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ABSTRACT. Humanitarian demining is a labor-intensive and high-risk which could benefit from
the development of a humanitarian mine detection robot, capable of scanning a minefield semi-
automatically. The design of such an outdoor autonomous robots requires the consideration
and integration of multiple aspects: sensing, data fusion, path and motion planning and robot
control embedded in a control and software architecture. This paper focuses on three main
aspects of the design process: visual sensing using stereo and image motion analysis, design of
a behaviour-based control architecture and implementation of a modular software architecture.

RESUME. : Le déminage humanitaire reste une opération laborieuse et risquée. Dans ce contexte,
le but est de développer un robot mobile démineur capable de scanner un champ de mine de
maniere semi-automatique. La conception d’un tel robot doit prendre en considération différents
aspects: la perception et le fusion des données, I’ architecture de contrble pour la navigation
du robot et son implémentation avec un logiciel adapté. Le systeme de perception utilisé dans
ce travail est basé sur la stereo vision et I’analyse du mouvement dans ’image. Le systeme de
controle utilise une architecture modulaire basée sur les comportements.

KEYWORDS: Stereo vision, Image motion analysis, Behaviour-based robot control, Robot control
and software architectures, Behaviour fusion, Robots for risky interventions.

MOTS-CLES : Stereo vision, Traitement de mouvement dans ’image, Contrdle basé sur les com-
portements, Fusion de comportements, Robots pour interventions a risques.
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1. Introduction
1.1. Goal and problem formulation

The goal of this research project is to prepare the ROBUDEM, an outdoor mobile
robot platform as shown on Figure 1 for a humanitarian demining application. In this
setup, the robot navigates and searches for mines by moving a metal detector, detecting
suspicious objects in the soil. Once a suspicious object is detected, the robot stops and
invokes its Cartesian scanning mechanism. This scanning mechanism performs a 2D
scan of the soil, allowing mine imaging tools to make a reliable classification of the
suspicious object as a mine or not. This paper describes partial aspects of this research
work aimed at making the robot capable to scan a minefield semi-autonomously and
return a map with locations of suspected mines.

During the design of all these sub-aspects, the outdoor nature of the robot has to
be taken into account, because outdoor robots face special difficulties compared to
their indoor counterparts. These include totally uncontrolled environments, changing
illumination, thermal, wind and solar conditions, uneven and tough terrain, rain, etc.

Figure 1. ROBUDEM robot with the metal detector and a stereo camera
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1.2. Previous work

For decades, autonomous robotics is a popular research area, yet the amount of
real intelligent autonomous outdoor robots applied on the field is still very limited.
The goal of the research project presented here is to develop intelligent autonomous
robotic agents which can assist humans for various types of risky outdoor interven-
tions (surveillance, crisis management...). The challenges for such a robotic system
are tremendous and span various fields of research: from sensing and sensor fusion to
modeling and control, map building and path planning, decision making and auton-
omy, and to the final integration of all these components. Three of these aspects are
investigated more profoundly in this paper: visual sensing, robot control and the soft-
ware architecture. The following paragraphs give an overview of the different existing
algorithms and design choices for these different components.

Robotic agents can rely on numerous types of sensors to gain knowledge about
the environment or about itself or its position. These sensors include infrared sensors,
ultrasound sensors, laser range scanners, GPS, inertial navigation systems... Cogni-
tive science and biological examples pointed out the importance of visual sensing,
which led to the application of computer vision algorithms like stereo vision (Park
et al., 2005), obstacle detection (DeSouza et al., 2002), person following (Enescu
et al., 2005), visual servoing (Hong et al., 2001) to robotics and it eventually also
led to mixed paradigms like visual simultaneous localisation and mapping (VSLAM)
(Davison et al., 2007). However, integration of vision modules into a control archi-
tecture for an autonomous mobile robot is more difficult than just adding the vision
components (Schlegel et al., 2000). This is due to the high bandwidth and processing
requirements of vision sensors, which require a task-specific configuration of vision-
based behaviors. Another drawback of many computer vision algorithms is that they
lack stability and robustness when confronted with varying illumination conditions, as
it generally happens in outdoor situations, although illumination-invariant algorithms
have been proposed (DeCubber et al., 2004). For visual sensing, the Robudem robot
is outfitted with a stereo camera system, consisting of two digital cameras. In order
to maximize the information stream towards the navigation unit, two different visual
processing techniques are used: stereo vision and image motion analysis.

