
Communication issues in distributed multisensory robotics 
 
Eric Colon, Royal Military School, (mecatron.rma.ac.be) 
Alessandro Muzzetta, Massimo Cristaldi, IES Solutions (www.i4es.it) 
 

Abstract 
The EU funded project ViewFinder aims at integrating mobile robots into a command and 
control network. These robots will be equipped with numerous perception sensors producing a 
lot of data that would have to be exchanged between different computers on the robots or over 
a wireless link. This paper presents the communication requirements of the ViewFinder 
project and reviews possible technical solutions. It describes and compares two software 
packages, namely CoRoBA and Mailman, that are used in the project. Results of 
communication performance of standard Wi-Fi and Wimax systems in typical ViewFinder 
environments are reported. Finally tailored solutions for solving communication issues are 
proposed. 
 
Keywords: Middleware, CORBA, wireless communication, Quality of Service 

The ViewFinder project 
The ViewFinder project aims at integrating mobile robots into a command and control 
network. These robots will be equipped with numerous sensors that will be used for robots 
navigation and for the detection of dangerous elements like chemical agents or toxic fumes. 
These data could be partially processed on board of the robots and will also be processed, 
stored and visualized in a remote base station. This paper analyses the communication 
requirements between software components and between the robots and the remote base 
station as well as possible tools for implementing distributed multisensory robotic systems. It 
describes and compares two software packages, namely CoRoBA and Mailman, and proposes 
different solutions to solve the communication issues. 
 
CoRoBA [1] is a framework for controlling robots through a standardized set of components, 
a well defined program model and design patterns. It facilitates the development of distributed 
robotic applications. CoRoBA relies on an event driven architecture and promotes a 
systematic implementation of components. It focuses on how to program components in a 
distributed robotics system and is not concerned with networking details, delegating this job 
to the CORBA implementation. 
 
Mailman is a high performace message bus built for wireless networks.  It comprises a 
network level transport protocol specification and an implementation of such a protocol.  It is 
built on top of UDP/IP and specifically designed to make efficient use of wireless 
communication devices. Mailman has been concieved because of the nature of wireless links 
and to optimize the transport protocol for such networks. The main features of Mailman are 
its facilities for controlling datagram priorities, allocating fair shares of bandwidth to all users, 
controlling congestion and sending notifications to clients, allowing user programs to easily 
address each other, providing automatic discovery of servers and support for reliable and non 
reliable datagram delivery. 
  



Obviously CORBA and Mailman are targeting different issues but are complementary. 
Possible combinations of CoRoBA, CORBA and Mailman configurations are studied and 
compared, in order to determine the optimal solution for the project. 
 

The communication issues in View-Finder 
 
The communication architecture in the View-Finder project is summarized in figure 1. 
ViewFinder systems will have a Base Station. It includes the control station and the sensor 
station as well as a user interface. The ViewFinder central operational control (COC) is a 
multi-user system that is assumed to provide a client/server architecture.  
 
On the robots we can distinguish three kinds of sensors. Data produced by the first group of 
sensors (A) are directly sent to the base station. Data produced by sensors of the group B are 
used by some processing components on the robot itself and the raw data and/or the processed 
data are forwarded to the base station. The sensors of group C are only useful for local robot 
control robot. 
 

 
Figure 1. View-Finder Communication architecture 

 
A careful evaluation of data produced by sensors and, consequently, the required bandwidth 
has been performed. Sensors of type A are a video camera, an IR camera, a 3D laser scanning 
system, chemical sensors and a temperature sensor. Sensors of type B produce position 
information (GPS, odometry, INS) and video images. Sensors of type C are obstacle detection 
sensors (stereo-vision system and ultra-sonic sensors). Data are sent over the wireless link 
(Access Point – AP) to the Base Station where they are further processed. Results are stored 
in a database and displayed on the screens of the control stations. Furthermore, robot control 

Base Station 

Sensor 
A 

Data Processing Actuators 

AP 

Sensor 
B 

Sensor 
C 

AP 



commands and a map containing combined information are also sent to the robots from the 
Base Station. 
  
