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Introduction

Crisis management teams (e.g. fire & rescue services, anti-terrorist units, .. ) are often
confronted with dramatic situations where critical decisions have to be made within hard
time constraints. A complete overview of the crisis site is necessary to take correct de-
cisions in these circumstances. However, obtaining such a complete overview of a com-
plex site is not possible in real-life situations when the crisis management teams are
confronted with large and complex unknown incident sites. In these situations, the crisis
management teams typically concentrate their effort on a primary incident location (e.g.
a building on fire, a wreckage, ... ) and only after some time (depending on the man-
power and the severity of the incident), they turn their attention towards the larger sur-
roundings, e.g. searching for victims scattered around the incident site. A mobile robotic
agent could aid in these circumstances, gaining valuable time by monitoring the area
around the primary incident site while the crisis management teams perform their work.
However, as the human crisis management teams are in general already overloaded with
work and information in any medium or large scale crisis situation, it is essential that
such a robotic agent - to be useful - does not require extensive human control (hence it
should be semi-autonomous) and it should only report critical information back to the
crisis management control center. In this paper, we discuss the development of such a
semi-autonomous outdoor mobile robot, which is able to search for human victims on an
incident site, while navigating semi autonomously, using stereo vision as a main source
of sensor information. The design and development of such a robotic agent raises 2 main
questions:

1. How can we detect human victims lying unconscious or partly conscious on the
ground, only using visual information from a stereo camera system, and this in
dynamic outdoor illumination conditions?



Figure 1. The RobuDem platform with GPS and stereo vision system, used for evaluating the presented algo-
rithms.

2. How can the robot be made semi-autonomous, such that it can handle a high-level
task (searching for human victims) with minimal input from human operators, by
navigating in a complex, dynamic and environment, while avoiding potentially
hazardous obstacles?

To solve these issues, an outdoor mobile robotic platform, as shown in figure 1, was
equipped with a differential GPS system for accurate geo-registered positioning, and a
stereo vision system. This stereo vision systems serves two purposes: 1) victim detection
and 2) obstacle detection and avoidance. For semi-autonomous robot control and nav-
igation, we rely on a behavior-based robot motion and path planner. In this paper, we
present each of the three main aspects (victim detection, stereo-based obstacle detection
and behavior-based navigation) of the general robot control architecture more in detail.

1. Victim Detection

Detecting victims lying on the ground using standard camera images is very different
from standard person detection, which is a common research subject in the computer
vision community. These standard person detection algorithms generally rely on face
[7],[8] or upper body [5] detection, which provide powerful cues for reasoning bout a
person’s presence. However, these approaches assume that the person’s face is clearly
visible in the camera image and that the person is standing straight up, such that the
upper body can be easily detected. Victims, however, do not tend to stand up. Moreover,
in order to scan a large outdoor area rapidly, the field of view of the robot cameras is
quite large, which means that a person’s face only consists of a limited number of pixels.
To achieve robust victim detection in these difficult outdoor conditions, the Viola-Jones
algorithm [10] for Haar-features based template recognition was adapted to recognize
persons lying on the ground.

The Viola-Jones method gives a visual object detection framework that is capable
of rapidly processing images, while achieving high detection rates. There are three key
aspects. The first is the introduction of an image representation called the Integral Im-
age, which allows the features used by the detector to be computed quickly. The sec-
ond is a learning algorithm, based on AdaBoost [2], which selects a small number of
critical visual features and yields efficient classifiers. The third aspect is a method for



Figure 2. Detected Human Victims on Live Camera Images.

combining classifiers in a cascade, which allows background regions of the image to be
quickly discarded while spending more computation on promising object-like regions.
Viola and Jones originally applied this technique in the domain of face detection [10].
Their system yields face detection performance comparable to the best previous systems.
For the victim-detection application, we adapted the Viola-Jones technique, by training
the algorithm with bodies, lying on the ground.

To deal with the huge number of degrees of freedom of the human body and the
camera viewpoint, the configuration space for human victims was reduced to victims
lying face down and more or less horizontally in front of the camera. This case has been
chosen because in real disasters this pose has the highest probability. The people try to
protect their head and their ventral body parts which are the most vulnerable. Another
reason is that in this position, the possible positions of the limbs form a relatively small
pool comparing to the other cases. Also the orientation of the body must be considered
because the legs have a different shape than the upper body and the head. To handle this,
the sample images were taken with the both body orientations (left-to-right and right-to-
left). To enlarge the data-set, the images were then later flipped horizontally and reused
during the Haar-training.

