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I. Abstract:  

This contribution introduces the increase of mobile robot positioning based on GPS system 

using data from other sensors.  

Positioning using GPS system is determined, at any time, by measuring the time delay in a 

radio signal broadcast from several satellites, and using this and the speed of propagation to 

calculate the distance to the satellites. Position on earth is calculated then by triangulation of 

intersecting radio signals at the GPS receiver.  

Using GPS system for positioning is subject to several sources of errors:  ionosphere and 

troposphere delays, signal multi-path, number of visible satellites, satellite 

geometry/shading… A typical civilian GPS receiver provides 6-12 meters accuracy, 

depending on number of satellites available.  This accuracy can be reduced to 1m by using a 

DGPS (Differential GPS) system which employs a second receiver at a fixed location to 

compute corrections to the GPS satellite measurements. 

In order to increase the accuracy of the robot positioning, we use an extended Kalman Filter 

(EKF) to integrate data from the DGPS system with data from an INS (Inertial Navigation 

System) and robot encoders. This will allow also kipping robot positioning even if no satellite 

is visible. 

II. Introduction 

To reach a reasonable degree of autonomy, two basic requirements are needed: sensing and 

reasoning. Sensing is provided by an on board sensory system that gather information about 

the robot itself and the surrounding environment. According to the environment state, the 

reasoning system must allow the robot to localize itself in the environment and to seek for 

free paths.  

The localization problem can be divided into two sub-tasks: global and local localization. In 

many applications an initial estimation of the robot pose (position and orientation) is known 

(supplied directly or indirectly from the user). During the execution of a task, the robot must 

update this estimate using measurements from its sensors. This is known as local localization 

[2]. Using only sensors that measure relative movements, the error in the pose estimate 

increases over time as errors are accumulated. Therefore external sensors are needed to 

provide information about the absolute pose of the robot. This is achieved by matching the 

sensors measurements with a model of the environment. 

On the other hand, global pose estimation [3,4] is the ability to determine the robot’s pose in 

an a priori or previously learned map, given no other information than that the robot is 



somewhere on the map, i.e., it can handle the kidnapped robot problem, in which a robot is 

kidnapped and carried to some unknown location. Global localization is considerably more 

difficult than pose tracking because of the data association problem. The level of complexity 

of this task varies with the size of the environment, but also with the level of symmetry in the 

environment. It is only by integrating large amounts of data over time that these symmetries 

can be resolved. 

In this application, for its localization, the Robudem robot is equipped with a set of sensors: 

GPS, inertial navigation system (INS) and wheel encoders. Each of those sensors, when used 

separately, is subject to a lot of error sources affecting the accuracy of the obtained robot 

positioning.  Our work consists of combining data from those sensors for accurate position 

estimation. The following gives an overview of the algorithm we proposed for data 

integration. 

 

III. Data integration for robot localization 

In order to increase the accuracy of the robot positioning, we use an Kalman Filter to integrate 

data from the DGPS system with data from an INS (Inertial Navigation System) and robot 

encoders. This will allow also kipping robot positioning even if no satellite is visible. 

Kalman Filter is an extremely effective and versatile procedure for combining noisy sensor 

outputs to estimate the state of a system with uncertain dynamics. In GPS/INS/Encoders 

integration case, noisy sensors include GPS receivers INS and Encoders components, and the 

system state include the position, velocity, acceleration, attitude, and attitude rate of a vehicle. 

Uncertain dynamics include unpredictable disturbances of the host vehicle and unpredictable 

changes in the sensor parameters. Kalman filter optimally estimates position, velocity, and 

attitude errors, as well as errors in the inertial and GPS measurements. 

The relatively low data output rate of GPS receivers (usually 1 Hz) might not meet the cm 

level accuracy requirements for robot positioning. This problem becomes more serious when 

the potential temporarily loss of a GPS signal occurs or phase ambiguity resulting from cycle 

slips considered. INS provides the dynamics of motion between GPS epochs at high temporal 

resolution and complements the discrete nature of GPS in the occurrence of cycle slips or 

signal loss. 