One key issue when remotely controlling a robot is the latency in the control command loop. 
This can be solved by adding intelligence on the robot. In View-Finder, some robots will be 
able to navigate autonomously to follow a planned trajectory and to avoid obstacles. For 
interactive robot control (teleoperation), 100 msec latency is acceptable; between most other 
human interfaces at the base station and robot, 1 sec is acceptable. In the integrated base 
station different levels/schemes for the delegation of autonomy to the robots will be available. 
The other key issue is the bandwidth that will be required for sending sensor data from the 
robot to the base station. The management of the bandwidth is not a trivial task because of the 
wireless connection. 
 
Another important aspect is the interconnection between different components and the design 
of a reliable and efficient software architecture. We have to cope with a distributed 
architecture where many processes need to exchange data and synchronize their activities. 
This is not straightforward but there exist middlewares for developing such applications. 
 
Modern distributed robotics and sensor systems require a networking layer that can provide 
resource reservation and control mechanisms.  In systems that provide resource reservation 
guarantees, the following parameters must be respected: 
 

• Worst overall delay before a packet is delivered. 
• Maximum number of packets that are lost in a given period of time. 
• Control of the variation of delay (jitter). 
• Minimum throughput for a given time period. 
 

These parameters can be collectively referred to as Quality of Service (QoS). 
 
An additional set of challenges are added when these guarantees must be provided in wireless 
or mobile networks.  As a result of these complications, resource reservation schemes 
designed for wired networks are not always feasible or desirable in wireless networks. 
 
In wired networks loss is caused by excessive congestion and, to a much lesser extent, by 
corruption on a wire.  In a wireless network, however, data suffers much more loss due to 
corruption in the air-interface.  One of the main causes of this corruption is transmission 
fading of the radio signals.  Other factors include attenuation due to distance, co-channel 
interference, electrical noise and doppler shifting. 
 
In distributed robotics, the remote units are typically mobile.  A unit may move behind an 
obstacle, move too high or too low with respect to the base station antenna angle, or it may 
move too far from the base station.  The signal can range from optimal to completely absent, 
depending on these and other factors.  A wireless QoS system must therefore be resilient to 
severe loss and to total signal outages.  In the View-Finder, in addition to the above QoS 
criteria, the following are also important: 
 

• Fair bandwidth allocation. 
• Message prioritization. 

 



The types of data that compose the traffic in the View-Finder network comprise multimedia 
(video) streams, sensor readings, control commands, status messages, navigation commands, 
and critical messages. Each of these data types has different characteristics and QoS 
requirements. 
 
Critical messages are infrequent and have the highest priority.  For example, a “SWITCH-
OFF” message could be sent to a robot whose chemical sensors have detected flammable 
gases, in order to avoid igniting an explosion.  Critical messages should be delivered with top 
priority and resent if lost. Navigation commands and control commands have higher priority 
than all other traffic except critical messages.  These messages must be delivered without loss 
and faster than other traffic. 
 
Multimedia streams and most sensor readings have the least priority.  They can tolerate loss.  
However, the variation in delay between multimedia frames should be kept to a minimum.  
Frames that are not delivered within a reasonable delay (because of congestion) should be 
discarded from the transmission queue. 
 

The CoRoBA framework 
The framework CoRoBA proposes an answer to the recurrent requirements that have been 
identified for implementing distributed multisensory robotic systems. Two different 
approaches have been considered when identifying requirements for the framework. The first 
approach takes into account the functionality of typical applications that would be built with 
the framework whereas the second one considers the needs of potential users. This analysis 
produced the following requirements list: 

• Integration of different robotic systems, 
• Concurrent control of several robots, 
• Shared control between several users, 
• Easy integration of user's algorithms. 
• Flexibility (Distribution, Modularity, Configurability, Portability, Scalability, 

Maintainability) 
• Performance and efficiency 

 
It is obvious that some requirements conflict with each other: performance and efficiency for 
instance have to be traded with flexibility. However, as we do not target hard real-time 
applications, we can accept some performance degradations due to extra-communication 
overheads. 
 
