887233, ROBUDEM1, Robudem_MotionSensor, Sensor_Sim_Robudem, 1154009887,
133168, 50, 1482, -198, -80, -5, 0

1, 9887223, ROBUDEM1, Goal_Scheduler, Sensor_Sim_Robudem, 1154009887, 133168,
50, Processor_GoalScheduler, 1154009887, 133168, 1, Nihil

2, 9887143, ROBUDEM1, Goal, Sensor_Sim_Robudem, 0, 0, 50, Processor_GoalScheduler,
0, 0, 1, Processor_GoalProvider, 0, 0, 2,, 16.000000, -8.000000, 0.000000

53, 9887213, ROBUDEM1, MC_Processor, Sensor_Sim_Robudem, 1154009887, 133168,
50, Processor_GoalScheduler, 1154009887, 133168, 1, Processor_GoalProvider,
1154009887, 133168, 2, Processor_GoalController, 1154009887, 183240, 53, 255, 67

The Processor network forms a loop that could lead to problems. When a goal is reached, a
Goal_Scheduler event is sent to the Goal_Provider that sends a new goal to the Goal_Scheduler
and the Goal_Controller. What happens if an event of type Robudem_MotionSensor arrives before
the new goal is received? If we don't pay attention this would result in the emission of a second
Goal_Scheduler event and consequently to the erroneous emission of a new goal.
We can avoid this situation by using flags in the Goal_Scheduler component. When a goal has been
reached, no new event is sent before the coordinates of the new goal have been received (Event of
type Goal).

Figure 13 represents a sequence of a typical autonomous navigation of the Robudem where the
robot navigates from goal to goal. Each time a goal has been reached, a new one is sent by the
Goal_Provider Processor and the display in the simulation GUI is updated via the Goal_Display
Actuator.

The sequence has been realised with all Processors and Actuators in SYNCHRO mode while the
Sim_Robudem was in PERIODIC mode (see section 5 of the Chapter IV for the definition of the
modes). This means that the event transfer sequence is initiated by the sending of the robot
position by the Sim_Robudem and the motion command computation is triggered by the
reception of this event. Different periods have been tested. As the speed of the robot is small, 1 m/s
at the maximum, the period of the components does not need to be too small. Equivalent results
have been obtained for periods varying from 50 ms to 1 second.

141

Chapter VI Validation and Evaluation

Figure 13. Navigation sequence of the Robudem

If the robot misses a goal the control algorithm tries to drive the robot to the goal again what gives
circular trajectories that generally do not allow to reach the point. This situation is detected and in
the current version an alert message is displayed on the output console of the component. A better
solution would be to report the message to a GUI or to a higher level component that could re-
plan intermediate goals.

3.2.3 Nomad Autonomous Navigation

Description
An adaptive fuzzy logic system controls the motion of the Nomad from a start position to an end
position such that it reaches its goal position without collisions with obstacles in the workspace. A
first approach is based on a simple fuzzy logic system composed of two fuzzy logic controllers: the
goal seeking controller and the obstacle avoidance controller. The goal seeking controller tries to
find the path to the goal and ignores if it causes collisions, while the obstacle avoidance controller
has for mission to avoid obstacles and ignores if it deviates from the goal direction or not. These
two behaviours function independently. A command fusion scheme based on a conditioned
activation for each controller arbitrates between the two behaviours. As the path obtained by
using this fuzzy logic system is not a smooth path, a learning procedure is applied on the fuzzy
logic system to optimize the path of the robot.
The following components are involved in this application:

142

Chapter VI Validation and Evaluation

• Sensors: SensorGlueBlock and SensorGoal
• Processor: Pathplanner
• Actuator: Sim_Nomad

The Figure 14 shows the communication architecture of the application.

Components
SensorGoal
The SensorGoal is a simple component with a console input interface that is used to enter the
coordinates of the goal the robot has to reach. The coordinates of the goal are relative to the
position of the robot. The coordinates are sent by an event of type Goal_Sensor and the goal is
represented by the GoalData structure.

SensorGlueBlock
The SensorGlueBlock reads data from the ultrasonic and infra-red sensors as well as the robot
position from the simulator and injects them into the communication network. The data of the
sensors are sent in separated events. The ultrasonic and infra-red sensor data are sent as sequences
of specific structures as depicted by Figure 14.

SimNomad
This Actuator converts the turn angle and the speed received from the Processor PathPlanner to
motor actions for the simulated robot.

PathPlanner
This component uses sensor and movement data received from SensorGLueBlock and the goal data
received from SensorGoalModule as inputs for the fuzzy logic control of the robot. The system is
composed of two fuzzy logic controllers: a Goal Seeking controller and an Obstacle Avoidance
controller. The goal direction and the goal distance are calculated using the goal and the robot
position received from SensorGoalModule and SensorGlueBlock, respectively. These variables are

143

Figure 14. Nomad autonomous application components

<<Sensor>>
SensorGoal

<<Actuator>>
Sim_Nomad

<<MotionCommand>>

<<GoalData>>

<<Sensor>>
SensorGlueBlock

 <<MovementData>>
<<SensorData>>

<<Processsor>>
PathPlanner

Simulator
RobotSensors

get_data() Vm (vt, vr)

Chapter VI Validation and Evaluation

used as inputs for the goal seeking controller. The output of this fuzzy logic controller is a turn
angle that causes a deviation in the direction of the target.
Distances to the obstacles detected by the ultrasonic and infra-red sensors are stored in two
sequences of 16 components US and IR, respectively. These distances are used as inputs for the
obstacle avoidance controller. The output of this fuzzy logic controller is a turn angle to avoid the
obstacles on the path of the robot. The two fuzzy logic controllers are implemented using the
Matlab fuzzy toolbox. The control command is calculated by the means of a function, called
”controle”, that returns the output of the Matlab fuzzy toolbox to the C++ code. This command
consisting of an angle and a translation speed is then transmitted to the ActuatorGlueBlock.

Goalseeking controller
Given the sonar data, the fuzzy controller calculates the turn angle of the robot in order to reach
the target. The model of the controller is based on the distance of the robot to the goal and the goal
direction. The fuzzy logic controller is of a Sugeno type [SUGG82]. The inputs of the Goalseeking
controller are the goal_distance and the goal_angle. The goal_distance ranges between 0 and 7 m and
the goal_angle between −180° and 180°. The output of the controller is the turn angle of the robot,
which ranges between −180 ° and 180°.
The first step in defining a fuzzy logic controller is to determine the input and the output variables
and map them into linguistic variables linked to fuzzy sets.

The direction of the goal is fuzzified into 11 Gaussian fuzzy sets Back Right (BR), Oblique Back
Right (OBR), etc. The membership functions of the first input variable goal_angle are depicted in
Figure 15.

The distance of the goal to the robot is fuzzified into four Gaussian fuzzy sets: VN (Very Near),
NR (Near), M (Medium) and FR(Far) (Figure 16).

144

Figure 15. Membership functions for the goal direction

Chapter VI Validation and Evaluation

Since we want our robot to choose a smooth path to its goal, we have opted for a fuzzy
distribution of the output (turn_angle) such that it covers 360°. Since the model of our fuzzy
controller is a Sugeno, the output membership functions are of a constant type. The turn_angle of
the robot is fuzzified into 11 constant fuzzy sets: Back Right (BR), Oblique Back Right (OBR),
Right (R), as represented by Figure 17.

The two input sets are combined in 44 fuzzy rules. For instance, the first rule is :

If Goal_Angle is Back_Right and Goal_Distance is Far then the turn_angle is Oblique_Back_Right.

For defuzzification we have chosen the weighted average method. The turn angle calculated by
the fuzzy controller corresponds to the weighted average of each output of the set of rules stored
in the knowledge base of the system. Figure 18 shows a graphical representation of dependency
of the turn angle on the goal distance and the goal direction.

145

Figure 16. Membership functions for the distance

Figure 17. Angle divisions

BL BR

OBL

L

OFL

FL FR
F

OFR

R

OBR

0°
22.5°

45°

90°

135°

180° -180°

-135°

-90°

-45°
-22.5°

Chapter VI Validation and Evaluation

We can see from this figure that the turn angle increases with the increase of the goal direction.
This is logical since the robot has to reach the goal direction to get to its target. We can also see that
the dependency of the turn on the goal direction is more important than its dependency on the
goal distance. If the distance is very short, then the turn angle increases rapidly with the goal
direction and if this distance is long, the dependency of the turn angle on the goal direction is less
important.

Obstacle Avoidance Controller
Given the sensor data, the fuzzy controller calculates the turn angle of the robot in order to avoid
the obstacles. The model of the controller is based on the distances to the obstacle detected by the
sonar and infra-red sensors. The fuzzy logic controller is also of a Sugeno type.

The sensors of the Nomad have been divided in groups:

For the obstacle avoidance behaviour, we have considered the distance to an obstacle measured by
each sensor group and the goal direction as the inputs of the fuzzy controller. This distance is
defined as follows for each sensor group Gi:

For i = 1, ..., 5, di = min{dimax, minj{{dij}}; j = 1, ..,N

146

Figure 18. Turn angle as a function of goal distance and goal direction

Figure 19. Groups of sensors

Chapter VI Validation and Evaluation

where dij is the distance measured by the jth sensor of the sensor group i, d1max=4, d2max = d3max=2 and
d4max = d5max=1. The output of the controller is the turn angle, which ranges between −180° and 180°.

The distance measured by each sensor group Gi is fuzzified into three Gaussian fuzzy sets (VN,
NR and FR). The range of this distance depends on the sensor group since the front sensors are the
most important for a collision-free movement of the robot. The lateral sensors are used only to
check if there is an obstacle on the sides of the robot each time it makes a rotation. The
membership functions of the distance ”di” are depicted in Figure 20.