An autonomous mobile robot must be self-reliant to operate in complex, partially
known and challenging environments using its limited physical and computational
resources. Its control system must ensure in real time that the robot will achieve
its tasks despite all these constraints (Medeiros, 1998). One of the first robot con-
trol architectures was the Sense Model Plan Act (SMPA) paradigm. The primary
drawback of this approach is that the series of stages through which all sensor data
must pass places an unavoidable delay in the loop between sensing and action. This
is a major problem with all deliberative approaches: since they rely on a world
model, they have difficulties with real-time performance in complex environments.
To counter this drawback, alternatives, such as the behavior-based approach, were
proposed (Arkin, 1987),(Maes, 1989),(Mataric, 1997),(Brooks, 1986). Contrary to
deliberative approaches, these behaviour-based control systems afford modular de-
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velopment, real-time robust performance within a changing world and incremental
growth. In behavior-based control, the control of a robot is shared between a set of
purposive perception-action units, called behaviors (Pirjanian, 1999). Based on se-
lective sensory information, each behavior produces immediate reactions to control
the robot with respect to a particular objective, a narrow aspect of the robot’s overall
task such as obstacle avoidance or wall following. Behaviors with different and pos-
sibly incommensurable objectives may produce conflicting actions that are seemingly
irreconcilable. Thus a major issue in the design of behavior-based control systems is
the formulation of effective mechanisms for coordination of the behaviors’ activities
into strategies for rational and coherent behavior. This is known as the action selec-
tion problem. Numerous action selection mechanisms have been proposed over the
last decade; a qualitative overview can be found in (Doroftei, 2006). The behavior-
based controller presented here uses statistical reasoning on the output data of each
behaviour to determine the stability and reliability and therefore also the activity level
of seven behaviours, each proposing a (different) velocity and turning prescript.

Robot control architectures become more and more complex, as human reasoning
is mimicked. Moreover, there is a significant portion of robot functionality that is
common to a large number of robotic systems in different application domains. Un-
fortunately, most functionality implementations are tied to specific robot hardware,
processing platforms and communication environments. Most research and develop-
ment in software for robotic systems is based on proprietarily designed architectures
invented from scratch. To avoid this, the choice of a flexible, extendable and real-
time capable software architecture is crucial. This architecture has to ease the use of
reusable and transferable software components. Multiple software architectures, like
Orocos (Bruyninckx, 2001), Player/Stage (Gerkey et al., 2003), Campout (Pirjanian
et al., 2000), CoRoBa (Colon et al., 2006), etc., have been proposed in the past, all
with their strengths and weaknesses. The existence of such a multitude of software
frameworks hasn’t helped the standardisation of robot software architectures. In the
course of this research project, the Modular Controller Architecture (MCA) (Scholl
et al., 2002) was employed. MCA is a modular, network transparent and realtime
capable framework targetted towards the control of autonomous robots.

This paper is structured as follows: in Section 2 the visual sensing is explained in
detail. To maximize the information extracted from the visual camera data, two ap-
proaches for visual obstacle detection are followed: classical stereo vision and image
motion analysis. Section 3 describes the robot control architecture: first the general
architecture is explained, then the metal and mine detection groups are discussed. In
Section 3.4, the behaviour-based navigation controller is presented, which ensures
semi-autonomous robot navigation, while Section 3.5 discusses how this navigation
fits in the global framework of the robot motion scheduler. Section 4 describes the
implemented software architecture. First, the underlying MCA framework is intro-
duced, then the implementation of the general control architecture is explained and
after that the implementation of the behaviour-based navigation controller in MCA 1is
discussed. Finally, some results of experiments with the presented architecture on a
real demining robot are presented and some conclusions are formulated.
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2. Visual sensing
2.1. Stereo vision

Stereo vision employs the difference in location between two cameras. This dif-
ference in space leads to two images where the same points can be found at different
positions. The goal of stereo disparity estimation is finding the correct correspon-
dences between image points from the left and right camera. For this, we use the
algorithm presented in (Birchfield, 1997). The algorithm matches individual pixels
in corresponding scanline pairs while allowing occluded pixels to remain unmatched,
then propagates the information between scanlines. The algorithm handles large un-
textured regions, uses a measure of pixel dissimilarity that is insensitive to image sam-
pling, and prunes bad search nodes to increase the speed of dynamic programming.
The output of this algorithm is a dense depth map of the area in front of the cameras,
as shown in Figure 2. On the depth map in Figure 2c, nearby objects appear dark.
The cross on top marks the location of the closest obstacle, which is the darkest point
on the depth map and which corresponds here to the obstacle in front of the robot.
The data-content of this dense depth map must now be reduced to be useful for the
navigation controller. For this, we use the approach proposed by Schafer in (Schafer
et al., 2005). Following this method, the dense depth map is downprojected onto the
ground surface, such that it can be represented as a 2D line as shown in Figure 2d.
This data is further reduced in dimensionality by calculating from the depth line the
distance to the nearest obstacle on the left d;, in the middle d., and on the right d,..