The implementation of the framework is based on several Design Patterns [2] that make the 
design flexible, elegant and ultimately reusable. The elementary brick in CoRoBA is a 
component (Component-based Architecture Pattern) that exchanged data over a network by 
invoking remote operations (Remote Method Call Pattern). Components are independent 
execution units and have separated interfaces for the configuration and the actual functionality 
they provide (Hierarchical Control Pattern). Components are loosely coupled, they are only 
connected by the structure of the data they exchanged (Data Bus Pattern), and can be 
discovered at run-time (Broker Pattern). According to the classical control theory, 
components are divided in three categories, Sensors, Processors and Actuators. They form a 
chain along which information is transferred via Notification Channels (EC) and like in 
classic control schemes, the data flow is unidirectional (Channel Architecture Pattern). 
Sensors read data from external devices and transmit them to other components. Processors 



process received data and forward results to other Processor components or to components 
linked to output devices, which are called Actuators. This division provides a clear view of 
the functionality of each component and consequently facilitates their reuse in new 
applications. The communication scheme is resumed in figure 2. 
 

 
Figure 2. Communication between CoRoBA components 

 
The first decision when developing distributed application concerns the choice of the 
communication library. Some framework developers have opted for the low-level socket 
library. While this is a good choice with regard to performance, it is a bad one concerning 
portability and maintenance. One solution is to use a multi-platform wrapping communication 
library like ACE. It is a very powerful library that can eliminate some of the drawbacks listed 
above but that leaves much work to the programmer. 
 
In this framework, communication between components relies on the industry standard 
CORBA. CORBA has been selected because of its language and platform independence. 
Using such a standard simplifies the development and improves the interoperability with 
existing software. CORBA is actually a specification of the Object Management Group and 
the TAO (The ACE ORB) implementation has been chosen among others because it is an 
open source, efficient and standards-compliant real-time implementation of CORBA. The 
framework offers two different communication mechanisms; the first one is based on classical 
synchronous communication while the second relies on Events. In this mode, components 
exchange data by pushing Events through Event Channels that can be seen as pipes 
connecting suppliers and consumers of Events. Event based communication increases the 
flexibility of an application by decreasing the coupling between components. 
 
Components are multi-threaded and implement the Method Template Pattern and the Message 
Queuing Pattern. They possess different running modes for the transmission of events, namely 
PERIODIC, SYNCHRO and TRIGGER. In the PERIODIC mode, components produce 
events at regular time intervals. In the SYNCHRO mode, new output events are produced by 
the component when an input event is received and in the TRIGGER mode, an external signal 
must be received in order to process or produce an event. The availability of different modes 
increases the flexibility of the framework, each mode being actually useful in different 
contexts. 
 
A qualitative and quantitative evaluation of the framework [14] has demonstrated that the 
proposed solution is efficient, usable and stable. Existing applications can be largely 

Sensor 1 

Sensor N 

Processor 1 

Processor 2 

Actuator 1 

Actuator K 
NC NC 

Processor M 



improved by using CoRoBA. A comparison between CoRoBA and other frameworks like 
MCA, DCA, GeNoM,... shows that CoRoBA combines the advantages and capabilities of 
most of them while avoiding their drawbacks. The framework also reduces the development 
time in comparison with raw CORBA programming. The availability of an automatic project 
generator reduces the workload of the developer. It has been widely verified that the 
components work as they should and that particularly, order of events are preserved, all sent 
events are received and that operations are executed in the right order. 