The obstacle avoider based only on the sensor distances, does not take into consideration the
position of the goal. However, it would be better to avoid the obstacles but also to seek the goal.
For doing so, we have also considered the goal direction as an input variable for the obstacle
avoider. The goal direction is fuzzified into two trapezoidal membership functions (Figure 21):

• Negative (N): which is equal to 1 for values between [−180° 0°] and 0 for values between
[0° 180°]

• Positive (P): which is equal to 0 for values between [−180° 0°] and 1 for values between [0°
180°]

147

Figure 20. Membership functions for the distance di

Figure 21.Membership functions for the goal direction

Chapter VI Validation and Evaluation

The output of the Fuzzy controller, the turn angle, is fuzzified into 6 constant fuzzy sets:
• Large Negative (MN): The turn angle is −90°.
• Small Negative (SN): The turn angle is −45°.
• Zero (ZE): The turn angle is 0°.
• Small Positive (SP): The turn angle is +45°.
• Large Positive (MP): The turn angle is +90°.
• Turn Back (TB): The turn angle is +180°.

The Fuzzy Rule Base contain 36 rules. The obstacle avoider functions the same way as the human’s
brain. When an obstacle is detected on the left side of the robot, it avoids it on the right side and
vice-versa. But when it has the choice between two directions, it chooses the direction leading to
the goal.

The defuzzification mechanism for the obstacle avoider is also the weighted average mechanism.
The turn angle is a weighted average of the fuzzy set obtained by the intersection of the different
output fuzzy sets of each rule.

Command Fusion
The obstacle avoidance controller and the goal seeking controller work independently. In fact, the
goal seeker enables the robot to move towards its goal and neglects if it causes a collision.
However, the obstacle avoider avoids obstacles and ignores whether it causes the robot to deviate
from its goal direction. When the robot encounters an obstacle, these two behaviours are in
conflict. To mediate between them in these cases, a command fusion scheme is needed. For
command fusion, we have considered a fusion with arbitration; when the target path is free of
obstacles, the goal seeker is called. Otherwise, if an obstacle is detected on the path of the robot,
then the obstacle avoider is activated and the goal seeker is ignored.
For doing so, we have considered sensors from groups G1, G2, G3, G4, G5, G6 and G7 (on Figure
19) for testing if they detect an obstacle. However, we have accorded more importance to the front
sensors, and the least importance is accorded to the lateral sensors R and L.
In fact, we have chosen a minimum distance to the obstacle, under which the obstacle avoidance
behaviour should be activated. This distance depends on the position of the sensor that detects the
obstacle.
Based on this command fusion scheme, a motion command is sent to the robot to move to a new
position. This motion command is composed of a turn angle, chosen as mentioned above, and a
speed calculated as a function of the turn angle. The larger the turn angle of the robot, the slower
its speed should be. The relation we have chosen between the turn angle and the speed can be
expressed by the following equation:

Speed=1−2 Turnangle

180

speed max

where speed max is the maximum speed.

If this equation gives a negative speed, then we set it at zero. The different trials we have done on
the simulator have shown that this relation is reasonable. The speed is not very high such that the
robot gets quickly in collision before the obstacle avoider is activated. It is not very slow such that
the robot can not move from its position while rotating as well.

148

Chapter VI Validation and Evaluation

Simulation Results
Figure 22 illustrate typical navigations performed using the GoalSeeking controller. The robot
starts from 0, 0.

Figure 22a. Goal Position at -5, 5 Figure 22b. Goal Position at -5, 0

As the GoalSeeking controller gives correct results, obstacles are added to the workspace of the
robot to test the Obstacle Avoidance controller. Figure 23 shows navigations controlled by the
combined GoalSeeking and Obstacle Avoidance controllers.

Figure 23a. Goal Position at 7,8 Figure 23b. Goal Position at 9, -8

We can see on Figure 23 that the robot is able to reach the goal even in difficult situations where he
has to make u-turns as in the second example.

The Learning approach.
A Simple fuzzy control for the obstacle avoidance behaviour is able to drive an autonomous
mobile robot. The used controllers are only based on the expert knowledge, which is not enough

149

Chapter VI Validation and Evaluation

to design a smooth path for the navigation of the robot. The learning approach can cope with this
limitation.

In this work, we have applied off-line learning to the obstacle avoidance controller to adjust its
parameters. For doing so, we have used the Matlab function ANFIS (Adaptive-Network-based
Fuzzy Inference System) [SHIN93]. A predefined path has to be followed by the robot. This path
contains a number of intermediate goal positions. Data (d1 to d5, goal distance and turn angle)
saved during the navigation of the robot to the intermediate targets are used by the ANFIS
module to adapt the membership functions and creates a new Fuzzy Inference System (FIS). This
process is illustrated by the Figure 24 a,b and c. Figure 24 d shows the evolution of the training
error.

Figure 24a. Before training Figure 24b. Intermediate Goal

Figure 24c. Path after learning Figure 24d. Training error evolution

The training procedure has improved the path followed by the robot, movements are smoother
and the path followed by the robot is shorter than in the first case.

150

Chapter VI Validation and Evaluation

3.2.4 Multi-robot applications

Developing multi-robot applications with CoRoBA is not more complicated than for a single
robot, there are only more components involved in the control network. Existing interface
components can be directly integrated into any new applications, each robot being associated with
the existing Sensor(s) and Actuator components. What needs to be developed are components that
implement collaboration and coordinated actions.

If each robot or system co-exists with others without any interaction, there is no special difficulties
and each chain can use different Event Channels (Figure 25).

Example: Simultaneous Goal Navigation of 2 Robudem. Each robot has its own set of goals it has
to reach (Figure 26).

151

Figure 25. Coexistence of identical systems

<<Sensor>> <<Actuator>> <<Processsor>>

Event Channel 1 Event Channel 2

Sensors Robot

<<Sensor>> <<Actuator>> <<Processsor>>

Event Channel 3 Event Channel 4

Sensors Robot

<<Sensor>> <<Actuator>> <<Processsor>>

Event Channel 2n-
1

Event Channel 2n

Sensors Robot

....

Figure 26. Two independent Robudem

Chapter VI Validation and Evaluation

But if we need to share information, as for example if we want to control 2 identical robots with
one joystick as both robots use identical components (Figure 27), we must be able to distinguish
events coming from the two Sensor components. In order to distinguish events emitted by
different running instances of the same component, a unique identifier must be used. We could
have stored this information into the variable header or as filterable data. This would have
consumed some bandwidth because all events of the same type are received by all the clients. But
as we have encoded this information in the domain field of the Header, we can use the registration
mechanism of the Event Channel to filter the events. We are consequently able to group
components in logical clusters. In order to have the possibility to send events from one sensor to
several processors, a special identifier, GLOBAL, is used.
For instance in the case of the shared control application presented in section 2, we can give input
commands to 2 robots (or more) with a single joystick, each robot being controlled by its own
obstacle avoidance loop.

3.2.5 Distributed simulation

Two possibilities can be considered for the conceptual solution of distributed simulation:
• A centralized server that holds the current state of the distributed virtual world. It receives
periodic updates from each robot vehicle dynamic simulation (client), and it broadcasts to the rest
of the visualization clients.
• A distributed world where the state of the world is distributed among clients. Hence, every
client holds a partial copy of the state of the world and it has to broadcast changes to other clients.

The client/server architecture of the virtual world is known to have limitations due to the fact that
the server becomes a bottleneck when the number of robot vehicles (clients) is large. The load is
even larger in cases of a large number of visualization clients.

In this work, the second alternative (distributed world) has been selected at the conceptual level.
Each instance of the simulator has the same model of the world and the robots have the same
posture in all simulators. In the example depicted in Figure 28, n robots are simulated. Robots 1..j

152

Figure 27. Architecture for the shared control of two robots simultaneously

<<Sensor>>
US <<Processsor>>

Avoid

<<Processsor>>
Avoid<<Sensor>>

US

<<Sensor>>
Joystick Global

 EventChannel 0
<<Actuator>>
Sim_Nomad

<<Actuator>>
Sim_Nomad

Nomad
A

Nomad
B

Sensor
NomadA

Sensor
NomadB

 NomadB

 NomadA

Chapter VI Validation and Evaluation

are simulated in simulator 1, robot j+1..k in simulator 2 and robots k+1..n in simulator 3. The
position of non simulated robots are replicated in other simulator instances. Thanks to the event
architecture it is straightforward to provide the visualization with data produced by odometry
sensors of robots simulated in an other instance of MoRoS3D.
Off course each robot has its own controllers (for obstacle avoidance, path following, location, ...)
that are not represented on Figure 28. Additional components should also be developed for inter-
robot communication in order for them to collaborate.

3.3 Real robots
Some components linked to real systems have also been developed. Sensors, Processors and
Actuators interfacing with real robots are described in this section.

3.3.1 Nomad

This Direct Control Pattern makes use of two types of components, namely Sensors and Actuators.
Users provide motion commands for instance with a joystick and these commands are sent to the
actuator that adapts them to the controlled robot (Figure 29).

Sensor
The Joystick Sensor has been presented in section 3.2.1.

153

Figure 29. Direct Control components

<<Sensor>>
Joystick

<<Actuator>>
Robot

McmdSeq

Figure 28. Distributed simulation principle

MoRos3D
MoRos3D

MoRos3D

Actuators
1..j, k+1..n

Actuators
j+1...n

Actuators
1..k

Posit ion Sensors
1..j

Posit ion Sensors
k+1...n

Posit ion Sensors
 j+1...k

3D Models

Chapter VI Validation and Evaluation

Nomad Actuator
The Nomad Actuator actually receives motion commands from motion command Sensors like the
Joystick component described above or from a navigation Processor.
The format for the motion command data is obviously the same as the one defined for The
Sim_Nomad (section 3.1.2) : MotionCommand and McmdSeq.
The communication between the Nomad Actuator and the on-board robot controller is realised
with sockets. This component actually wraps the original motion command functions of the robot.
As the limited power of the on-board computer does not allow to directly run CORBA
applications on it, the Nomad Actuator has to run on a separate computer.