Left Centre Right

r

d

c) d)

Figure 2. a) left camera image; b) right camera image; c) dense depth map (white =
far, dark = near); d) depth line with nearest distances to obstacles on the left, in the
middle and on the right
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2.2. Image motion analysis

Motion analysis can provide extra information about the environment. The ratio-
nale behind the usage of the image motion for navigation purposes is that when large
image motion is detected, this is likely due to objects close to the camera (and thus
close to the robot), which requires an appropriate reaction from the obstacle avoidance
module. On the other hand, when few image motion is detected, this means that the
way in front of the camera is probably quite clear of obstacles.

Multiple techniques stand at our disposal to estimate the image motion. These
methods differ in their approach according to the main problem to be solved in image
motion: the background estimation and subtraction process. As the camera system is
installed on a moving robot system, background estimation is particularly difficult in
this case, as it is very hard to build up a model of the background over a large amount
of time. This constraint limits the use of traditional advanced background estima-
tion techniques like kernel density estimators, mean shift or mixtures of Gaussians
(Piccardi, 2004). As a result, the frame difference between successive frames was
employed to find back the moving objects. As expressed by Equation [1], the motion
my, for each pixel is robustly estimated by calculating the frame difference when the
difference is above a certain threshold which is dependent on the robot velocity V.

e — 0 if |frame; — frame;_1| < cV (1]
k= |frame; — frame;_1|  if |frame; — frame;_1| > ¢V

With c a constant describing the relation between robot speed and image motion. On
Figure 3, this image motion field is shown as calculated by the right robot camera.

To come to one single numerical value m representing the amount of motion in

a camera image, the resulting motion field is summed over the whole image domain,
all pixels
givingm = > my. This calculation is performed once for the left camera and
k=1
once for the right camera image, leading to two distinct image motion estimates.

)

Figure 3. Image motion field of right camera: a) image at t;_,; b) image at t;; c)
image motion field
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3. Robot control architecture

The control architecture describes the strategy to combine the three main capabil-
ities of an intelligent mobile agent: sensing, reasoning and actuation. These three ca-
pabilities have to be integrated in a coherent framework in order for the mobile agent
to perform a certain task adequately. A number of control strategies can be set up,
varying from simple serial sense-model-plan-act strategies to complex hybrid meth-
ods. As the robot task involves achieving goals which are not defined at designtime,
a purely reactive strategy will not suffice in our case, unless it is extremely (and thus
prohibitively) complex. A robot which is required to navigate to various locations
specified by the user at runtime cannot perform this task reactively unless its state-
action policy includes states for each of the possible goal locations. Purely reactive
approaches achieve great efficiency because of their minimal computation. However,
since they have so little representational power, they lack runtime flexibility. To com-
bine the advantages of purely reactive and planner-based approaches, this research
work aims at implementing a hybrid control strategy which fuses a behaviour-based
controller for autonomous navigation with automation aspects for mine scanning. A
behaviour-based robot control architecture was chosen because of the flexible and
modular nature of behaviour-based controllers, facilitating the design process. Ad-
ditionally, a common property of behaviorbased systems is their distributed nature;
they consist of a collection of parallel, concurrently executing behaviors devoid of a
centralized arbiter or reasoner. The performance of the behaviour-based controller de-
pends on the implementation of the individual behaviours as well as on the method
chosen to solve the behaviour fusion or action selection problem.

3.1. General architecture

The working principle of the proposed control architecture is sketched on Figure
4. There are three distinctive modules: Navigation (on the right side on Figure 4),
Mine Detection - Scanning (in the middle on Figure 4) and Metal Detection (on the
left side on Figure 4). These three processes are controlled by a watchdog, the robot
motion scheduler, which manages the execution of each module and decides on the
commands to be sent to the robot actuators. This robot motion scheduler is explained
more in detail in Section 3.5. In normal situations (when no suspicious objects are
detected), the leftmost and rightmost modules (Metal Detection and Navigation) are
both active. In this situation, the metal detector senses continuously for metal in the
soil and the navigation module steers the robot towards a certain goal, while avoiding
obstacles. When metal is found, the central module, Mine Detection, is activated by
the robot motion scheduler. In this case, the robot is stopped as the navigation module
is no longer active and the cartesian scanner searches for metal in a predefined pattern.
The output of this scanning procedure is used by mine imaging tools to determine
whether the suspected metal object is a mine or not. This information is used by the
navigation procedure as extra sensor input, as mines need to be avoided too.
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In the following sections, the different groups depicted in Figure 4 are presented
more in detail.