Mailman 

Mailman is a high performance message bus that is optimized for managed mobile networks.  
It provides QoS guarantees that are customized to the requirements of View-Finder 
components.  It is resilient to network faults, allows point-to-point messaging, group 
communication and class based packet scheduling. 
Mailman servers act as routers interconnecting wired subnets through a managed wireless 
interface.  The servers control the link by enforcing resource allocation policies set by the 
users. 
 

 
Figure 3.  A typical deployment of Mailman. 

 
Figure 3.  A typical deployment of Mailman. shows a typical setup of Mailman in a network.  
Two wired LANs, each having a high performance wired bus, are interconnected through a 
wireless link.  Data being sent from a component on one network to a component in the other 
network passes by the two Mailman servers, that act as routers.  Messages sent from client C 
are delivered to client F, while messages originating from client D are delivered to client A, B 
and E. 
Clients communicate explicitly with the server in their LAN and request messages to be 
delivered to one or more other clients.  A client/sever protocol specification defines these 
interactions.  The protocol allows the client to set the priority (or service class) of the 
message, to request reliable delivery, to specify the time to live of the message and the 
destination Id (peer or group). 
The priority field of the message is set by the user, so it is the responsibility of the users to 
collectively agree on what traffic should be assigned to what service class.  This means that 
Mailman only provides a mechanism to enforce a policy, not the policy itself. 



Implementation  

Mailman consists of a client to server protocol implemented over sockets, a message routing 
daemon and a server to server protocol. 
The client to server protocol uses UDP/IP and adds a 32 byte header containing a priority 
field, an acknowledgement request bit, a time-to-live value, a destination number, a message 
number and the length of the payload. 
The choice of designing the protocol at the application level implies that the implementation 
is not dependent on any specific platform.  This affords View-Finder much flexibility by 
permitting the use of any type of wireless network hardware and software platforms.  It also 
means that the project is not dependent on QoS facilities that are implemented at the data link 
layer [3, 4, 5], and therefore dependent on a specific technology.  Moreover, while  most QoS 
implementations favour real time traffic such as VoIP and video over other traffic, in View-
Finder, such traffic has the lowest priority.  In addition, changing user requirements are more 
easily met when the policies are enforceable at the application level rather than the data link 
level. 

Services provided  

The main benefits derived from the use of Mailman are: 

• Class based delivery of messages. 
• Fair allocation of bandwidth to all users. 
• Congestion control and notification. 
• Control of jitter for real time streams. 
• Reliable delivery of messages over UDP. 

These services are provided by the Mailman server through a packet scheduler.   
Class based delivery guarantees that high priority traffic is delivered first.  Fair allocation 
guarantees that bandwidth hungry applications (such as video streams) and rogue applications 
do not saturate the available spectrum, at the expense of other applications. 
Mailman samples data loss over a wireless link at a given interval of time.  It measures the 
maximum throughput over this time interval.  This information is used to predict the state of 
the air-interface for the next time slice.  With this information, it is able to send clients 
notifications of congestion so that they can slow down their transmission rates when 
bandwidth decreases.  An example of such a scenario is a video streaming server that 
increases or decreases the frame rate and/or compression level based on the availability of 
bandwidth. 

Use of UDP  

Mailman uses UDP over IP instead of TCP because of the known shortcomings of the latter, 
concerning the delivery of message based and streaming data [6, 7].  In fact, the majority of 
network traffic in View-Finder is comprised of sensor readings and multimedia streams.  Both 
types of traffic can tolerate loss but do not tolerate excessive delays   
These types of information are useful within a limited period of time.  Unless they are 
delivered within fixed time constraints, they become useless.  When the packet scheduler is 
unable, due to congestion or signal outage, to deliver such data on time, it should discard them 
and prune the transmission queue. 