As input events can come from two different kind of components, namely Sensors and Processors,
this component registers its interest for two different events (MC_Processor and MC_Sensor) when
subscribing with the consumer_admin of the Event Channel. Both events are propagated by the
Event Channels and received by the consumer object. The origin of the event is determined in the
method process allowing a different processing in function of the data origin. The length of the
command sequence is also tested because the motion command sequence could have 2 or 3
parameters and a correct data handling is required in both cases.

The generic motion command are also adapted to the kinematics of the robot according to the
following equations:

where x and y are the motion command values that vary from 0 to 255 and tvm and svm are the
desired translation, base rotation and turret rotation speeds of the robot.

The method terminate stops the robot by sending it null speeds.

3.3.2 Robudem

The Robudem component actually abstracts the low level communication and single access point
to the on-board Robudem control system. A Processor has been chosen because the Robudem
server accepts only one connection at a time and consequently this Processor actually groups in a
single component the functions of a Sensor and an Actuator. It receives motion commands,
forwards them by using sockets to the robot, and receives the robot's kinematic data that it sends
as events to the output Event Channel (Figure 30). It is possible to use only the input side of this
component, that is, to use it as if it was an Actuator. An interface called Robudem_ProcessorProxy
has been defined as well as the structure RobudemProprio regrouping the robot proprioceptive
data.

The Robudem Linux Controller is composed of two parts: a Linux server that manages sockets
communication with clients and that communicates via shared memory with the real-time
controller running under RT-Linux. The structure of the shared memory has been kept for the data
transfer between the RobudemProxy and the Linux Controller. The proprioceptive data comes
from the incremental encoders of the four wheels and from the two absolute encoders of the

154

t vm=
−255∗y

127
255

svm=
−255∗x

127
255

Chapter VI Validation and Evaluation

steering motors (see section 5.2 of the chapter V for an overview of the Robudem). This component
has been successfully tested in direct control mode.

From these two examples we see that Actuators are effectively adapters to real robots. If a library
of control functions would be available, it could be directly integrated into the Actuator
components. However, when robots can only be controlled via a server using socket connections,
this adaptation is unavoidable.

3.4 Telecontrol application

3.4.1 Introduction

The aims of this section is to show how an existing applications based on a centralised blackboard
[GEER05] could be reimplemented with the CoRoBA framework and how real applications can
benefit from the framework and the simulator. Starting from Processors tuned in simulation, a
new application using real robots can be rapidly assembled as far as Sensor and Actuator
components for the real robot and sensors exist.

The platform is a Nomad200 that is equipped with a stereo-head. The operator controls the robot
with a wheel and a Head-mounted tracker (Figure 31). Besides pure teleoperation, this complex
application combines advanced control techniques and proposes the choice between different
levels of autonomy. Section 3.4.2 details the application structure and explains how it could be
implemented with CoRoBA while section 3.4.3 presents the first results obtained in simulation.

155

Figure 30. Robudem communication structure

RobudemProxy

<<McmdSeq>>

Robudem
Linux Controller

<<RobudemProprio>>

Chapter VI Validation and Evaluation

Operation modes
The basic mode of operation for the system is traditional or direct tele-operation, including the
creation of feeling of presence. For shared or supervisory autonomy control fixed static
responsibilities for human and robot have been selected. The fixed responsibilities are defined in 4
levels of autonomy:

• Tele-operation: The user has full, continuous control of the robot at low level. The robot
takes no initiative except perhaps to stop once it recognizes that communications have
failed. It does indicate the detection of obstacles in its path to the user, but will not prevent
collision. This is the default autonomy level.

• Safe Mode: The user directs the movements of the robot, but the robot takes initiative and
has the authority to protect itself. For example, it will stop before it collides with an
obstacle, which it detects via multiple US and IR sensors.

• Shared Control: The robot takes the initiative to choose its own path in response to general
direction and speed input from the operator. Although the robot handles the low level
navigation and obstacle avoidance, the user supplies intermittent input to guide the robot
in general directions.

• Full Autonomy: The robot performs global path planning to select its own routes,
acquiring no operator input. The goal of the robot can be specified by the operator or by
the robot’s vision system.

Note that, the change in autonomy level is made dynamically; whenever the operator desires to
change the level of autonomy the robot changes its behaviour.

A behaviour is defined here as a representation of a specific sequence of actions aimed at attaining

156

Figure 31. The Nomad with the stereo-vision system on top,
the VR control interface and the GUI on the robot

Chapter VI Validation and Evaluation

a given desired objective. Each behaviour comprises a set of fuzzy-logic rules. The navigation
strategy used in this application is a reactive navigation. It differs from planned navigation in that,
while a mission is assigned or a goal location is known, the robot does not plan its path but rather
navigates itself by reacting to its immediate environment in real time. The result of applying
iteratively a reactive navigation method is a sequence of motion commands that move the robot
from the initial location towards the final location, while avoiding collisions.

In our approach for robot navigation we describe the possible situations by a set of basic rules:
• If no obstacle is detected then use the ”Goal seeking behaviour”.
• If it’s not possible to change direction toward the goal and there is no obstacle in front of

the robot, then use the ”Go straight ahead behaviour”
• If an obstacle is detected in front of the robot and it’s still possible to change direction (to

turn), then use the ” Obstacle Avoidance behaviour”
• If there is an obstacle in front of the robot and there is no possibility to change the

direction, then use ” Make U-turn behaviour”

The robot uses a reactive navigation approach by considering the local information from its
environment obtained by sonar and infra-red sensors. The adaptation of the navigation strategy to
the real robot is done through the fuzzy-logic rules parameters (Membership functions,
Fuzzification and Defuzzification process) of the different behaviours.

Goal Seeking Behavior: This controller allows the mobile robot, starting from the actual position,
to reach a target point. This operation is realized in an environment where there are no obstacles
around the robot. Given the azimuth (ϕ) and the range to the target (ρ), a fuzzy controller
calculates the turn angle and speed commands to apply to the robot to reach it. The used
controller is of zero order Sugeno’s type and uses linguistic decision rules of the form:

If (ρ is Ai) and (ϕ is Bi) then (Δθ is Ci)

Where Ai and Bi are fuzzy sets defined respectively in universes of discourse, and Ci is a constant.
The control law of the controller is represented by its output surfaces in Figure 32.

157

Figure 32. Output surfaces of the Fuzzy controller

Chapter VI Validation and Evaluation

Obstacle Avoidance: If an obstacle is detected in front of the robot, the nearest point (of this
obstacle) to the robot and making the smallest angle (azimuth) with its axis is marked. A fuzzy
controller using the information provided by the sensors is initiated. It considers the polar
coordinates in the robot frame of the detected points from the obstacles to estimate the change in
angle to apply to the robot to avoid these obstacles. The used controller is a zero order Sugeno’s
type too. In this controller the change in angle to apply to the robot is more important as the
obstacle is closer to the robot and closing its way.

Go Straight Ahead Behaviour: This action is used by the robot if there is an obstacle embarrassing
it to go toward its goal but no obstacle is detected in front of it. In this case the robot continues
moving with its currents speed and orientation.

Make U-turn Behaviour: The robot uses this action in order to leave some blockage situations like
a closed way or a narrow way. When this action is activated, the robot makes a U-turn in its
position and moves straight ahead until a rotation at the right or at the left is possible.

Data Fusion and Map Building
For direct teleoperation the building of a map of the robot’s local environment is not
indispensable. However, the addition of the mentioned levels of autonomy implicates the need for
an accurate representation of the local environment of the robot into a internal obstacle data map.
The map is constructed combining the US and IR sensory information. In this context sensor
fusion can be defined as the process of combining different sets of, or data derived from, sensory
data into a map which represents the environment. Although control architectures with strong
reactive characteristics, like the one applied here, do not require an environmental model in order
to navigate, the enhanced information using sensor fusion can lead to a more intelligent motion
planning.

One of the main motivations for implementing the sensor fusion module is the extension of the
spatial coverage. As the number and range of sensors on the robot are limited, not the whole
environment of the robot can be scanned at a given moment. The usage of an environmental map
enables a memory function, which ensures that the information gathered by past measurements
does not get lost. By doing so, successive measurements performed by one and the same sensor
can be used to reduce the uncertainty on the position of an obstacle as the robot moves. However,
as not all measurements are reliable, it can be preferable to delete from the map objects that
originate from erroneous measurements. For this reason, each object is characterized by the
number of spotting and the number of fusion cycles passed since the last spotting, referred to as
the ”age” of the object. At the beginning of every fusion cycle, the age of every object on the map is
increased by one and then the object is subjected to an elimination test. If the age exceeds a value
that depends on the number of spotting, the object is deleted from the map. The dependability
itself should be determined experimentally, as it is influenced by the reliability of the sensor
measurements as well as the motion speed and cycle time of the sensor fusion module.

Navigation Strategy - Motion Controller
According to the selected level of autonomy, the navigation strategy controller selects the proper
robot driving behaviour. For direct teleoperation, this behaviour is straightforward: simply feed
the acquired speed and steering commands to the robot’s motion controller. In safe mode the

158

Chapter VI Validation and Evaluation

available map is checked for collision danger and if necessary an emergency stop is performed. In
shared control mode as well as in autonomous mode the robot has the responsibility of the local
navigation. To accomplish this task a path planner is included in the system. The input from the
operator can be:

• a final goal if the way and the time to reach this goal are not very important.
• a final goal with a set of desired intermediate passing points.
• or a continuous path until the final goal. In this case, the robot follows the trajectory set up

by the user to reach the target point. If an obstacle is detected, the robot uses the obstacle
avoidance behaviour to bypass it and retrieve its path afterwards.