Figure 2 illustrates the output of the victim detection module on test images from a
live camera. As can be noted, the human victims lying on the ground are correctly iden-
tified, as visualized by the bounding rectangles drawn around the human bodies. Tests
with real-time camera streams show that the correct detection rate of the algorithm is ap-
proximately 65%. This can be improved upon even further, using some post-processing
technique (e.g. Kalman filtering) for integrating the results over multiple camera frames.
Running the two victim detectors (one with left-to-right and one with right-to-left body
orientation), the processing time is between 60 and 80 milliseconds, which means 13 to
16 frames per second.

2. Stereo-based Obstacle Detection

Detecting obstacles from from stereo vision images may seem simple, as the stereo vi-
sion system directly delivers rich depth information. However, from this depth image, it
is not evident to distinguish the traversable from the non-traversable terrain, especially
in outdoor conditions, where the terrain roughness and the robot mobility parameters
must be taken into account. Our approach is based on the construction and subsequent
processing of the v-disparity image [4], which provides a robust representation of the
geometric content of road scenes. The v-disparity image is constructed by calculating a
horizontal histogram of the disparity stereo image.
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Figure 3. Different Steps of the Stereo-based Obstacle Detection Algorithm.

Consider 2 stereo frames, as shown in figure 3a and b, and a disparity image ID, as
shown in figure 3c. Then, the v-disparity image IV can be constructed by accumulating
the points with the same disparity that occur on a horizontal line in the image. Figure 3d
displays the v-disparity image IV for the given input images.

The classification of the terrain in traversable and non-traversable areas goes out
from the assumption that the majority of the image pixels are related to traversable terrain
of the ground plane. The projection of this ground plane in the v-disparity image is a
straight line, from the top left to the bottom right of the v-disparity image. Any deviations
from this projection of the ground plane are likely obstacles or other non-traversable
terrain items.

As such, the processing of the v-disparity image comes down to estimating the equa-
tion of the line segment in the v-disparity image, corresponding to the ground plane, as
indicated by the red line in figure 3e. Then, one must choose a single parameter which
accounts for the maximum terrain roughness. As this parameter depends only on the
robot characteristics, it only needs to be set once. This parameter sets the maximum off-
set in v-disparity space to be considered part of the ground plane. The two pink lines on



figure 3e indicate the region in v-disparity space where pixels are considered part of a
traversable region.

Any outliers are regarded as obstacles, which enables to compile an obstacle image
IO as displayed on figure 3f . From figure 3f , it is clear that non-traversable areas (the
bushes) and obstacles (the person) are very well distinguished. It may be noted that the
lower part of the legs of the person were not detected as obstacles. This is due to the
choice of the threshold parameter for the ground plane, discussed above. After tests in
multiple environments, we used a threshold parameter of 50, which offers a good com-
promise between a good detection rate and low false positive detection rate.

3. The Behavior-based Robot Navigation Architecture

Figure 4 illustrates the general robot control architecture, set up as a testbed for the algo-
rithms discussed in this paper. The RobuDem robot used in this setup features 2 on-board
processing stations, one for low-level motor control (Syndex Robot Controller), and an-
other one for all the high-level functions. A remote robot control PC is used to control
the robot and to visualize the robot measurements (color images, victim data) from a safe
distance. All data transfer between modules occurs via TCP and UDP-based connections,
relying on the CORBA [9] and CoRoBa [1] protocols. To increase the bandwidth and to
assure the quality of service over the wireless link from the on-board high-level PC to the
remote robot control PC, the use of the MailMan protocol over Wi-Max is investigated.

A behavior-based navigational architecture is used for semi-autonomous intelligent
robot control. Behavior-based techniques have gained a widely popularity in the robotics
community [3], due to the flexible and modular nature of behavior-based controllers, fa-
cilitating the design process. Following the behavior based formalism, a complex control
task is subdivided into a number of more simple modules, called behaviors, which each
describe one aspect of the sensing, reasoning and actuation robot control chain. Each
behavior outputs an objective function, o1(x), ..., on(x), which are multi-dimensional
normalized functions of the output parameters, where x = (x1, ..., xn) ∈ Rn is an
n−dimensional decision variable vector. The degree of attainment of a particular alter-
native x, with respect to the kth objective is given by ok(x).

Recall that the RobuDem robot is equipped with two main sensing abilities: a stereo
vision system and a GPS system. The information from the stereo vision system is used
threefold. First, the color images are sent over the wireless link, such that the human
operator receives at all time a visual cue of the environment. Secondly, the (left) color
image is sent to the victim detection module, discussed in section 1. The victim detection
module will report any detected human victims back to the human operator at the remote
control station. Third, the calculated stereo disparity image is sent to the obstacle detec-
tion module, discussed in section 2. From the obstacle map, a behavior is constructed to
steer the robot away from obstacles.