Reliable delivery over UDP 

The UDP [8] is a transport protocol that makes no provisions for reliable delivery.  For the 
majority of network traffic in View-Finder, such as multimedia frames and sensor readings, 
the behaviour of the UDP is well suited. 
Other types of messages, such as critical commands, require that the message be delivered in 
a reliable manner or that a connection error be returned.  These messages constitute a minority 
of the traffic but they must be handled properly. 
One way to handle the problem is to have the clients request an acknowledgment from their 
peers and have them resend the message if the acknowledgement is not received within a 
given time frame.  This approach has the downside that every client that may need such a 
service has to implement it internally.  In order to avoid the duplication of code and the 
resulting bugs, Mailman provides this facility to clients. 
Clients can request that a message be delivered reliably.  The Mailman servers will handle the 
acknowledgments, timeouts and resends.  Only when delivery is impossible, due to a 
connection outage, the client will receive an error message.  This service entails a certain 
overhead and should be used only when it is required. 

Group communication 

In the Mailman protocol, clients address each other though and Id.  Two or more clients 
subscribing to an Id constitute a group.  Messages sent to a group are delivered to every 
member of a group except for the sender. 
To facilitate the use of Id’s, the Mailman server provides a name-to-Id lookup service.  
Clients can register themselves with a symbolic name and the server assigns them a numeric 
Id for the duration of that session.  Clients can then lookup the Id for that symbolic name.  
This affords flexibility for adding more groups and for reusing Id’s without requiring to 
restart the daemons or to recompile client programs. 

Server discovery 

A client wishing to use Mailman services must first find out on what IP address and UDP port 
number the server is listening on for requests from clients.  Similarly, a client cannot receive 
any data from peers unless it notifies the Mailman server on its LAN about its willingness to 
receive such data.   It is possible to provide the host and port of a Mailman server to a client 
during configuration.  However, to avoid having to reconfigure each client - which can 
happen when a Mailman server is moved to another host or the port number is changed - it is 
preferable to have the client find the server at run-time. The Mailman user library implements 
an algorithm for automatically discovering the nearest Mailman server on the local network.  

Future development 

A prototype implementation of the Mailman protocol, including a client/server library and a 
server daemon are available for the Linux operating system.  On the client side, future plans 
include implementing the library in languages other than C and C++ and porting the library to 
major development environments on the Microsoft Windows platform. It would also be 
interesting to study how the queuing disciplines and class based packet scheduling can be 
made extensible by the user.  One possibility is to implement a mini programming language 
that the server understands, for specifying QoS behaviour and queue handling.  



Measuring mixed-communication by RMA 
As a Middleware is generally quite complex and brings some overheads, one could ask the 
question if it is really usable for implementing robot control applications. The network 
performance can be expressed by the following relation: 
 
Message Transmission Time = latency + length / data transfer rate 
 
On one hand, the operations added by CORBA increase the latency (that is independent of the 
message length). On the other hand, the extra information contained in a CORBA frame is 
quite constant (a few hundreds of bytes) and has therefore a larger influence for small data 
packets. We typically have a 20% to 30% overhead in comparison with socket 
communication. This result is confirmed by a comparative performance experiment reported 
by D. Gill in [99.  Gill, C. & Smart, W. (2002). Middleware for Robots?, In Intelligent 
Distributed and Embedded Systems, Papers from the 2002 AAAI Spring Symposium, Gaurav S. 
Sukhatme and Tucker Balch (Ed.), pages 1-5, 2002.]. However, with increasing computing 
power and communication bandwidth, the overhead introduced by CORBA becomes every 
day less and less significant. J. Gowdy [10] qualitatively compares Inter-process 
Communications Toolkits for Robotics and concludes that: “If the project is a long-term 
project ..., then a more flexible and standard ... communication infrastructure such as CORBA 
may be called for ...”. 
 
Experiments have been made to measure the bandwidth required by typical CoRoBA 
components for controlling a Robot and to evaluate the practical control distance inside a 
building. The setup used for the measurements are  

Hardware: 
• Wi-Fi Access point (802.11 g) mounted on the Robudem. 
• 3 laptops equipped with embedded Wi-Fi 802.11 g that communicate with the access 

point in infrastructure mode. 
• 1 laptop that is connected to the Access point by an Ethernet link (100 Mbs). 
• Robot control PC connected to the Access point by an Ethernet link (100 Mbs). 

