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Abstract 
In risky applications it is advantageous to use multiple robots in order to improve performances. In a 
research or patrol scenario robots have to move cooperatively in order to avoid collisions and to 
improve performance. In this paper we describe the implementation of two variations of a 
cooperative planning algorithm: Cooperative A* and Cooperative Voronoi A*. The task is decoupled 
into a series of single agent searches. The individual searches are performed in a 3D space-time 
search space and take into account the planned routes of other agents. The method is able to plan in 
2D and 2.5D environments by incorporating traversability information. The algorithm can also handle 
single and multiple waypoints. These can be chosen by the user or automatically generated in 
function of an a priori known map and the characteristics of the detection sensors. A simulator has 
been developed in order to rapidly evaluate and compare algorithms and to analyse the influence of 
configuration parameters. A summary of the results and their discussion are presented in this paper. 
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Introduction 
In certain situations, such as surveillance, transport…, the use of multiple robots can be beneficial. 
The robots are required to accomplish their task autonomously without colliding with each other or 
the environment, preferably taking the shortest possible paths. 
Generally two different strategies are used to control mobile robots: a behaviour-based approach and 
a planning-based approach. In this report, focus will be on global planning, and the planning based 
approach will be used. A plan will be developed based on a model of the environment and the robot, 
which will navigate the robots without collision through the environment and accomplish specified 
tasks. This can be combined with the reactive-based approach to create a typical mobile robot 
application: the global path plan can be paired with a reactive local navigator to circumvent small 
obstacles or react to unexpected circumstances. 
Depending on the application different strategies exist to tackle this problem. Some popular 
algorithms for multi-robot planning use a decoupled approach and manage the complexity of the 
problem by planning trajectories for robots individually and sequentially. Other approaches use a 
randomized algorithm, such as probabilistic roadmaps (PRM), or follow the design of path-velocity 
decomposition. Such methods are however not guaranteed to find a solution if one exists. The 
planning algorithms Cooperative A* and Cooperative Voronoi A* described further, follow the 
decoupled approach. 
 

Path Planner Simulator 
The simulator presented here is implemented in C# on the Windows platform. It provides a tool for 
visualization and allows to test the capabilities offered by the path planning algorithms. Figures 1, 2 
and 3 give a representation of the graphical user interface. 
 
The path planner GUI is composed out of two main components: 
 

 A menu bar allowing for user input. The users can choose the map and one of the available 
search algorithms. Several configurations settings can be set. By clicking on the map, the user 
can set the start, goal and optional waypoints for each robot. Several visualization options 
are possible. 

 A visualization area. In this area the map, the robots, their start, goal and waypoints will be 
shown. An animation of the robots moving on their generated paths will illustrate more 
clearly how collisions among robots are avoided. 

 



 
Figure 1: Screenshot of the path 
planner simulator. The paths are 
generated with the Cooperative A* 
algorithm. 

 
Figure 2: View of the settings menu. 

 
Figure 3: View of the available 
search algorithms in the planning 
menu. 

 

 
Map format 
A map is used to model the environment and to localize the objects of interest in the environment 
and for planning the route of robots by finding obstacle-free paths between the current position and 
a goal position. Different representations exist that are suitable to solve different aspects of the 
planning problem. We can distinguish two main categories of representations: roadmaps (visibility 
graphs, Voronoi diagrams, Probabilistic Roadmaps (PRM)…) and geometrical maps. Geometrical maps, 
more specifically, approximate cell decomposition maps were chosen for this simulator. 
For either 2D or 3D environments it is possible to turn a bounded portion into discrete rectangular 
cells (2D array of cells) that may or not be occupied. The resolution of this discretization determines 
the number of cells per axis and the quality of the approximation. The representation may be 
considered as a binary image in which each 1-state corresponds to a region containing at least one 
point of an obstacle and where 0-state represents those regions that are completely free of obstacle 
points. The free space is defined as the region where robots can freely move. The obstacles are 
regions of space that are impassable for the robots. For each coordinate of this array a single bit has 
to be stored to indicate the state of the space. Such a map is a good choice when a mobile robot 
builds or updates a representation of its environment with its sensors. This 2D view, although a 
simplification, is generally is generally sufficient to plan robot motion paths in flat indoor or nearly flat 
outdoor environments. Figure 4 shows an example of a 2D binary map. 
 

 
Figure 4: Binary 2D-map with equal traversability 
in the free space. Free space is visualized by white 
pixels (binary value 0, pixel value 255). Black 
represents the obstacles (binary value 1, pixel 
value 0). 

 
Figure 5: Grey-level map. The darker regions 
correspond to a higher traversability penalty. 
 