In all cases the same path planning controller is used and the user has only to define graphically
the target point(s). The output from the obstacle avoidance controller is combined with the input
direction from the operator.

3.4.2 Application architecture and components

The architecture of the application as it could be implemented with CoRoBA is presented in Figure
33. The functionality of the components is described below.

Client sensors: Head Motion Tracker and Joystick
The main task of these modules is the regular update of input commands provided by the
operator. By means of two hardware devices the operator controls the robot and the stereo head.
The robot is controlled by a joystick, which is interfaced using Direct Input. The stereo head is
controlled by movement of the operator’s head. A motion tracking device is placed on the head of
the operator and registers the rotations of the head made by the operator. The control commands
are also transferred through the Event Channel networks to specific Processors, able to handle
them in an intelligent way. In all control modes the operator selects a certain goal or location of
interest based on the visual feedback information received from the robot. The human in the
control loop is fully responsible for this goal selection using his own capabilities for active visual
search tasks.

159

Figure 33. Structure of the advanced telecontrol application

<<Actuator>>
Stereo Head

<<Processor>>
Stereo Head

Control

<<Sensor>>
Cameras

<<Actuator>>
Robot

<<Sensor>>
Odometry

<<Processor>>
Motion Control

<<Sensor>>
Percept ion

<<Processor>>
Data fusion

<<Processor>>
Map building

<<Processor>>
Navigat ion Strategy

<<Sensor>>
Joyst ick

<<Sensor>>
Head Motion

 T racker

<<Actuator>>
GUI

<<Processor>>
Compression

<<Processor>>
Decompression

<<Actuator>>
Display images

Chapter VI Validation and Evaluation

Client Actuators: Display and GUI
Visual feedback to the operator is provided by means of an actuator component, communicating
with a head mounted display (HMD). The operator sees a 3D view of the robot’s environment,
due to the stereo-vision set-up, including the HMD. Being able to look around freely, from a
remote location, at a sufficiently high frame rate, due to the image compression, provides the
operator with a certain feeling of presence at the remote site. The inputs from the operator
registered by two Sensor components, are displayed on a graphical user interface, which is an
Actuator component.
Camera Sensors & Actuators
The robotic platform is a Nomad200 equipped with extra mechanical and sensory structures. On
top of the Nomad 200 another PC platform (Figure 32) is placed, linked by a coax cabled Ethernet
connection. The robot vision module consists at the hardware level of a stereo head, type Biclops,
and two miniature CCD Colour Cameras. The head is mounted on the upper PC platform,
carrying both cameras (Figure 32).
An Actuator component receive events from the Stereo Head Control Processor and forwards the
movement commands to the Biclops system.
A Sensor captures in a synchronized way frames from the left and right cameras by means of a
well suited frame grabber. Before being transferred to the remote user and in order to reduce the
time needed for the transfer of the images, the captured frames are compressed either using the
classical JPEG encoder or a Wavelet based coding technique
Robot Sensors and Actuators
The Nomad actuator has already been described in the preceding section. The Nomad Sensor
connects to the real Nomad via sockets. It receives kinematic and pose data and forwards them in
events of type Nomad_MotionSensor. A structure grouping the kinematic data (NomadKinematics) is
defined in the IDL file.

struct NomadKinematics{
long x;
long y;
long steer_angle;
long turret_angle;
long vel_trans;
long vel_steer;
long vel_turret;

};

Image Compression and decompression Processors
Compression and decompression, aim at the fast transfer of the images over the distributed
framework with respect to their quality. The employed Wavelet based coding scheme, i.e. SQuare
Partitioning (SQP) [MUNT99] has been developed at the VUB. It allows rate-distortion
performances comparable with state-of-the art encoding techniques, allowing lossy-to-lossless
reconstruction and resolution scalability. In terms of rate distortion, SQP outperforms JPEG, at
considerable compression ratios.
The compressed frames are communicated via the wireless link to the client. The resolution
scalability feature of SQP comes in handy when progressively streaming the data, since the
decoder at the client site does not need to wait until all the data has arrived, but it may start
reconstructing a lower resolution of the image (from the received data) and start processing that
image first while waiting to receive the remaining data that would allow to reconstruct the image

160

Chapter VI Validation and Evaluation

at full resolution.
Stereo head processor
This module accurately controls the pan and tilt angle of the stereo head to seamlessly change the
viewpoint.
Robot navigation Processors
The joystick commands are fed into the navigation strategy manager. Based on the level of
autonomy and the local map of the robot’s surroundings, these control commands are adapted. A
motion control process communicates these commands to an Actuator component interfacing with
the robot hardware. The map is generated based on a data fusion process. On its turn this process
receives input from a Sensor component interfacing with the available sensor set-up on the robot.
An odometry sensor component keeps track of the robot’s motion and updates the robot’s
position. This information is of importance for the map building and the motion control.

3.4.3 First results

First results of the implementation of this complex application are presented here. Components
used in previous application that have been tested in simulation have been reused. The Nomad
Sensor and Actuator are already available. By using the on-board camera capability of the
simulator, the (mono-vision) teleoperation mode has been tested. The processors of the shared
autonomy that has already been described in section 3.2.1 and the autonomous navigation
presented in section 3.2.2 can also be reused.
The following Figure represents a model of the Nomad with the additional computer and the
stereo-head. It illustrates an obstacle avoidance navigation of the robot in the simulator. Once
algorithms have been tuned the components can be directly tested with the real Sensors and
Actuators.

161

Figure 34. Screen capture of the simulated autonomous navigation application
for the Nomad

Chapter VI Validation and Evaluation

4 Evaluation
The last part deals with the evaluation of the framework. The qualitative evaluation is based on
the following criteria:

• We explain how applications presented in the introduction could be improved by using
CoRoBA.

• We compare CoRoBA with other frameworks.
On the other hand, for the qualitative evaluation, we have defined and applied evaluation criteria
and measures of effectiveness.

4.1 Improvement of applications
We now show that difficulties and limitations of applications presented in Chapter I could be
eliminated by using CoRoBA.

Corode:

• Corode was written for windows: The implementation of CoRoBA is platform
independent.

• The acquisition and control was grouped in one thread and mixed with the GUI: CoRoBA
provides a clear design that separates the data flow from the control flow. The
visualization of data is not mixed with the application logic.

FuzzyNomad:

• The algorithm code was mixed with the robot function calls: with CoRoBA all functions
and method calls specific to a given robot are located in Actuator components while the
algorithm code is embedded in Processors. This clear decoupling facilitates the recycling
of components.

VRNomad:

• Sockets were used for communication: platform independent communication and CORBA
objects replace low-level sockets communication.

Vizir:

• The 3D model was based on OpenInventor which is a commercial libray: Java 3D has been
used for the 3D visualization part of the simulator.

4.2 Comparison with other frameworks
We can also compare in a more detailed way the CoRoBA implementation with other similar
frameworks. By doing this comparison, we intend to show that CoRoBA is able to do what all the
other ones can do. Therefore, we compare CoRoBA, MCA, DCA, GenoM and ORCA from the
architectural point of view. Similarities and differences between CoRoBA and several frameworks
are given below.

MCA

MCA uses MACRO definitions to simplify the coding of interfaces while interfaces definitions in
CoRoBA are mapped to code by the CORBA IDL compiler. In this cases, interfaces are mapped to
classes organised in independent files that can be easily reused in different projects. On the
contrary, MACROS are expended by the preprocessor and does not produce separate and visible
code.

162

Chapter VI Validation and Evaluation

Functionality of CoRoBA components is located in the process method running in a separate
thread. In MCA, each module has to provide a control and a sense method that are called
periodically by a general timer. In CoRoBA, each component can work at a different frequency.
While CoRoBA defines a unidirectional data transfer for each component, MCA uses bidirectional
data transfer, one for the bottom-up sensor data flow and one for the top-down control data flow.
This can confuse the novice because it allows to mix up different functions in a single module
what is not in favour of the modularity.
MCA implements its own communication library based on sockets and shared memory.
Disadvantages of this approach have already be largely commented on.
In CoRoBA the user can define its own data structure, which are defined with the IDL. MCA is
limited to arrays of double and rely on blackboards for the transfer of other data types. This
introduces a non uniform communication scheme.
The communication in CoRoBA is asynchronous and different running modes are available
(PERIODIC, SYNCHRO, TRIGGER). MCA has only a periodic mode. MCA uses a polling
approach to check if new data is available while CoRoBA relies on the mechanism implemented
by the TAO ORB which implements the Reactor Pattern [SCMI00]. One strong point of MCA is the
use of Parameters. These are variables that can be modified at run time through a standard GUI.

GenoM

Like in CoRoBA, control and data flows in GenoM are clearly separated. The control flow is made
by requests and answers while the data flow between the components relies on a second protocol;
data are exported in read-only structures. Clients send a request for a service and get an
acknowledge when data is available in what is called "posters". This can be seen as an
asynchronous result notification. This working mode can be reproduced in CoRoBA components
by using a combination of 2-way calls and user-defined control events. GenoM uses a proprietary
communication library based on sockets. Definition of interfaces and data in GenoM relies on
standardised servers generated from a synthetic description.

DCA

Controller modules are very similar to the components implemented in CORBA. The core
functionality is located in a base class that is inherited from by derived components. The DCA
communication is based on a library inspired by ACE. The execution relies on a tree organisation
containing supervisors and controllers. The controller contains a process algebra interpreter that
organises the execution of the controller modules. This is the main originality of DCA

MIRO

MIRO is very similar to CoRoBA. Both are based on the same CORBA implementation, namely
TAO, and they offer equivalent capabilities regarding synchronous and asynchronous
communication, this later being based on the Notification Service.
One of the advantages of CoRoBA is the interface hierarchy and the implementation inheritance.
The remotely callable management methods provide easy control capabilities while in MIRO to
stop services you must send SIGINT or SIGTERM signals. Another limitation of MIRO is the
implementation of the Behaviour engine. In [MIRO03], it is mentioned that all behaviours run
sequentially in one loop and are not multi-threaded. The arbiter is included in the Behaviour
process. In CoRoBA, behaviours can be implemented as separate processes providing more
flexibility in the deployment and at run-time.