Control Software: 
• The CoRoBA framework is used to remotely control the Robot. 
• There is one sensor component reading the joystick on laptop 1. 
• A Processing component on laptop 2 receives the motion commands, sends them to 

the robot and returns the encoders values. 
• An actuator component on the laptop 1 receives and displays the encoders’ values. 

Video flow 
A dual video data-flow is sent over the wireless communication. 

• Firewire cameras are connected to the laptop 3 and 4.  
• The data flow 1 goes from laptop 3 to laptop 4 and the data flow 2 goes from laptop 4 

to laptop 3. 
• The VLC program is used for sending and visualizing video data’s. 

 



 
Figure 4. Test architecture 

 
The data flow has been measured with the Ethereal application. 
We can distinguish three main types of data being transmitted: 

• The video streams using UDP  
• The CoRoBA methods calls using GIOP 
• TCP data sent by the TCP/IP stack 

Results 
The following picture shows typical experimental results. The data flow is indicated in 
Bytes/seconds on the graphic on the right. The laptop 1 controlling the robot is progressively 
moved away from the access point.  
 

 
Figure 5.  Communication Bandwidth utilization 

 
From the previous graph we can see that: 

• The required bandwidth for all the data flows is approximately 2.5 Mbs 
• The UDP is the major data flow (2.5 Mbs). 
• The TCP and GIOP flows are interrupted after 190 seconds that corresponds to a 

distance of approximately 30 meters. At this point, there were 5 walls between the 
laptop 1 and the access point. 

• This interruption has been produced by the loss of the Wi-Fi signal. 

Robudem 

Laptop 1 
172.16.64.3 

Laptop 3 
172.16.64.4 
 

Access point 
172.16.64.1 
 

Laptop 2 
172.16.64.6 
 

Robot PC 

Laptop 4 
172.16.64.5 
 

Video 

Control 



• The UDP flow was also lost but was recovered by going back closer to the robot. 
• The TCP link was never recovered. 

 
The following graph shows that the TCP and UDP data flows are mixed and consequently 
some delays arise in the command and control sequence of the robot (GIOP and TCP packets 
between the address 172.16.64.3 -laptop 1- and 172.16.64.6 -laptop 2-) 
 

 
Figure 6.  Delays in the control sequence 

 
• As expected the standard Wi-Fi coms is limited to 30 m. At this distance the 

bandwidth is generally reduced to 1Mbs. 
• The UDP communications are more robust than TCP communications to link 

variations. 
• When the communication is at its optimal level, the control data flow (CoRoBA) 

requires a small bandwidth 0.5 Mbs for a 50 ms control period. 
• The lack of priority between the different flows increases the latency in the control 

sequence.  
 

Measuring WiMAX performance by IES 

IES conducted a field test using WiMAX equipment to assess the performance of the 
technology with respect to latency, bandwidth and signal coverage. 

The equipment used was the MacroMAX, provided by the Airspan company.  This is a 
802.16d-2004 compliant base station receiver, configured with multiple base station receivers 
to provide wireless broadband in urban areas to dozens of users simultaneously.  The base 
station was connected to an omnidirectional high gain antenna.  The subscriber station used in 
the test was composed of a WiMAX transceiver, an omnidirectional antenna and an ethernet 
port. 

The testing site was located in a firefighting school, used for rescue mission training.  Some 
particular characteristics of the location are the presence of a simulated chemical plant, a 
tunnel, an airplane, a ship and various buildings.  Each of these sites is layed out as would be 
in a typical disaster scenario.  The location was chosen because View-Finder is expected to be 
deployed under disaster circumstances.  It is therefore important to assess the viability of 
wireless communication in this context. 



