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1. Introduction 
Contemporary autonomous robots are generally equipped with an abundance of sensors like for 

example GPS, Laser, ultrasound sensors, etc to be able to navigate in an environment. However, this 

stands in contrast to the ultimate biological example for these robots: us humans. Indeed, humans seem 

perfectly capable to navigate in a complex, dynamic environment using primarily vision as a sensing 

modality. This observation inspired us to investigate visually guided intelligent mobile robots. 

In order to understand and reason about its environment, an intelligent robot needs to be aware of the 

three-dimensional status of this environment. The problem with vision, though, is that the perceived 

image is a two-dimensional projection of the 3D world. Recovering 3D-information has been in the focus 

of attention of the computer vision community for a few decades now, yet no all-satisfying method has 

been found so far. Most attention in this area has been on stereo-vision based methods, which use the 

displacement of objects in two (or more) images. Where stereo vision must be seen as a spatial 

integration of multiple viewpoints to recover depth, it is also possible to perform a temporal integration. 

The problem arising in this situation is known as the "Structure from Motion" (SfM) problem and deals 

with extracting 3-dimensional information about the environment from the motion of its projection 

onto a two-dimensional surface. 

In this paper, we investigate the possibilities of stereo and structure from motion approaches. It is not 

the aim to compare both theories of depth reconstruction with the goal of designating a winner and a 

loser. Both methods are capable of providing sparse as well as dense 3D reconstructions and both 
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approaches have their merits and defects. The thorough, year-long research in the field indicates that 

accurate depth perception requires a combination of methods rather than a sole one. In fact, cognitive 

research has shown that the human brain uses no less than 12 different cues to estimate depth. 

Therefore, we also finally introduce in a following section a methodology to integrate stereo and 

structure from motion.  

The idea of this approach is sketched on Figure 1. The setup we consider for this approach is that of a 

stereo vision system installed on a mobile robot. While navigating in the environment, the different 

camera images can be interpreted in several ways to obtain a structural 3D view of the environment. 

Stereo vision employs the differences in the left and right camera images to obtain a sparse 3D 

reconstruction, which can be upgraded to a dense reconstruction. In a similar manner, SfM employs the 

movement between two successive camera images to infer sparse, and eventually also dense, depth 

information. Finally, all these cues are integrated to obtain a better reconstruction result, bringing 

together the advantages of stereo and SfM- based approaches. 

 

Figure 1: Overview of the sparse and dense 3D reconstruction techniques discussed in this paper: Stereo vision extracts 3D 
information from left-to-right image correspondences, whereas Structure from Mtion (SfM) uses inter-frame 
correspondences. Integration of these results can lead to optimized 3D reconstructions. 



 
 

The remaining of this paper is organized as follows: sections 2 and 3 respectively explain the stereo-

vision and SfM-based 3D reconstruction approaches in more detail. Section 4 explains how the results of 

both methods can be fused to from an optimized model. 

2. Stereo Vision 
Stereo vision deals with the issue of stereo correspondence and depth estimation. It is of great 

importance in the field of machine vision, virtual reality, robot navigation and environment 

reconstruction as well as in many other aspects including production, security, defence, exploration and 

entertainment. Calculating the distance of various points or any other primitive in a scene relative to the 

position of a camera is one of the important tasks of a computer vision system. The most common 

method for extracting depth information from intensity images is by means of a pair of synchronized 

camera-signals, acquired by a stereo rig [3]. The point to point matching between the two images from 

the stereo setup derives the disparity map. The difference on the horizontal coordinates of these points 

is the disparity. The disparity map consists of all disparity values of the image. Having extracted the 

disparity map, problems such as 3D reconstruction, positioning, mobile robot navigation, obstacle 

avoidance, etc., can be dealt with in a more efficient way. 

To determine the correspondence of two points lying in the two images, it is necessary to measure the 

similarity of the points. The point to be matched without any ambiguity should be distinctly different 

from its surrounding pixels. Several algorithms have been proposed in order to address this problem. 

However, every algorithm makes use of a matching cost function so as to establish correspondence 

between two pixels [4]. The most common ones are absolute intensity differences (AD), the squared 

intensity differences (SD) and the normalized cross correlation (NCC). The selection of the appropriate 

disparity value for each pixel is performed afterwards. In many cases this is an iterative process. An 

additional disparity refinement step is frequently used.  

Stereo correspondence algorithms can be grouped into those producing sparse output and those giving 

a dense result. Feature based methods stem from human vision studies and are based on matching 

segments or edges between two images, thus resulting in a sparse output [12]. This disadvantage, 

dreadful for many purposes, is counterbalanced by the accuracy and speed obtained. However, 

contemporary applications demand more and more dense output. In order to categorize and evaluate 

stereo algorithms producing dense output, a context has been proposed [9]. According to this, dense 

matching algorithms are classified in local and global ones. Local methods (area-based) swap accuracy 

with speed. The disparity computation at a given point depends only on intensity values within a finite 

support window [14]. Global methods (energy-based) are time consuming but very accurate. Their goal 

is to minimize a global cost function, which combines data and smoothness terms, taking into account 

the whole image [2]. Of course, there are many other methods that are not strictly included in either of 

these two broad classes.  