Metal Detection Mine Detection Behaviour-based Navigation
Mine sensor ‘ ‘ Sensors ‘
Scanning
Metal Detector Metal Detection
Navigation
Mine Imaging
No Yes
——<_Mine Found? Robot
control
command
Robot Motion Scheduler

Robot command

Figure 4. The general robot control architecture

3.2. Metal detection

The metal detector scans for metal in the soil. If no metal is found, it keeps on
doing this and the robot keeps on moving. If a metal is found, this is reported to the
robot motion scheduler, which takes the appropriative actions. We will not elaborate
here on the implementation of a metal detecting sensor, as it is out of the scope of this

paper.

3.3. Mine detection

The Cartesian scanning mechanism makes a 2D scan with the metal detector.
Combining all the individual metal detector measurements, on obtains an image of
the soil. An example of such an image is given in Figure 5. In this image, the bright
oval areas on Figure 5 have a mine-like shape and size, so they need to be treated as
suspected objects. Such an analysis is performed automatically by mine imaging tools,
which determine the likelihood of mine occurrence and the exact position of eventual
mines. It is obvious that the diverse nature of modern mines can make this process
very difficult. The Royal Military Academy, leading the Belgian HUDEM project, has
been focussing for several years on the development of new data processing and fu-



Towards mine detection robots 303

sion algorithms for mine detection (Milisavljevic, 1999), on the improvement of mine
detecting sensors and on robotic systems that carry these sensors. This paper focusses
on the third research topic, so we will not discuss these mine detection algorithms any
further.

Figure 5. Example result of an image of the soil obtained by making a cartesian scan
with a metal detector

If a mine is found, this is reported to the robot motion scheduler, which takes
the appropriative actions. In addition to this the Mine detector acts as a sensor for
mines, as it returns the locations of mines, which need to be considered as obstacles
themselves.

3.4. Behaviour-based navigation controller

For the Robudem robot, three main sensing capabilities are installed: odometry,
stereo vision and image motion analysis. These three sensing capabilities are pro-
cessed by separate behaviours. In this context, the odometry information is used for
guiding the robot to a given goal position, while the visual sensors are used for obsta-
cle avoidance.The main advantage of using behaviour-based approaches is that each
of the different behaviours can be designed and implemented separately. The general
scheme of the behaviour-based navigation module is shown on Figure 6. As indicated
by Figure 6, the behaviour-based controller has a hierarchical structure. At the lowest
level, we can find the sensor input data for the behaviour-based controller consisting of
odometry information and stereo images. From the visual input stream, two abstract
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sensors are deduced as explained in Section 2: stereo vision and image motion anal-
ysis. This leads to three main behaviours defined for robot navigation: goal seeking,
avoiding obstacles using stereo vision data and avoiding obstacles using image mo-
tion analysis. As the architecture is modular, more behaviours can be added efficiently.
Behaviour fusion then extracts consistent control commands from these individual be-
haviours. The output of this behaviour-based navigation planner are velocity (V') and
turn angle (T’rront, T Rear) commands. The reason for having two different turn angle
commands is related to the mechanical structure of the Robudem robot, which has a
two-by-two differential drive system, meaning front and back wheels can be given a
different turning angle, allowing for highly flexible maneuvering on difficult terrain.
This also allows for different drive modes to be adopted by the robot. It is our final
aim to let the behavioural controller decide which is the best drive mode given the
terrain circumstances. For now, the user can select on the graphical user interface the
desired drive mode and Tyt and T'req, are calculated accordingly.