163

Chapter VI Validation and Evaluation

MARIE

The Marie approach is interesting if existing applications that do not relate to each other have to
be integrated. One of the prerequisite is of course to dispose of an API for interacting with those
applications.
MARIE’s approach, as mentioned in [COTE04] suffers from many drawbacks, namely, overhead,
complexity and system resource management. The Mediator Design Pattern [GAMM95]
centralises rather than distribute and can rapidly become a bottleneck. CoRoBA on the other hand
promotes partitioning and loose coupling by using the Communication Design Patterns presented
in Chapter III.

ORCA

The principles of Orca are very close to CoRoBA's philosophy:
• An Orca component is a stand-alone process. A system consists of a set of process which run

asynchronously, passing objects to one another.
• Communication is performed using a set of communication patterns, which are abstract

policies for how objects are sent, implemented using some transport mechanism.
• Orca does not prescribe anything about how robot architectures should be built. It simply

defines components and their interactions, leaving the developer free to connect them in any
way he chooses.

In comparison with Orca, CoRoBA defines an architecture that mimics components found in
control applications and provides an implementation for these components. This allows to reduce
the development time because developers have only to provide the code related to the
functionality of the component.

Player/Stage

Recently Player has undergone a complete change in its implementation because of a number of
issues that the development community have found with the previous version. Prior to 2.0, Player
was a network oriented device server. The Client-Server model was too restrictive, the wire data
transformations was not robust nor flexible (limited to integers), the driver API was complicated,
only single data and command type was possible for each interface and the only transport
protocol was TCP/IP. In [Coll05] Collet proposes a list of requirements for a robot framework that
is similar to what we have proposed. The changes have focussed on allowing more flexibility and
a simpler message processing system. The implementation has been divided in two main parts:
the Player core and the Transport layer.
In Player 2.0 the core system is a queue-based message passing system and a driver also
broadcasts data to all subscribed client-queues. Player message structure has also been modified
(host, robot, interface, index) and the message namespace has been expanded to two layers.
The transport layer provides two libraries: TCP/IP communication and a platform independent
data representation(XDR).
We note that Player 2.0 reimplements solutions that have been available for years in existing
communication middlewares like CORBA. Synchronous and asynchronous communication,
queues, messages with multi-headers, filters, Naming Service, Interface Repository, Common Data
Representation, ... provide equivalent capabilities.
An advantage of the new structure is the possibility to develop monolithic applications, that is,
without network communication.
The same possibility exists with CORBA by using co-located objects, that is when client and server
are collocated in the same address space. No changes to the source code are necessary in either
client and server if we link the server to the client [HENN99].

164

Chapter VI Validation and Evaluation

We conclude this comparison with a citation from [Coll05] “Player now [mid 2005] acts as a
distributed framework with servers being able to subscribe to each other to meet the requirements
of individual interfaces”. It was obviously not the case at the time we started on own
development.

From these comparisons we see that different frameworks solve identical problems in different
ways and it is very difficult to conclude that one is better than the others, every framework having
its strong and weak points.

4.3 Improvement in development time
There are different ways to evaluate the improvement provided by the framework. For example,
we can measure how many operations have to be performed in order to generate an empty
component, how long it takes to implement a new empty component, how much code has to be
manually written, etc. This kind of evaluation takes a lot of time and requires the availability of a
large number of programmers in order to obtain reliable results. The only results available are
based on a few student developments.

CORBA has a steep learning curve and several months are generally required for understanding
and mastering its programming subtleties (especially in C++). In comparison, graduate students
were able to develop new components with CoRoBA in a few weeks, what confirms the
improvement in development time in comparison with raw CORBA development.

Thanks to the modular architecture, developing a new empty component takes less than 15
minutes. The total time required to implement the functional code depends off course on the
contains of the component.

If Sensor and Actuator components are available for real robots and sensors (for example
developed in a previous applications), porting an application from simulation is immediate. We
only need to start the components making the link with real components instead of the ones used
to connect to the simulator. The core of the application is made up of Processor components that
do not need any modification.

4.4 Measures of effectiveness

4.4.1 Definitions

The purpose of carrying out different validations is to verify that the proposed concept works in a
range of scenarios with different control requirements. Implementing and testing components in
concrete applications provide a first opportunity for validating the framework. We must also be
sure that the components work as they should and that particularly:

• Order of events are preserved
• All sent events are received
• Operations are executed in the right order

Order of events
Except in simple configurations, it is not possible to certify that all events will be received in the
same order they have been sent. If components run on different machines with long transmission

165

Chapter VI Validation and Evaluation

delays and different routes are possible, we cannot guarantee the event ordering. However in
typical control applications where the transmission distance is short and the event always follow
the same route, the order is preserved.

No lost event
The Quality of Service of the Notification Service certifies that all received events are sent to
consumers. At a lower level the TCP/IP mechanism also guarantees that all packets are received.
Furthermore, as all events have an individual Id and a time stamp, it is also possible to add
checking code in the components.

Right order execution:
In data flow mechanism, no scheduler is present to control the right order of the operation
execution.
It is the defined data path that controls the operation ordering. We must however pay attention to
the loops that could appear in the components network. An example of such a situation has been
presented in the preceding Chapter.

Besides this qualitative evaluation it is also possible to perform a quantitative evaluation. In order
to objectively evaluate the individual components and the framework, measures of effectiveness
have to be defined:

• Performance tests: memory, footprint, stability, memory leaks, processing time, data
throughput,

• Modularity will be expressed in term of percentage of reuse.
• Development time: how long it takes to write a new component, how much code has to be

written, how many operations have to be performed.
• Flexibility: when changing the type of a component (from sensor to processor for instance)

the number of lines that have to be (re)written.
• Extensibility: adding new services,...
• Interoperability with other control systems.

4.4.2 Performances

Footprint (size of components on disks)
As can be seen in Figure 35, the size of typical components varies from 300 to 600 kB, which is
rather small according to the current standards.

166

Chapter VI Validation and Evaluation

Memory used by components
Each component needs approximately 10 MB. This is principally due to the CORBA libraries that
seems to use a large amount of memory. The available amount of memory will determine how
many active components can run concurrently without slowing down. In practice 20 to 50
components will be able to run on the same machine. However, the maximum number of
components that can run concurrently also depends on the power of the processor.

Stability and memory leaks
The skeleton implementation of components has been tested extensively and components have
run during several days without suffering from any stability problems or memory leaks.

Processing time
Typical components use a small amount of processing power because they are not running
continuously but with a fixed period or when new data is available. Furthermore, each component
generally performs a limited number of operations because the modularity and the distribution is
a design principle of the framework.

If we consider the case of the PERIODIC mode, the required processing power increases when the
period decreases (Figure 36). In this test 15 components (2 sensors – 12 processors and 1 actuator)
ran concurrently. The simulator and other applications were also running and consumed more or
less 25 % of the processing power.

167

Figure 35. Size of typical CoRoBA components

Chapter VI Validation and Evaluation

Periodicity
The periodicity variation is function of the operating system the components run on. Linux
capabilities in this domain outperform Windows and components requiring a strict respect of the
periodicity should run on this OS. Figure 37 shows typical variations of the period for a sensor
component. This variation is generally limited to 10% of the period (here 100000 µs) during shorts
period of time.
The periodicity is not based on timers but on sleep calls that can be adjusted in function of the
processing time needed by each component. Off course the period has to be chosen by the
application developer by taking into account the time needed by each component to perform the
required calculations, and by the requirements of the global application.

How to choose the periods of the events ?
We consider a typical navigation application whose components are represented in Figure 38. A
component that produces a map of the environment may run slower than an other one that
performs obstacle avoidance. It is also influenced by the time required for sending and receiving
data and consequently by the amount of data produced by the components.

168

Figure 36. Processing power used by 15 components with the same period

0 25 50 75 100 125 150 175 200

0

10

20

30

40

50

60

70

80

90

100

Evolution of Processing Power

Period (ms)

C
P

U
 u

se
 (%

)

Figure 37. Period variation of a typical sensor component

90000

92500

95000

97500

100000

102500

105000

107500

110000

Sensor Period Variation over time (100 ms)

Samples (90)

P
er

io
d

(µ
s)

Chapter VI Validation and Evaluation

We suppose that the slowest component is the Pathplanner and we consider that it can produce a
new path every second. It means that it is not necessary to provide it with a new map at a larger
frequency.
On the other way we want to obtain a precise map of the environment and consequently wants to
have as much information from the sensors as possible. The same applies for the obstacle
avoidance component.
In the current implementation, data processing is linked to event transmission. So if we want to
integrate all the sensor measurements, we must process data synchronously and send them at the
same frequency to the next component. But if we send 20 times the map per second to the
Pathplanner, most of the data will be dropped. It could be advantageous to decouple the data
reception and processing from the event transmission. By doing this, all sensor data could be
integrated into the map but this would only be sent for instance every second to the Pathplanner.

Data throughput and transmission time
The network performance can be expressed by the following relation:

Message Transmission Time = latency + length / data transfer rate

The latency is the delay between the start of a message's transmission from one process and the
beginning of its receipt by another. The latency includes the time taken by the operating system
communication services at both ends, the delay in accessing the network and the propagation time
before the first bit reaches its destination.
On one hand, the operations added by CORBA increases the latency (that is independent of the
message length). On the other hand, the extra information contained in a CORBA frame is quite
constant (a few hundreds of bytes) and has therefore a larger influence for small data packets. It
comes to a 20 to 30% overhead in comparison with raw socket communication. This result is
confirmed by a comparative performance experiment reported in [GILL02] However, with
increasing computing power and communication bandwidth, the overhead introduced by CORBA
becomes every day less and less significant. As the framework communication is directly based on
CORBA, there is no extra overhead from using the framework.