Algorithms resulting in sparse disparity maps are very useful when fast depth estimation is required and 

at the same time detail, in the whole picture, is not so important. This type of algorithms tends to focus 

on the main features of the images, i.e. edges, leaving occluded and poorly textured areas unmatched. 



 
 

Disparity and hence reconstructed depth is calculated only for those features. Consequently high 

processing speeds, accurate and reliable results but with limited density are achieved. 

Methods that produce dense disparity maps gain popularity as the computational power grows. 

Moreover, contemporary applications are benefited by, and consequently demand dense depth 

information. This kind of algorithms assigns disparity values for almost every pixel of the input images. 

On the other hand they are more computational demanding compared to the sparse ones. Autonomous 

robot navigation requires high execution speed and dense information in order the robot to be able to 

navigate itself in real-time. The most appealing choice is a local, Sum of Absolute Differences (SAD) 

based method. Such a method is rapidly executed and its results can be further improved in a post-

processing stage.  

It is obvious that both sparse and dense output producing algorithms have their own advantages and 

limitations. Methods leading to sparse reconstruction are generally fast and accurate. On the other hand 

dense reconstruction, despite being more computation and time demanding, is more suitable for 

contemporary applications, such as robot navigation. 

2. Structure from Motion 
Stereo vision relates two images which are displaced slightly in place to recover depth information from 

the difference in projection on the 2 camera image fields. When only one camera is present, it is also 

possible to perform the same relation between two camera images from the same imaging device which 

are displaced slightly in time. The problem arising in this situation is known as the ”Structure from 

Motion” (SfM) problem and deals with extracting 3-dimensional information about the environment 

from the motion of its projection onto a two-dimensional surface. The extra difficulty as opposed to 

stereo vision is that in the case of SfM the spatial relationship between the two camera viewpoints is a 

priori unknown. Indeed, in stereo vision, the stereo rig is generally a fixed setup of 2 cameras, whereas 

in SfM the camera undergoes an unknown motion pattern between 2 shots. This means that the camera 

motion first needs to be estimated precisely before 3D reconstruction is possible. 

In general, there are two approaches to SfM. The first, feature based method is closely related to stereo 

vision. It uses corresponding features in multiple images of the same scene, taken from different 

viewpoints. The basis for feature-based approaches lies in the early work of Longuet-Higgins [7], 

describing how to use the epipolar geometry for the estimation of relative motion. These techniques 

have matured a lot over the past two decades, but – of course - they only deliver sparse 3D information. 

The second approach for SfM uses the optical flow field as an input instead of feature correspondences. 

Optical flow is the distribution of apparent velocities of movement of brightness patterns in an image. 

Optical flow can arise from relative motion of objects and the viewer. Consequently, optical flow can 

give important information about the spatial arrangement of the objects viewed and the rate of change 

of this arrangement. The applicability of the optical flow field for SfM calculation originates from the 

epipolar constraint equation which relates the optical flow, or the apparent image motion field, to the 

relative camera motion (translation and rotation) and 3D structure in a non-linear fashion. 



 
 

Sparse feature-based approaches are based upon the work of Longuet-Higgins [7], introducing the 8-

points algorithm. It features a way of estimating the relative camera motion, using the essential matrix, 

which constrains feature points in two images. The first problem with these feature based techniques is 

of course the retrieval of correspondences, a problem which cannot be reliably solved in image areas 

with low texture. From these correspondences, estimates for the motion vectors can be calculated, 

which are then used to recover the depth. An advantage of feature based techniques is that it is 

relatively easy to integrate results over time, using bundle adjustment [11] or Kalman filtering [6]. 

Bundle adjustment is a maximum likelihood estimator that consist in minimizing the re-projection error. 

It requires a first estimate of the structure and then adjusts the bundle of rays between each camera 

and the set of 3D points. 

For dense 3D reconstruction from motion, the first question to ask is what kind of input data one could 

use. For motion, what is available to people is the optical flow, which is the best we can hope to recover 

starting from the intensity images alone. Optical flow is defined [5] as apparent motion of brightness 

patterns observed when a camera is moving relative to the objects being imaged. It can be represented 

with a two-dimensional velocity vector associated with each point on the image plane. It contains 

important information about cues for region and boundary segmentation, shape recovery, and so on. A 

dense optical flow field provides an excellent starting point for 3D reconstruction. In the literature, there 

exist numerous computational approaches for estimating optical flow, The optical flow is related to the 

structure and motion parameters through the rigid motion equation. This allows us to write the depth d 

of each image pixel x as a function of camera translation t and rotation  and optical flow u: 

d=d(x,t,,u). We can now exploit this information to do the 3D reconstruction, as knowing the optical 

flow and the motion parameters, the depth field can calculated directly. This process is called 

backprojection. The problem is that backprojection alone is very sensitive to errors. In practice, to 

reconstruct a dense depth field, it is necessary to maximize the information which can be retrieved out 

of the given data. Dense 3D reconstruction algorithms can be roughly subdivided into two categories 

depending on how they deal with this problem. On one hand, there are volume based approaches [10]. 