 



2.5D maps are a elaboration on 2D binary maps and are visualized as a gray-scale map, with a 
numerical value assigned to each cell. For instance, elevation maps give for each coordinate a 
corresponding height h. This information can be used in indoor environments but is most useful in 
terrain maps for outdoor navigation. Knowing the height allows to compute the slope in order to 
avoid too steep trajectories. Additional information can be further associated with each cell, 
introducing quantities like terrain roughness, communication, obstacle presence probability. An 
example of a 2.5D map is shown in figure 5. Both the 2D and the 2.5D maps are loaded as bitmaps 
into the simulator. 
 

Configuration Possibilities 
Depending on the planning problem different factors may be of interest. In the simulator different 
settings are possible which will lead to different paths being generated. A summary of the 
configuration settings is given below. A more in depth description of some will be discussed in 
following sections. 
 

 Traversability: This setting gives the option for incorporating the grey-level values in a 
“height”-map. The cost to traverse a cell will then be dependant on the grey-value. This value 
can represent a number of characteristics such as: height, terrain traversability, safety …or a 
combination of these. 

 Trade-off speed/optimality: The weight of the heuristic value can be adjusted to influence 
how the A* algorithm will generate paths. According to the weight of the heuristic value, the 
algorithm will be between two extremes: Dijkstra’s algorithm and the Best First Search (BFS) 
algorithm. 

 Diagonal moves: This setting can be set to either allow that robots move diagonally or not. 

 Distance transform: This setting can be set to incorporate the distance transform 
information when generating paths. The distance transform map will then be used as input 
map in much the same way as a grey-level “height” map, leading to paths laying further from 
static obstacles in the scene. 

 Grazing other robots: This can be set to either allow robots to graze each other or not, while 
moving diagonally. 

 Grazing obstacles: This setting can be set to either allow robots to graze obstacles or not, 
while moving diagonally. 

 
Path Scoring A*- Trade-off Speed/Optimality 
Once a representation has been chosen to model the environment, a search algorithm is used to find 
the best path through this representation. The A* search algorithm has been used frequently in 
robotics to find the shortest path for a robot in a graph-based map, and has been proven to be 
complete and optimal. 
The key to determining which cells to explore when figuring out the path is given by: 
 
𝐹(𝑛) = 𝐺(𝑛) + 𝐻(𝑛)  
 
Where: 

 G (n) = the movement cost to move from the starting position (S) to a given cell n on the 
map, following the path generated to get there. 

 H (n) = the heuristic estimated movement cost to move from that given cell n on the map to 
the goal position (G). 
 

The Heuristic can be used to control the algorithm’s behaviour. At one extreme, if H(n) is 0, only G(n) 
will play a role, and A* will turn into Dijkstra’s algorithm, which is guaranteed to find the shortest 
path. At the other extreme, when G(n) is 0, only H(n) will play a role, and A* will turn into The Best 
First Search (BFS) algorithm. H(n) must be an underestimate for the real movement cost in order for 
A* to be able to find the optimal path. Different distance measurements can be used for both G(n) 
and H(n), for instance: Manhattan Distance, Euclidean Distance, Chessboard Distance,… In the 

simulator the cost for a diagonal move will be  2 times the cost for a horizontal or vertical move. 



Depending on the need between speed or optimality the role of the heuristic value can be adjusted. 
In some situations it is better to have a good path quickly as opposed to a computationally expensive 
perfect path, especially in multi-robot environments and when the environment is not perfectly 
known. This trade-off between speed and optimality is built in as a configuration parameter in the 
simulator. 

 
Cooperative Path Planning 
Cooperative path planning is a multi-robot path planning problem where robots must find non-
colliding routes to separate destinations, given full information about the routes of other robots. 
Cooperative A*(CA*) [1] is an algorithm for solving the cooperative path planning problem. The task is 
decoupled into a series of single robot searches. The individual searches are performed in 3D space-
time, and take account of the planned routes of other robots. A wait move is included in the robot’s 
action set, enabling it to remain stationary. After each robot’s route is calculated, the states along the 
route are marked into a reservation table. Entries in the reservation table are considered impassable 
and are avoided during path searches by subsequent robots. The reservation table represents the 
robots’ shared knowledge about each other’s planned routes. 
The reservation table is implemented as a 3D grid (two spatial dimensions and one time dimension). 
Each cell of the grid that is intersected by the robot’s planned route is marked as impassable for 
precisely the duration of the intersection, thus preventing any other robot from planning a colliding 
route.  
It is important to note that any decoupled, greedy algorithm that precalculates the optimal path will 
not be able to solve certain classes of problem. This can happen when a greedy solution for one robot 
prevents any solution for another robot, for example see Figure 6. In general, such algorithms are 
sensitive to the ordering of the robots, requiring sensible priorities to be selected for good 
performance. 
 