A total of 7 sites were used for the tests.  Site 1 was a Line of Sight (LOS) point near the base 
station, and meant to test maximum network capacity in ideal conditions.  Sites 2 and 6 were 
inside a building and characterized indoor signaling capacity.  Sites 3 and 5 tested Non LOS 
connectivity at greater distances.  Site 4 tested signal strength inside a concrete tunnel, while 
site 7 was located behind a building and a thick concrete wall. 

Maximum transmission throughput and end-to-end latency were measured for each site 
several times and then a weighted average was taken as the final result. 

The software used for running the tests are Iperf [11], Netperf [12] and some minor custom 
programs. 

Iperf measures maximum TCP/UDP/IP bandwidth, allowing the tuning of various parameters 
and UDP characteristics.  It reports bandwidth, delay variation and datagram loss. 

Netperf is a benchmark used to measure the performance of many different types of 
networking parameters. It provides tests for both unidirectional throughput and end-to-end 
delay. In our tests, we were concerned with the delay measurements. 

Site Distance from base 
station (metres) Description 

Maximum 
bandwidth (kilo 
bytes / second) 

End-to-end 
Latency 

(milliseconds) 

Jitter 
(milliseconds) 

1 57 LOS1 370 23.62 9 

2 63 NLOS2, indoor, 1 
concrete wall 257 23.37 9 

3 168 

NLOS, outdoor, 
behind 

enbankment, 
obstacles 

212 26.21 11 

4 240 
NLOS, in a tunnel, 

behind 2 fire 
trucks 

62 28.17 35 

5 360 NLOS, outdoor No signal - - 

6 106 NLOS, indoor, 
several thin walls 180 26.04 15 

7 130 

NLOS, outdoor, 
behind building, 
additional thick 

wall 

30 24 56 

Table 1. Results of IES’ WiMAX experiments. 
 
End-to-end latency remains consistent at approximately 25ms even while other parameters 
vary greatly.  This is several orders of magnitude higher than the latency incurred in fast 
ethernets, which is several tens of microseconds. 
 
Bandwidth varies greatly even at short distances, depending on geographical factors and 
obstacles.  Even though we did not include radio interference measurements in the 
experiment, it should be noted that it is also an important factor. 

                                                 
1 Line-of-Sight. 
2 Non Line-of-Sight 



Proposed solutions of integration 
 
CORBA and Mailman are targeting different issues and their capabilities  are complementary. 
However Mailman, as can be seen in the following table, is situated at a lower level than 
CORBA (Table 2) but also implements higher level services on top of the OSI model 
(Management of connection, discovery of servers, grouping, …) and consequently the 
combination is not straightforward.  
 

 OSI Layer CORBA Mailman 
7 Application (protocols to services) CORBA IIOP - 
6 Presentation (network independent data 

representation) 
Common Data 
Representation (CDR) 

- 

5 Session (reliability & & adaptation) Implemented by the 
TCP stack when using 
TCP 

Proprietary 
protocol 

4 Transport  TCP, UDP UDP 
3 Network IP IP 
2 Data link Ethernet, Wireless Wireless 
1 Physical Hardware Hardware 

Table 2. Situation of CORBA and Mailman in the OSI model 
 
The nicest way of combining both systems should be to use only the part of Mailman 
managing the wireless communication but not the other services. This would not replace the 
default UDP stack implementation but supplement it with some info allowing managing 
message priorities. This could be done within the TAO CORBA implementation by using the 
pluggable protocols library [13].  
 
A second possibility is to develop a CORBA component implementing the Mailman 
capabilities and being used as a single access point for the wireless communication. 
 
Another solution should be to use Mailman as a gateway between the wireless access points. 
It means that CoRoBA components willing to send data over the wireless network would 
transmit data to the gateway. Of course this would imply that data be converted between some 
CoRoBA components and the Mailman gateway. This point would need to be further studied 
so as the use of the discovery service of Mailman with CoRoBA components. This solution 
would obviously add some extra loads for the on-board CPU and extra latency that would 
have to be evaluated. 
 