169

Figure 38. Typical control application

<<Processsor>>
PathPlanner

<<Processsor>>
Mapping

<<Processsor>>
Sensor Fusion

<<Processsor>>
Obstacle

Avoidance

<<Processsor>>
MotionControl

<<Sensor>>
Environment

SensorA

<<Actuator>>
Robot

50 msec
1 sec

50 msec

<<Sensor>>
Environment

SensorB
<<Sensor>>

Position
SensorB

Chapter VI Validation and Evaluation

Simulator performances
Concerning the simulator performances, typical figures for 10 robots with 16 laser distance sensors
is 80% processor activity (Intel Centrino 735) and a memory usage of 40MB. The scene refresh
period in this configuration is 80 ms. (Figure 39)

The executable is stable and does not have any memory leaks. Figure 40 and 41 show two screen
shots taken at one hour interval where we can see that memory usage is constant.

Regarding pure performances, Java3D is certainly not the fastest 3D engines but it is not too slow
because all 3D operations actually rely on the 3D rendering library (DirectX or OpenGL), only
collision detection and motion control algorithms are written in Java.

170

Figure 39. Typical processor load with 10 robots

Figure 40. Screen shot taken at 9.50.

Chapter VI Validation and Evaluation

Real Time simulation
As explained in Chapter V – section 9 (p118), at each iteration of the simulator engine, the elapsed
time is measured. The motion of the robot is based on this time difference and consequently the
distance made by the robot corresponds to the reality. The next Figure illustrates a linear motion
of a simulated Nomad with a constant speed of 1 m/s. We can see that after 10 seconds (real time)
of simulation the robots has moved 10 meters. The coefficient of the line is 0.97, what gives an
acceptable mean error of 3%. The measurement has been done with a Nomad_Sensor component
and the Logging service.

It is however possible to use a scale factor in order to speed the simulation up or down

171

Figure 41. Screen shot taken at 10.50.

Figure 42. Linear motion of one Nomad with a constant speed of 1m/s

Chapter VI Validation and Evaluation

5 Summary
The choice of an efficient and platform independent library for the implementation of the
communication has allowed to fulfil the main requirements in computing and communication.
The TAO implementation of CORBA proposes an efficient interprocess communication library
that allows synchronous and asynchronous communication, offers support for easy development
of multi-threaded components and their synchronisation and runs on different platforms. It also
provides the flexibility to make the distribution of an application over multiple nodes easy for the
developer and transparent for the user. An application developer can choose the communication
model (synchronous or asynchronous) in function of its needs as this is not imposed by the
framework. C++ and Java have been used because of the numerous advantages of Object Oriented
languages in large projects. Inheritance, method overriding, virtual methods and abstract classes
are powerful tools that simplify the development and improve the productivity of the
programmer. Portability and modularity are two other requirements that have been met in the
implementation of CoRoBA. The component based architecture contributes to the modularity too.

Applications presented in this chapter have demonstrated how existing systems could be
integrated and combined with the framework. The data structure are defined in IDL and can be
easily changed without requiring any modification to the components architecture. On the other
hand, as long as 2 different robots or sensors implement the same interfaces, they can easily be
exchanged with each other.

The applications that have been developed are representative of what the framework is good for
and allowed us to validate its functionality and modularity. It has been shown that applications
can be built incrementally by recycling existing components. Components developed in simple
applications can be reused without any modifications in similar or more elaborated ones. Different
applications illustrate the Robot Control Patterns presented in Chapter II: direct control,
teleoperation, shared and autonomous navigation with Fuzzy logic engines and Behaviours
arbitration mechanisms. All these applications demonstrate that CoRoBA provides enough
flexibility to develop a large panel of control architectures.

Furthermore, the code the developer has to write is generally limited to a few tens of lines, that is,
to the code implementing the application algorithms. All the rest is provided by the framework.

The presented applications also demonstrate the use and usefulness of the simulator that has been
presented in the previous chapter.

172

Chapter VII Conclusion

 Chapter VII Conclusion Chapter VII Conclusion

While the present implementation of CoRoBA already offers much satisfaction, it is certainly possible
to improve it in many ways.

One possible bottleneck in the current implementation is the Notification Service. Each component has
to contact this service in order to connect to an Event Channel. That means that all data transit by this
service that redistributes them to the connected clients. If the number of components and the traffic
increase too much the Notification Service could become the bottleneck of the application. One
solution to reduce this potential limitation would be to use several Notification Services. This would
necessitate to modify the implementation by allowing a component to be able to find and narrow
different Notification Services.

Anyone willing develop with CoRoBA will need to know and understand the fundamentals of
CORBA. While these are not to difficult, it could be opportune to hide as much as possible the CORBA
flavour in order to facilitate the development and to widen the audience.

Tools are also needed for writing management scripts and graphical interfaces for managing the life
and run cycle of components.

A robust infrastructure supporting the deployment of the components would be appreciated for large
applications.

In the current implementation a component provides a single service and the most simple application
requires that several components and processes be deployed. CORBA provides a mechanism called
“collocated objects” that allows a process to give access to many objects and thus services. With this
mechanism, a server and a client may reside in the same component and consequently communicate
directly without using TCP/IP mechanism.

Besides improvements of the framework itself, developing more applications is also required. For
example, CoRoDe could be reimplemented with CoRoBA. For this we would have to add the
following elements:

• The control of the 3D scanner.
• The data acquisition with the Metal Detector and the visualisation of the acquired data.

MoRoS3D could be used to simulate a mine detection system by adding a mine detection sensor as
well as and visualisation and map generation components. It could also be used to simulate risky
interventions of mixed robots and humans teams after natural or artificial disaster (explosion in a
chemical plan, earthquake, ...)

Other possible improvements of the MoRoS3D simulator are:
• to add more robots and sensors,
• to develop a plug-in mechanism for adding new robots,
• to implement 3D terrain following,
• to use Multi-body dynamics for simulating shocks and friction.

173

Chapter VII Conclusion

In this thesis the design, implementation and evaluation of a multi-sensor robotic control framework
has been performed and typical components used in robotic applications have been developed to
validate the framework. Besides the particular comments made along all chapters, there are a number
of general conclusions that can be drawn from this work.

The systematic analysis and the decomposition of typical applications into Robotic Control Pattern
facilitated the identification of generic requirements. Those were completed by requirements from a
computational point of view to finally yield an exhaustive list that was used as guidelines in the
design phase.
The architecture of the framework based on suited Design Patterns and object oriented techniques
provides a robust implementation without limiting future modifications.

Moreover, the separation of components into Sensor, Processor and Actuator gives the developer a
clear view of the functionality of each component. It also facilitates the choice concerning the
granularity and the partitioning and promotes the modularity and the distribution of applications.

In order to validate the proposed framework, concrete components have been implemented to build
applications according to the Robotic Control Patterns presented in this thesis. It has been shown that
complex applications can be built with an incremental approach and that the possibility to reuse
previously developed components reduces the development time.

Besides the framework and the components a 3D simulator completes the development solution
proposed in this work. But as the simulator is totally independent from CoRoBA, it can be used
without it and in this case, robots can be controlled by programs written in any language having a
CORBA mapping. On the other way, another simulator with a CORBA interface could be used with
the framework.

Off course this is only the beginning of the story and future developments will certainly require to
modify and to extend the framework but we are strongly convinced that thanks to the modular
architecture this will not be a real challenge.

174

Bibliography

BibliographyBibliography

[ALAMI98] Alami R., Chatila R., Fleury S., M. Ghallab, F. Ingrand, An Architecture for Autonomy,
International Journal of Robotics Research, special issue on "Integrated Architectures for
Robot Control and Programming", 1998

[ALAMI00] Alami R. & all., Around the Lab in 40 days..., IEEE ICRA conference 2000, San Francisco
(USA), pp 88-94

[ARNA00] Arnaud P., Des Moutons et des Robots, Presses Polytechniques et Universitaires
Romandes, Collection Meta, ISBN: 2-88074-458-X

[BALE00] Balen H., Distributed Object Architectures with CORBA, Cambridge University Press,
Managing Object Technology Series, 2000, ISBN 0-521-65418-1

[BROO85] Brooks R. A., A Robust Layered Control System for a Mobile Robot, AI Memo 864, MIT,
1985

[BRUY02] Bruyninck H. And Soetens P., The OROCOS Project,
http://people.mech.kuleuven.be/~psoetens/orocos/doc/orocos-overview.html

[COLL05] Collett Toby H.J., MacDonald Bruce A. and Gerkey Brian P., Player 2.0: Toward a
Practical Robot Programming Framework. In Proceedings of the Australasian
Conference on Robotics and Automation, Sydney, Australia, December 2005.

[COLO96] Colon E., Baudoin Y., Development and evaluation of distributed control algorithms for
the mobile robot Nomad200, Mobile Robot and Automated Vehicle Control Systems,
SPIE PHotonics East 1996, Boston

[COLO98] Colon E, Viewing and controlling a mobile robot with common web technologies,
Aerosense 98, Orlando, USA

[COLO99] Colon E., Virtual and Augmented Reality Aided Vehicle Control, ISMCR, June 1999,
Tokyo, Japan

[COLO02] Colon E., Review of Software Frameworks for Robotics Applications, Technical report,
Royal Military Academy, Not published.

[COLO02a] Colon E. & all, An Integrated robotic system for antipersonnel mines detection, Control
Engineering Practice 10, 2002, p 1283-1291

[COLO02b] Colon E., Review of Robotic Control and Teleoperation Architectures, Technical report,
Royal Military Academy, Not published.