 
Figure 6: The solution for one robot prevents the solution for the other one. This is a consequence of the 
decoupled greedy algorithm. 

 
In this simulator it is assumed that the robots are all identical and thus move at the same speed. 
Either they move at this speed, or they stand still. Furthermore, they are modelled as points (the size 
of one cell) in the map. Obstacles can simply be extended to take into account the size and the 
motion constraints of the robots. 
Some results of paths generated by this algorithm can be seen in figures 7, 8, 9 and 10. The start and 
goal positions for the different robots are denoted by S1, S2, S3… (magenta) and G1, G2, G3… (green) 
respectively. Optional waypoints (intermediate points) are denoted by I1, I2, I3…  (orange). Different 
robot paths are shown in different colours. 

 
Traversability 
In case of a 2.5D map obstacles are represented as occupied cells and traversability (cost of traversing 
a cell) of the free cells is indicated with a grey-value, ranging from a completely free (white, pixel 
value 255) to an occupied cell (black, pixel value 0). The higher the cost at a grid position the greater 
the penalty to traverse this position. A linear relation is used to determine the penalty from the value 
at a grid position: 
 

𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝛼. (
255−𝑔𝑟𝑒𝑦𝑉𝑎𝑙𝑢𝑒

255
)           



 

 
 

 
Figure 7: Typical results of path planning with the 
cooperative A* algorithm. 

 
Figure 8: Typical results of path planning 
with the cooperative A* algorithm. 

 
 
 
 

 
Figure 9: A map with small passages. Cooperative A* was used to generate 
the paths for the robots. This map has coves where robots can wait to let 
other robots pass to avoid collisions. 

 

 
Figure 10: Maps with small 
passages are challenging. 
When one robot path doesn’t 
prevent other paths to be 
found, solutions still can be 
generated as shown. 

 

 
 



With α, a parameter which will determine the weight the grey-values will have in the total cost 
function. The higher this value the more the grey-values will be avoided, and safer paths will be 
generated. To the other extreme, when this value is set to 0, grey-values will be totally ignored, and 
paths will be generated as if there were no grey- values. 
The traversability value can entail not just terrain traversability, but also other characteristics, such as 
time exposed to danger, visibility, energy expended… Consequently, applying the A* algorithm to 
these maps does not necessarily produce the shortest path, but the path with the lowest cost. A 
general mapping from these characteristics to the grey value is: 
 
𝑔𝑟𝑒𝑦𝑉𝑎𝑙𝑢𝑒 = 𝑤1 . 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐1 +𝑤2 . 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐2 + ⋯+ 𝑤𝑛 . 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑛                   with 
 
 𝑤1 +𝑤2 + 𝑤3 + ⋯+ 𝑤𝑛 = 1 
 
The characteristics in this formulation range from 0 to 255, just like the resulting grey value. The 
higher a specific characteristic value, the worse the traversability is coming from this characteristic. 
Different weights 𝑤1 , 𝑤2,𝑤3 , … , 𝑤𝑛  can be used to alter the weight of the different characteristics in 

the final grey value. 
 

 
Figure 11: Path planning in a grey-level map. 
When the grey-levels are ignored the paths will be 
generated as if all open space has the same 
traversability. Only the obstacles will have to be 
avoided. 

 
Figure 12: Path planning in a grey-level map. The 
traversability of the grey-levels is taken into 
account while generating the paths. This leads to 
different paths compared to figure 11 as the 
traversability of the terrain is incorporated. 

 
In figures 11 and 12 the same grey-level map is shown. For the same problem set-up, the paths are 
calculated, once without incorporating this traversability information in figure 11, and once with this 
traversibility information taken into account in figure 12. As can be seen when comparing the results, 
different paths are generated. The paths generated in figure 12 will avoid terrain with difficult 
traversability if this leads to lower cost paths. But terrain with a low traversability is still accessible. 
Moreover, if the cost to go around the region with low traversability will lead to higher cost paths, the 
robot will go right through. 
 

Distance Transform 
Calculating the distance transform for a map can be useful for calculating robot paths that will be at a 
safer distance from obstacles in the scene. Different metrics are possible for calculating the distance 
transform, for instance the Manhattan distance, the Euclidian distance, the Chessboard Distance… 
The underlying metric used in this simulator is the Chessboard Distance. In figure 13 and 15 a map 
and its distance transform are shown. 
When the distance transform map is treated as a grey-level map for path planning, with the grey-level 
values representing the difficulty for traversing that specific position, this will lead to safer paths. 
In figures 13 and 14 this difference is apparent. In figure 13, the paths are calculated with the original 
map and in figure 14 with the distance transformed map. As can be seen from figure 14, when 



incorporating this information, this leads to paths that are further removed from the obstacles. While 
searching for the paths for the different robots the lighter regions will be preferred, as the darker 
regions will have a greater penalty for traversing.  
 