The GPS system delivers accurate robot positioning information, which is sent to the
operator at the remote control station. At the same time, this data is sent to a path planning
module. From the robot control station, the human operator is able to compile a list of
waypoints for the robot. The path planning module compares this list of waypoints with
the robot position and calculates a trajectory to steer the robot to the first goal position
in the list. The first point on this trajectory list is sent to a GoToGoal behavior module,
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Figure 4. The Robot Control Architecture.

which aims to steer the robot to this point, as such executing the trajectory defined by the
path planner.

In the case of robot control, the objective function of each behavior can be regarded
as two-dimensional normalized function of robot steering velocity v and direction α. For
this setup, three behaviors are defined which relate the abstract sensor information into
robot actions. These three behaviors are:

1. Obey Joystick Commands. If desired, the human operator can control the robot
by means of a joystick. The joystick commands are directly related to the robot
steering angle and direction, so the transformation of the joystick control com-
mand into an objective function can be performed straightforward by calculating
a two-dimensional Gaussian from the joystick input (vJoystick, αJoystick):

oJoystick (v, α) =
1√

(2π)2 σ4

e
−

(
(v−vJoystick)2

2σ2 +
(α−αJoystick)2

2σ2

)

(1)

2. Obstacle Avoidance Using Stereo. To drive the robot away from obstacles de-
tected by the stereo vision system, the obstacle image IO is analyzed. The depth
values of pixels corresponding to obstacles are accumulated per vertical line in
the image and the resulting function is inverted and normalized. This allows to
deduce a function f of the viewing angle α as shown on figure 5. This func-
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Figure 5. 1D Objective Function for Obstacle Avoidance from Stereo, corresponding to the input of figure 3.

tion can be regarded as a one-dimensional objective function for obstacle avoid-
ance from stereo input, considering only the viewing / steering angle. It can be
noted on figure 5, which corresponds to the input of figure 3, that for example the
nearby bushes on the right side of the robot make a turn to the right less desir-
able. This one dimensional objective function can then be extended for velocity
as well, using the following formulation:

oStereo (v, α) =
f (α)

1 + |vf (α) /c| (2)

3. Go To Goals. The goal seeking behavior is assigned two tasks. First, it points the
robot to the goal position and it varies the velocity respective to the distance to
the goal. This means the development of the objective function can be split up
as oGoToGoal(v, α) = oα

GoToGoal(α).ov
GoToGoal(v). To calculate these objective

functions, the (Euclidian) distance to the goal dgoal and heading to this goal θ are
calculated from the current robot position given by the GPS system and the cur-
rent waypoint given by the global path planner. The goal seeking behavior aims
to minimize the difference between the robot heading α and the goal heading θ,
which can be formulated as:

oα
GoToGoal(α) =

1

1 +
(

α−θ
β

)2 . (3)

with β the window size which is considered. ov
GoToGoal(v) is set up such that the

velocity is always high, with the exception that when the robot approches a goal
position, the speed should be reduced. This is expressed as:

ov
GoToGoal(v) =





(
v

vmax

)2

if dgoal>dthreshold

1

1+( v
vmax )2 if dgoal<dthreshold

. (4)

These 3 behaviors must be fused together to form one consistent and globally opti-
mal robot command, to be sent to the robot actuators. The performance of the behavior-
based controller depends on the implementation of the individual behaviors as well as
on the method chosen to solve the behavior fusion or action selection problem. We have
chosen a method to solve the action selection problem, by formulating it as as a multi-
ple objective decision making problem [6]. Mathematically, a multi-objective decision



problem can be represented as finding the solution to arg max
x

[o1(x), ..., on(x)]. The

method followed for solving the multiple objective decision making problem problem is
the weighting method. This method is based on scalar vector optimization and is formu-
lated in the following way:

x∗ = arg max
x∈X

n∑

i=1

wioi(x). (5)

where wi are normalized weights such that
n∑

i=1

wi = 1. The solution to equation 5,

x∗(v∗, α∗) defines the control command which is sent to the robot.

4. Conclusions

This paper has presented the development of a mobile outdoor robot with three main
capabilities: automated victim detection, obstacle detection from stereo images and
behavior-based semi-autonomous control. Using this control strategy, the robot is able to
navigate on its own in an outdoor environment, navigating to a set of human-operator-
defined way-points while avoiding obstacles. At the same time, the remote human oper-
ator is automatically alerted when human victims are detected.

In the future, research on this robotic platform will be intensified with the goal of
equipping the robot with a chemical sensing unit and a visual simultaneous localization
and mapping module. This will enable the robot to report the presence of toxic gasses to
a remote operator, while mapping the incident site.

A robot with these capacities is a valuable assistant for crisis management teams, as
it performs a potentially hazardous and potentially life-saving task: navigating through
unknown terrain and mapping this terrain while finding human survivors and informing
the human firefighters about the presence of toxic gasses in the environment.
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