In addition, positioning with INS requires the integration with respect to time of accelerations 

and angular rates, the measurement noise accumulates and results in long wavelength errors. 

GPS errors do not accumulate, but in short term, they are relatively larger and the 

measurements have poorer resolution.  

Integrated systems will provide a system that has superior performance in comparison with 

either a GPS or an INS system. The main strengths and weakness of INS and DGPS are 

summarized in the following [1]: 



INS 

high position velocity accuracy over the 

short term 

accurate attitude information 

 

accuracy decreasing with time 

high measurement output rate 

autonomous 

no signal outages 

affected by gravity 

DGPS 

high position velocity accuracy over the long 

term 

noisy attitude information (multiple antenna 

arrays) 

uniform accuracy, independent of time 

low measurement output rate 

non-autonomous 

cycle slip and loss of lock 

not sensitive to gravity 

 

INS/DGPS 

high position and velocity accuracy 

precise attitude determination 

high data rate 

navigational output during GPS signal outages 

cycle slip detection and correction 

gravity vector determination 

 

 

In case off long temporarily loss of a GPS signal, positioning updating based only on INS 

system can lead to inaccurate solution. Therefore, a correction using the encoders’ data is 

needed.   

IV. Kalman Filtring Modelling 

In our application, a mobile car-like robot "ROBUDEM" travels through the environment 

using its sensors for localizing itself. A world coordinate frame  is defined such that its  

and  axes lie in the ground plane, and its  axis point vertically upwards. The system 

(ROBUDEM) state vector  in this case is defined with the 3D position vector 

 of the gravity center of the robot (supposed in the middel of the axis between the 

rear weels) in the world frame coordinates and the robot's orientations roll, pitch and yaw 

about the Z, X, and Y axes, respectively . 

  



The dynamic model or motion model is the relationship between the robot's paste state, , 

and its current state, , given a control input  

  (1) 

 Where  is a function representing the mobility, kinematics and dynamics of the robot 

(transition function) and  is a random vector describing the unmodelled aspects of the 

vehicle (process noise such as wheel sleep or odometry error). 

The system dynamic model in our case, considering the control  as identity, is given by:  

  (2) 

  and  are the linear and the angular velocities, respectively.  and  are the Gaussian 

distributed perturbations to the camera's linear and angular velocity, respectively. 

The GPS satellites transmit two carrier signals on the L-band frequency, a primary signal (L1) 

at 1575.42 MHz and a secondary signal (L2) at 1227.60 MHz. 

The Kalman Filter maintains the state vector  based on sensors measurements. It also 

maintains a covariance matrix , which includes the uncertainties in the various states as well 

as correlations between the states. 

At each time step of the filter we obtain the predicted state  and covariance  using the 

state transition function. 

 

 

where  

  

is the Jacobian of  with respect to the state vector  and  is the process noise covariance. 

Considering a constant velocity model for the smooth robot motion: 

  



The measurement model in needed in the Kalman Filter in oreder to relate the observation to 

the unknown parameters. The mathematical models for the GPS L1 and L2 signal are [5]: 
 

 

and 

 

where 

  & :  composite GPS L1 and L2 signal 

 & :   amplitudes (power) of in-phase carrier component 

:    amplitudes (power) of quadrature carrier component 

D(t) :    50bps navigation data stream 

C(t) & P(t) :   C/A code and P (Y) code 

 & :   carrier frequency of L1 and L2 

 

V. Conclusion 

We presented an approach based on Kalman filtering for sensors’ data integration for mobile 

robot localization in a geo-referenced map. The used sensors are Global Positioning System 

(GPS), Inertial Navigation System (INS) and wheel encoders. Some changes could have been 

introduced to the used map for localization since it has been established: added/removed 

objects (cars, containers, trees …), damaged buildings, in case off aircraft crash… In this case 

the robot should have the means to rebuild such a map over time.  

We are now working on solving this problem by integrating data from a single monocular 

camera together with the previously used sensors in a Simultaneous Localization and 

Mapping process. This will allow a more accurate localization of the mobile robot and a 

reconstruction (mapping) of the environment. 
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