Examples are voxel coloring, photo hulls, and level sets. They use a large amount of images integrated 

into a single scheme. These approaches use a discretized volume and restrict possible depth values (3D 

points) to a predefined accuracy. A second series of methods are pixel-based approaches [1], which do 

not need 3D discretization and compute depth (disparity) with higher precision for every pixel. These 

approaches are often based upon the iterative solution of a partial differential equation (PDE) 

minimizing an energy functional. Pollefeys presented in [8] an approach to solve the dense 

reconstruction problem by combining state-of-the-art algorithms for uncalibrated projective 

reconstruction, self- calibration and dense correspondence matching.  

Dense SfM is a fairly young evolution, as it is only recent that the computing power required for these 

approaches is available to a wider audience. As a result, these approaches are still a field of much 

research and haven’t matured completely. This means that the results are still sometimes unreliable and 

that computing times are generally large. Sparse SfM approaches on the other hand are nowadays 

capable of providing qualitative results very fast. However, it must be noted that they only provide 



 
 

sparse data and that most experiments are performed under controlled lab circumstances. More 

research is needed to improve their performance on complex large outdoor scenes. 

3. Integrated Depth Perception 
Generally speaking, to estimate 3D motion and structure from multi-view image sequences, it is 

desirable to fuse stereo and motion constraints to some extent [13]. However, combining motion/stereo 

constraints from multi-view image sequences requires extra caution. This is because some points in the 

reference image may be invisible (occluded) in another view. If the algorithm is not aware of this and 

still combines the motion and stereo constraints from the occluded view, the results could be very 

wrong. Stereo and SfM essentially return the same data: a sparse point cloud or a dense surface 

representation. In the sparse case, the problem is that the SfM point cloud is scaled, whereas stereo can 

measure absolute depths. Therefore we need to re-scale the SfM and stereo point clouds to the same 

dimensions. In the dense case, the problem is similar, only the input data is different. Indeed whereas in 

the sparse case point clouds are considered, dense 3D reconstructions are often not represented as 3D 

point clouds but as maps of surface normals, curvature-based descriptors, 2D depth images (depth 

maps), meshes, … In order not to complicate the analysis, we will here consider only 3D point clouds, 

such that the problems of sparse and dense 3D model integration can be treated together. 

A common approach towards the problem of matching 2 point clouds is the Iterative Closest Point (ICP) 

algorithm presented in [15]. This method optimizes a set of freeform curves represented by a set of 

chained points to come to an optimal 3D representation. The data of the space curves are available in 

the form of a set of chained 3D points from the stereo or SfM algorithm. The key idea underlying the 

ICP approach is the following. Given that the motion between two successive frames is small, a curve in 

the first frame is close to the corresponding curve in the second frame. By matching points on the curves 

in the first frame to their closest points on the curves in the second, we can find a motion that brings the 

curves in the two frames closer (i.e., the distance between the two curves becomes smaller). Iteratively 

applying this procedure, the algorithm yields successively better motion estimates. The algorithm to 

obtain a unified sparse point cloud can thus be summarized as follows [15]: 

 Input 2 3D frames of space curves where each curve is a set of chained 3D points obtained from 

a 3D reconstruction algorithm 

 Find the closest points by satisfying distance and orientation constraints 

 Update the matching through statistic analysis of distances 

 Compute the motion between the 2 frames from the updated matches 

 Apply the estimated motion to all points 

 Iterate until convergence 



 
 

4. Conclusions 
In this paper we have discussed 2 paradigms for 3D reconstruction: stereo vision and structure from 

motion. When considering sparse reconstruction, stereo vision is now able to produce excellent results 

at high framerates as long as the environment is well-textured. Due to the fact that structure from 

motion algorithms always need an extra processing step to estimate the camera movement, their 

results are more error prone and require more processing time, although this is still falls into reasonable 

delays in the sparse case. SfM approaches offer the evident benefit that only 1 simple camera is 

necessary, whereas a stereo rig is still specialized equipment. 

When dense reconstruction is concerned, multiple techniques have been developed to upgrade the 

sparse stereo reconstruction to a dense one at reasonable framerates. These techniques work quite well 

in man-made environments where the form of objects can be estimated or where piecewise planarity 

constraints can be imposed. In natural conditions, more research is still needed. Dense SfM approaches 

have the major disadvantage of disposing of a very long processing pipeline, making them extremely 

slow. They also face the same problems as dense stereo reconstruction techniques when presented 

large outdoor scenes. 

The question is not which one of these techniques is the best one. It can be easily shown that humans 

use both methods to perceive depth. In order for robots to robustly see in 3 dimensions, we also 

presented an approach to combine the advantages of both approaches in an integrated framework. 
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