Furthermore, the prioritization of the communication channels of CoRoBA by using the TAO 
Real Time CORBA implementation could offer a solution for managing message priorities. 
 
Another approach is to reduce the amount of data being sent via the wireless communication 
by pre-processing the data on-board of the robot or by using multi-channels transmission 
hardware to separate the high priority signals from less urgent data. 
 

Conclusions 
A careful analysis is necessary when dealing with network communication, especially when 
data is sent through a wireless link. Having a common structure for all distributed components   
is mandatory in order to avoid incompatibilities between components developed by different 
partners.  



As outlined by the results of the wireless experiments, bandwidth is quite limited compared to 
wired networks and can vary greatly depending on many factors.  In a mobile wireless 
network such as that in View-Finder, this would constitute a bottleneck. 
End-to-end latency in broadband wireless is much higher than in a wired network, so it is 
fundamental to add class based packet delivery to the View-Finder network. 

Acknowledgements 
The development described in this paper are supported by the View-Finder FP6 IST 045541 
Project. 
 

References 
 
1.  Eric Colon, Hichem Shali, Yvan Baudoin,CoRoBa, a multi mobile robot control and simulation 
framework, Special Issue on "Software Development and Integration in Robotics" of the International 
Journal on Advanced Robotics, pp 73-78,Volume 3, Number 1, March 2006. 
 
2.  Gamma E., Helm R., Johnson R and Vlissides J., Design Patterns Elements of Reusable Object-
Oriented Software, Addison-Wesley, Professional Computing Series, 1995, ISBN 
0-201-63361-2. 
 
3.  IEEE 802.11 Standards Group, IEEE 802.11e-2005—Medium Access Control (MAC) Quality of 
Service Enhancements, 2005 
 
4.  IEEE 802.16 Standards Group, IEEE 802.16-2004—IEEE Standard for Local and metropolitan 
area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems, 2004 
 
5.  G. Xylomenos and G. C. Polyzos—Link Layer Support for Quality of Service on Wireless Internet 
Links, Center for Wireless Communications, University of California, San Diego, 2000 
 
6.  D. W. Gage—Network Protocols for Mobile Robot Systems, Space and Naval Warfare Systems 
Center San Diego, 1997 
 
7.  L. Larzon, M. Degermark, S. Pink—UDP Lite for Real Time Multimedia Applications, Tech. Rep. 
HPL-IRI-1999-001, Extended Enterprise Laboratory, HP Laboratories Bristol, Bristol, UK, April 1999 
 
8.  J. Postel, RFC 768—User Datagram Protocol, ISI, 1980 
 
9.  Gill, C. & Smart, W. (2002). Middleware for Robots?, In Intelligent Distributed and Embedded 
Systems, Papers from the 2002 AAAI Spring Symposium, Gaurav S. Sukhatme and Tucker Balch 
(Ed.), pages 1-5, 2002. 
 
10.  Gowdy, J. (2000). A Qualitative Comparison of Interprocess Communications Toolkits for 
Robotics, Internal report CMU-RU-TR-00-16, the Robotics Institute, Carnegie Mellon University, 
Pittsburgh, PA 
 
11.  M. Gates, A. Tirumala J. Dugan, K. Gibbs—Iperf, National Laboratory for Applied Network 
Research, University of Illinois 
 
12.  R. Jones—Netperf, The Hewlett-Packard Company 
 
13.  Carlos O'Ryan, Fred Kuhns, Douglas C. Schmidt, Ossama Othman, and Jeff Parsons, The Design 
and Performance of a Pluggable Protocols Framework for Real-time Distributed Object Computing 



Middleware, (updated October 14) IFIP/ACM Middleware 2000 Conference, Pallisades, New York, 
April 3-7, 2000 
 
14. Eric Colon CoRoBa, a multi mobile robot control and simulation framework, , Ph.D. Thesis, 
November 2006, Vrije Universiteit Brussel - Koninklijke Militaire School  