[COLO04] Colon E., Evaluation of CORBA communication models for the development of a robot
control framework, HUDEM04, Brussels, June 2004.

[COLO06b] Evaluation of CORBA Communication Models, Colon E., Technical report, Royal
Military Academy.

[COLO06a] Installation and configuration of CoRoBA (including MoRoS3D), Colon E., Technical
report, Royal Military Academy.

[COUL01] Coulouris G., Dollimore J., Kindberg T., Distributed Systems Concepts and Design,

177

http://people.mech.kuleuven.be/~psoetens/orocos/doc/orocos-overview.html

Bibliography

Addison-Wesley, Pearson Education, Third edition 2001, ISBN 0-201-61918-0

[DOUG03] Douglass B. P., Real-Time Design Patterns, Addison-Wesley, Object Technology
Series,2003, ISBN 0-201-69956-7

[COTE04] Côté C., Létourneau D., Michaud, F. Valin, J.-M., Brosseau, Y., Raievsky, C., Lemay, M.,
Tran, V., Code Reusability Tools for Programming Mobile Robots, Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2004.

[ERIC04] Ericson C., Real-Time Collision Detection, The Morgan Kaufmann Series in Interactive 3-
D Technology, 2004, ISBN: 1558607323

[FERB99] Ferber J., Multi-Agent Systems, Addison-Wesley, ISBN 0-201-36048-9

[GAMM95] Gamma E., Helm R., Johnson R and Vlissides J., Design Patterns Elements of Reusable
Object-Oriented Software, Addison-Wesley, Professional Computing Series, 1995, ISBN
0-201-63361-2.

[GILL02] Gill, C. & Smart, W. (2002). Middleware for Robots?, In Intelligent Distributed and
Embedded Systems, Papers from the 2002 AAAI Spring Symposium, Gaurav S.
Sukhatme and Tucker Balch (Ed.), pages 1-5, 2002.

[GOWD00] Gowdy, J. (2000). A Qualitative Comparison of Interprocess Communications Toolkits
for Robotics, Internal report CMU-RU-TR-00-16, the Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA

[GRAV00] Graves A. R. And Czarnecki C, Design Patterns for Behavior-based Robotics, IEEE
Transactions on Systems Man and Cybernetics Part A: Systems and Humans. January
2000, Vol. 30, N°1, pp. 36-41.

[GEER05] Thomas Geerinck, Valentin Enescu, Ioan Alexandru Salomie, Sid Ahmed Berrabah,
Kenny Cauwerts, Hichem Sahli: Tele-robots with shared autonomy: tele-presence for
high level operability. ICINCO2005, September 2005, Spain, pp 243-250.

[HENN99] Henning M., Vinoski S. Advanced Programming with C++, Addison-Wesley,
Professional Computing Series, 1999, ISBN 0-201- 37927-9

[HUST04] Huston D., Johnson J., Syyid U., The ACE Programmers Guide, Addison-Wesley,
Pearson education, 2004, ISBN 0-201-69971-0

[JAME85] James, M. L., Smith, G. M., and Wolford, J. C., Applied Numerical Methods for Digital
Computation, 3rd. ed., Harper & Row, New York, 1985.

[Li00] Li S., Professional Jini, Wrox Press Inc, 2000, ISBN 1-861003-55-2, pp 90-129.

[MIRO01] Enderle S., H. Utz, S. Sablatnön, S. Simon, G. Kraetzschmar, G. Palm, MIRO:
Middleware for autonomous mobile robots, in Proceedings of Telematics Application,
pp 149-154, Weingarten, Germany, 2001

[MIRO03] Miro Manual Version 0.9.4 (10 Jan 2006). Available at:
smart.informatik.uni-ulm.de/MIRO/miro_manual.pdf

[MOLL97] Moller, T., A fast triangle-triangle intersection test. Journal of Graphics Tools. (1997)

[MUNT99] Munteanu A., Cornelis J., Van der Auwera G. and P. Cristea, Wavelet-based lossless
compression scheme with progressive transmission capability, International Journal of
Imaging Systems and Technology, Special Issue on Image and Video Coding 10 (1999),

178

Bibliography

no. 1, 76–85.

[NELI05] Nelissen M., Autonomous Mobile Robot Software Design, Master Thesis, Vrije
Universiteit Brussel, September 2005.

[PETE01] Peterson L., D. Austin, H. Christensen, DCA:A Distributed Control Architecture for
Robotics, IROS 2001 - IEEE International Conf. on Intelligent Robots and Systems,
Hawaï, USA, 29 oct. – 3 nov., 2001

[PETE02] Peterson L., A Framework for Integration of Processes in Autonomous Systems,
Doctoral Dissertation, Kungl Tekniska Högskolan, Stockolm 2002

[PROS99] Prosise J., Programming Windows with MFC, Microsoft Press, 1999, ISBN 1572316950

[SCMI00] Schmidt D., Stal M., Rohnert H. and Buschmann F., Pattern-oriented Software
Architecture: Patterns for concurrent and Networked Objects, Volume 2. Wiley & Sons,
New York, 2000

[SHER92] Sheridan T. B., Telerobotics, Automation and HumanSupervisory Control, The MIT
Press

[SHIN93] Jyh-Shing, Jang R., ANFIS: Adaptive-Network-Based Fuzzy Inference System, 1993,
IEEE Transactions on Systems, Man and CyberneticsPart B: Cybernetics, Vol. 23, NO. 3,
665-685.

[SMAR05] Smart J., Hock K. and Csomor S., Cross-Platform GUI Programming with wxWidgets,
Prentice Hal, 2005, ISBN 0131473816Press, Cambridge, ISBN 0-262-19316-7

[SUGG82] Sugeno M and Takagi T., Derivation of fuzzy control rules from human operator’s
control actions, 1983, Proc. of the IFAC symposium on Fuzzy Information, Knowledge
Representation and Decision Analysis, 55-60.

[TOBY05] Toby H.J. Collett, Bruce A. MacDonald, and Brian P. Gerkey, Player 2.0: Toward a
Practical Robot Programming Framework. In Proceedings of the Australasian
Conference on Robotics and Automation, Sydney, Australia, December 2005.

[TREPA03] Trépanier F.-E. and MacDonald B., Graphical simulation and visualisation tool for a
distributed robot programming environment. In Proceedings of the Australasian
Conference on Robotics and Automation, CSIRO, Brisbane, Australia, December 1-3
2003

[VERL05] Verlinden O., Kouroussis G.,Conti C., EasyDyn: A framework based on free symbolic
and numerical tools for teaching multibody systems, Proceedings of the Multibody
Dynamics 2005, ECCOMAS

[VINO02] Vinoski S., Where is Middleware?, IEEE Internet Computing magazine, March-April
2002, pp 83-86

[WALS02] Walsh A. & Gehringer D, Java3D API Jump-Start, Prentice Hall, ISBN 0-13-034076-6

179

Publications

PublicationsPublications

Journals

• CoRoBa, a multi mobile robot control and simulation framework, Colon E., Shali H., Baudoin
Y., Special Issue on "Software Development and Integration in Robotics" of the International
Journal on Advanced Robotics, pp 73-78,Volume 3, Number 1, March 2006.

Conferences

• Development and evaluation of distributed control algorithms for the mobile robot
Nomad200, Colon E., Baudoin Y., Mobile Robot and Automated Vehicle Control Systems,
SPIE Photonics East 1996, Boston

• Viewing and controlling a mobile robot with common web technologies, Colon E, Aerosense
98, Orlando, USA

• Virtual and Augmented Reality Aided Vehicle Control,Colon E., ISMCR workshop, June 1999,
Tokyo, Japan

• Software modularity for mobile robot applications, Colon E., Sahli H., CLAWAR2003,
September 2003, Catania, Italy, p 417 - 424

• Evaluation of CORBA communication models for the development of a robot control
framework, Colon E., HUDEM04, Brussels, June 2004.

• CoRoBA, an Open Framework for Multi-Sensor Robotic Systems Integration, Colon E., Sahli
H., CIRA2005, June 2005, Helsinki, Finland

• Distributed Control of Robots with CORBA, Colon E., Sahli H., Baudoin Y., ISMCR05, 8-10
November 2005, Brussels, Belgium

• Development of a control architecture for the ROBUDEM outdoor mobile robot platform,
Daniela Doroftei, Eric Colon, Yvan Baudoin, IARP Workshop RISE, Brussels, June 2006

• Tele-robotics:Distributed Training-oriented Navigation Framework,Thomas Geerinck, Eric
Colon, Sid Ahmed Berrabah, Kenny Cauwerts,Hanene Bahri, Hichem Sahli, IARP Workshop
RISE, Brussels, June 2006

• MoRoS3D, a multi mobile robot 3D simulator, Eric Colon, Hichem Sahli, Yvan Baudoin,
Introductory Workshop to the CLAWAR 2006 conference, Brussels, 11 September 2006.

• A modular control architecture for semi-autonomous navigation, Daniela Doroftei, Eric Colon,
Yvan Baudoin, CLAWAR 2006 conference, Brussels, 11 September 2006.

181

Publications

Technical reports
• Review of Software Frameworks for Robotics Applications, Colon E.,Technical report, Royal

Military Academy.
• Review of Robotic Control and Teleoperation Architectures, Colon E., Technical report, Royal

Military Academy.
• Installation and configuration of CoRoBA (including MoRoS3D), Colon E., Technical report,

Royal Military Academy.
• Evaluation of CORBA Communication Models, Colon E., Technical report, Royal Military

Academy.

182

Appendices

AppendicesAppendices

183

Appendices

184

Appendices

Appendix A: Unified Modelling Language Notation

UML defines diagrams that are suited for the software development in the specification, design and
implementation phases.

Structural Modelling
Class diagrams are certainly the most important diagrams. They offer a static view of the system by
representing classes and relations between them. We distinguish class diagrams that describe the
general model of the system and objects diagrams that represent particular instances of these classes.