 
Figure 13: Binary map with equal 
traversability in the free space 
region. The paths are calculated 
without taking into account the 
distance transform information. 

 
Figure 14: The paths in this map 
are calculated while incorporating 
the information available from the 
distance transform of the map, 
resulting in paths further away 
from the obstacles. 

 
Figure 15: This is the map displayed 
in figure 13, after a distance 
transform is applied. Consequently 
the paths with best traversability will 
be at equal distances from the 
obstacles. 
 

Cooperative Voronoi A* Path Planning 
From the occupancy grid it is possible to calculate the Voronoi map, consisting out of Voronoi edges 
and vertices. When a robot follows a path on a Voronoi edge, it will be equidistant from all the points 
in the obstacle region. The vertices are the points where the edges meet. This leads to the generation 
of safe paths that pass with maximal clearance around the obstacles. In figures 16 and 17 a map and 
its Voronoi map are shown. 
When combining the Voronoi diagrams with the previous Cooperative A* algorithm, the search-space 
will be reduced, leading to paths generated further from the obstacles and faster computation. 
The start, goal and optional waypoints that the robot must visit are supplied by the user. When the 
starting, waypoint and goal positions of the robot are not on the Voronoi map, the points closest to 
them on the Voronoi map are calculated. These points are then connected to the Voronoi diagram via 
the Cooperative A* algorithm, as shown in figure 18. 
 

 
Figure 16: A map containing several obstacles. 

 
Figure 17: This is the map displayed in figure 16 
augmented with its Voronoi map 

 
To avoid collisions amongst the robots multiple Voronoi ‘lanes’ are used instead of just one. In figure 
19, there are three lanes. The middle one has preference over the outer ones. This is accomplished by 
assigning an increasing traversability penalty for the outer lanes.  
Figure 19 shows an example of paths generated by the Cooperative Voronoi A* algorithm. The results 
of planning of this set-up by the Cooperative Voronoi A*algorithm is shown. Preference is given to the 
central lanes over the outer lanes. The 7 robots follow their generated paths without collision 
amongst each other and obstacles in the scene. 

 



 
Figure 18: The start, waypoint and goal positions for 
the different robots that are not on the Voronoi map 
are connected to their closest points on this map via 
the Cooperative A* algorithm. 

 
Figure 19: Multiple Voronoi lanes are used to allow 
robots to pass each other. In this figure 3 lanes are 
shown. The middle one will be preferred when 
planning the robots paths.  

 

Summary 
Two variations of a cooperative planning algorithm have been implemented: Cooperative A* and 
Cooperative Voronoi A*. These are a planning based approach to solve the multi-robot coordination 
problem. A plan is calculated for each robot individually by means of collecting information from the 
environment and from the positions from the other robots. Visual feedback of the robots moving on 
their resulting paths is provided through the path planning simulator. The simulator allows for user 
interaction through map selection, task specification and various visual and configuration settings. 
Depending on the planning application many different decisions can be made with regard to 
environment representation and search algorithm. Some will be more appropriate then others for 
varying problem areas and circumstances. Within the choice of a specific representation and search 
algorithm, there is still room to explore the path planning method chosen. Different characteristics of 
the planning method can further be tailored to the application. Some properties that effect robot 
behaviour were handled: speed/optimality trade-off, traversibility of the terrain, reducing search 
space to Voronoi diagram, using distance transformation for safer paths … 
 

Future Work 
For partially unknown environments, there isn’t a complete and accurate model of the environment. 
This can be the case for exploratory robots, or when the map is subject to dynamic changes. The D* 
algorithm (Stentz’s algorithm [2]) is capable of planning paths in unknown, partially known, and 
changing environments in an efficient, optimal, and complete manner. Instead of using A*, D* would 
expand the cooperative planning algorithms reported here to a larger problem space. 
As computations for large maps become increasingly time-consuming, alternate representations of 
the environment can be considered, for example adaptive cell decomposition. As opposed to regular 
cell decomposition, adaptive cell decomposition will result in maps with varying cell sizes. This 
approach reduces the number of cells used in open areas, which leads to less space for memory 
storage and less computation time. This would especially be advantageous in terrains with large areas 
that have the same traversibility. However, when new map data becomes available, updating such a 
map is less straightforward, as the entire map structure may need altering. 
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