A class diagram contains three parts:
• The name of the class (abstract class names are written in Italic)
• The list of attributes
• The list of operations

The last two parts can be omitted.

An object is depicted by a rectangle containing two parts:

Classes generally collaborate to build an application. There exists several types of relationships
between classes:

Dependency

Association

Generalization

185

Polygon
Points:List of Points
LineColor: Color
T hickness: Integer
Color: Color

draw ()
move (p: Point)
resize (s: Scale)

Polygon

poly:Polygon
Points:((0,0), (1,0), ...)
LineColor: Red
T hickness: 3
Color: Blue

Appendices

Classes inheritance is represented by a generalization relationship:

Other building blocks of UML are:

Component: Note:

Interface: Package:

Node (Computer):

Active Class:

Behavioural Modelling

Sequence diagrams and collaboration diagrams are two of the five diagrams used in the UML for
modelling the dynamic aspects of systems. A sequence diagram (left) is an interaction diagram that
emphasizes the time ordering of messages while a collaboration diagram (right) is an interaction
diagram that emphasizes the structural organization of the objects that send and receive messages.

186

Child

Parent

Name

Server

EventHandler

IService

T ext

c:client

:T ransact ion

<<create>>

p:server

operat ion (a,d,o)
setValue (d, 3.4)

setValue (a,”EC”)

committed

<<destroy>>

c:client

:T ransact ion p:server

1: <<create>>
2: Operat ion (a,d,o)
3: <<destroy>>

2.1: setValue (d,3.4)
2.2: setValue (a,”EC”)

Appendices

Appendix B: Service Interface

The commented file RMA_Service.idl is listed hereafter.

1 #ifndef RMA_IDL
2 #define RMA_IDL

...
46 #endif

These instructions are a classical method for avoiding multiple includes of the same file in an other
one.

4 #pragma prefix "rma.ac.be"

Every type in a specification is assigned a repository identifier (ID) by the IDL compiler. The ID's are
stored in the Interface Repository and allow run-time access to IDL definitions. These ID's are formed
by the different scope names in the IDL file. The prefix pragma permits to add a unique identifier to a
repository ID to avoid name clashes.

The ID's for the module and the Service interface are :
IDL:rma.ac.be:RMA:1.0
IDL:rma.ac.be:RMA/Service:1.0

6 module RMA {
...
45 };

IDL uses the module construct to create namespaces. Modules are mapped to namespaces in C++ and
packages in Java.

8 interface Service {
...
44 };

Instruction on line 8 defines a new interface called Service. Interfaces are mapped to abstract classes
in C++ and Interfaces in Java. The difference with C++ classes is that interfaces don't distinguish
public, protected or private areas and don't have member variables.

10 typedef unsigned long Msec;

A new type is defined for transferring time values in milliseconds.

12 enum SvcMode { TRIGGER_MODE, PERIODIC_MODE, SYNCHRO_MODE};
13 enum SvcType { SERVICE_TYPE, SENSOR_TYPE, PROCESSOR_TYPE,

ACTUATOR_TYPE };

Three modes have been defined for event-based communication: Synchronous, Periodic and External
trigger. An enum type is defined for generic services and for each component type (see hereafter). The

187

Appendices

way data is handled and how components act and react depends on the selected mode and on the
component type.

15 struct SvcInfo {
16 SvcType type;
17 string author;
18 string version;
19 }
41 SvcInfo get_info();

The SvcInfo data structure stores information about the service. This information can be queried by
other services by invoking the get_info operation.

21 exception CannotStart { string msg_error; };
22 exception UnknownMode { string available_modes };
23 exception BadMode (SvcMode requested_mode, string permitted_mode };
24 exception NotRunning {};
25 exception AlreadyRunning {};

These user exceptions are thrown by the operations listed below.

27 SvcMode get_mode();
28 void set_mode (in SvcMode mode) raises (UnknownMode);

These operations allow to set and get the service mode. An exception is raised by the set_mode
operation if the mode is not known by the service.

30 Msec get_period();
31 void set_period (in Msec period) raises (BadMode);
32 Msec get_duration () raises (NotRunning);

The set_period sets the desired execution period for the PERIODIC mode. An exception is thrown by
the set_period if one attempts to change the period if the service is not in this mode. The get_period
retrieves this value. The get_duration gets the real duration of a loop execution. This allows to adjust a
timeout to reach the desired period duration. The get_duration raises an exception if the service is not
currently running when invoked.

 34 void trigger () raises (BadMode);

A service uses this operation to fire the data processing in the TRIGGER mode. If not in this mode, an
exception is thrown.

36 void start() raises (CannotStart, AlreadyRunning);
37 void stop() raises (NotRunning);
38 void pause() raises (NotRunning);
39 void wakeup() raises (NotRunning);

Operations defined at lines 36 to 39 are used to manage the components run cycle. This is further
explained in section 2.

43 oneway void destroy();
The destroy operation allows to close the service remotely.

188

Appendices

Appendix C :NotificationService Operations

189

Supplier ConsumerEventChannelFactory

create_channel (,)

ec
new_for_supplier (,)

supplier_admin

obtain_not_push_cons (,)

proxy_push_consumer

connect_struct_push_supp ()
_narrow()

push_structured_event ()

new_for_consumer (,)

obtain_not_push_supp ()

connect_struct_push_cons ()

create_channel (,)

ec

consumer_admin

proxy_push_supplier

push_structured_event ()

_narrow()

offer_change (,) offer_change (,)

subscript ion_change (,) subscript ion_change (,)

disc_struct_push_cons (,) disc_struct_push_cons (,)

disc_struct_push_supp (,) disc_struct_push_supp (,)

Co
nn

ec
tio

n
U

til
is

at
io

n
A

dm
in

is
tra

tio
n

D
is

co
nn

ec
tio

n
Fi

lte
rs

default_filter_factory ()

default_filter_fact
create_filter()

add_filter ()

filteradd_constraints ()

idem

	Chapter I Introduction
	1 Preamble
	2 Motivation
	3 Objectives of the thesis
	4 State of the Art
	4.1 Frameworks
	4.2 Simulation

	5 Originality and output
	6 Thesis outline

	Chapter II Analysis
	1 Introduction
	2 Computing and communication issues
	2.1 Operating systems
	2.2 Distribution and network technology
	2.3 Communication models
	2.4 Programming model and languages
	2.5 Portability
	2.6 Modularity
	2.7 Integration of existing systems

	3 Robot Control Patterns
	3.1 Definition
	3.2 Direct control
	3.3 Monitoring
	3.4 Data processing
	3.5 Direct telecontrol (teleoperation)
	3.6 Supervised and Autonomous Control
	3.7 Multi-robot systems
	3.8 Multi-user systems

	4 Development and deployment support
	4.1 Development
	4.2 Deployment

	5 Summary

	Chapter III Framework Architecture
	1 Introduction
	1.1 Design guidelines
	1.2 Granularity, partitioning and interfaces

	2 Design Patterns
	2.1 Definition
	2.2 Design patterns and framework
	2.3 Architectural Design Patterns
	2.4 Behavioural Patterns
	2.5 Concurrency Patterns

	3 Communication
	3.1 Communication libraries
	3.2 Middleware
	3.3 Programming models
	3.4 Middleware selection

	4 Architecture support for deployment
	4.1 Introduction
	4.2 Event based communication
	4.3 Configuration
	4.4 Load balancing
	4.5 Safety and Reliability
	4.6 Security
	4.7 Logging and monitoring
	4.8 Life Cycle and Persistence

	5 Summary

	Chapter IV Design and Implementation
	1 Introduction
	2 Framework Architecture
	2.1 Design Patterns
	2.2 Component architecture

	3 Component categories
	3.1 Definition
	3.2 Interfaces and implementation
	3.3 Component development

	4 Communication models
	4.1 Synchronous and Asynchronous communication
	4.2 Remote management of components
	4.3 Event based communication

	5 Running modes
	5.1 Sensors
	5.2 Processors
	5.3 Actuators

	6 Monitoring and logging
	6.1 Monitoring
	6.2 Logging

	7 Location of Components
	7.1 Interoperable Name Service
	7.2 Locating Services

	8 Objects creation and initialization
	9 Summary

	Chapter V Simulation
	1 Introduction
	2. Simulator Overview
	2.1 Functionality
	2.2 Scene modelling
	2.3 Simulation process

	3 Graphical User Interface
	4 Scene Graph
	4.1 Java3D scene model
	4.2 Class hierarchy and Scene graph of MoRoS3D
	4.3 Behaviours and events

	5 Robot models
	5.1 Nomad
	5.2 Robudem

	6 Collision detection and response
	6.1 Problem
	6.2 Collision detection
	6.3 Implementation

	7 Sensor modelling
	7.1 Perception Sensors
	7.2 Linear Sensors
	7.3 Ultrasonic sensors
	7.4 Array of sensors

	8 Integration with CoRoBA
	8.1 Communication
	8.2 Interfaces
	8.3 Registration

	9 Simulation engine
	9.1 Control Engine
	9.2 Sensor Engine

	10 Summary

	Chapter VI Validation and Evaluation
	1 Introduction
	2 Theoretical validation
	2.1 Framework definition
	2.2 Review of the requirements

	3 Validation through applications
	3.1 Components integration
	3.2 Control Applications
	3.3 Real robots
	3.4 Telecontrol application

	4 Evaluation
	4.1 Improvement of applications
	4.2 Comparison with other frameworks
	4.3 Improvement in development time
	4.4 Measures of effectiveness

	5 Summary

	Chapter VII Conclusion
	Bibliography
	Publications
	Journals
	Conferences
	Technical reports

	Appendices
	Appendix A: Unified Modelling Language Notation
	Appendix B: Service Interface
	Appendix C :NotificationService Operations