vV Tme

Trear

Avoid obstacles
using
Stereo Vision

Stereo Vision
Analysis

Avoid obstacles
using
Image Motion

Image Motion
Analysis

Odometry

Figure 6. General scheme of the behaviour-based navigation module

We will now explain the different components of the behaviour-based controller
depicted in Figure 6 more in detail in a bottom up approach, so starting with explain-
ing the different individual behaviours. Each of these behaviours calculates its own
velocity and turn angle for the robot. These velocity and turn prescripts are calculated
at behaviour level as follows:
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— the avoid obstacles using stereo vision behaviour receives as data d; and d,., the

distances to obstacles on the left and right side of the robot, by stereo vision analysis.
The smaller the distance to obstacles, the more carefully and slowly the robot must
move. The velocity Vg is therefore directly proportional to the mean of the measured
distances left and right as expressed by Equation [2]:
d;+d,
5 (2]
with c¢g a normalization constant. When the distance to obstacles on the left side is
larger than the distance to obstacles on the right side, the robot should avoid these
obstacles on the right by turning to the left. This relation between robot turn angle and
distances to obstacles is expressed by Equation [3]:

Ts = cs (dy —d;) (3]
as such, the distance to obstacles is maximized;

VS:CS

— the avoid obstacles using image motion behaviour receives as data m; and m,.,
the movement in the left and the right camera measured by the image motion analysis.
The more movement in the image, the more probable there are objects close to the
robot, so the velocity should be lowered. The robot speed V), is as such inversely
proportional to the image motion as expressed by Equation [4]:

Vu=1-cum UlmilA —;mr [4]
with cjs a normalization constant. When the movement on the left side is larger than
the movement on the right side, the robot should avoid these probable obstacles on the
left by turning to the right, meaning the robot turn angle can be calculated from the
movement in the images as given by Equation [5]:

Ty =1—cpr (my —my) [5]

— the goal seeking behaviour receives as data the estimate of the robot position
(xR, yr) and orientation A, as calculated by the odometry and robot kinematics. The
estimation of the robot motion and posture is done via a non-linear method named
the dynamic extension algorithm, as presented in (Habumuremyi et al., 2005). The
robot position is compared with the desired goal position (z¢, y¢) and orientation 0
and a velocity Vp and turn angle Tp command are calculated from this information.
The velocity of the robot should be maximal if the robot is far enough from the goal
and should be reduced when approaching the goal. Therefore, the calculation of the
velocity command is split in two parts:

_ Umax if dtarget > dthreshold 6
Ve = _drarger if d < d [6]
dihroshold ~max target threshold

with diarget the distance to the goal, calculated from the robot and goal position and
dnhreshold @ certain security distance above which the robot is allowed to drive with
the maximum robot velocity vyax. The turn angle command can be calculated by
expressing that the heading of the robot and the target should be the same:

3
Tp = — (M) [7]

cp
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with cp a normalization constant.

Behaviour fusion deals with distilling a coherent robot command from the indi-
vidual behaviour prescripts. Therefore, the outputs of the behaviours are weighed
according to the activity level A of the specific behaviour as expressed by Equations
[8] and [9]. The activity level of a behaviour describes to which degree this behaviour
is relevant for the calculation of the final robot command.

(8]

V= (1— Ap) (ASVS +Am Vi + APVP>

As+ Ay + Ap

(9]

AsTg + AT, ApT,
TZAF,R< sls+ Apdy + PP)

Ag+ Ay + Ap

with:
— V and T respectively the velocity and turning command for the robot;

— Ag the activity level for the Emergency Stop which allows the user to de-activate
the robot at all time-instances via the user interface for security reasons;

— Ap, Ag the activity levels for Front Steering and Rear Steering, which decide
on the drive mode which will be adopted by the robot;

— Ag, Ay, Ap the activity levels for, respectively, the Obstacle Avoidance using
Stereo Vision, Obstacle Avoidance using Image Motion Analysis and Goal Seeking
behaviour;

— Vs, Vi, Vp the Velocity commands from, respectively, the Obstacle Avoidance
using Stereo Vision, Obstacle Avoidance using Image Motion Analysis and Goal Seek-
ing behaviour;

—Tg, Ty and T'p the turn angle commands coming from, respectively, the Obsta-
cle Avoidance using Stereo Vision, Obstacle Avoidance using Image Motion Analysis
and Goal Seeking behaviour.

A major issue in the design of behaviour-based control systems is the formulation
of effective mechanisms for coordination of the behaviours’ activities into strategies
for rational and coherent behavior. Such fusion mechanisms are based upon the calcu-
lation of the activity levels as presented above. These activity levels should reflect the
relevance of the specific behaviour. The principle behind the calculation of the activity
levels is that the output of a behaviour should be stable over time in order to trust it.
Therefore, the degree of relevance or activity is calculated by observing the history
of the output - a velocity and turn angle - of each behaviour. This history-analysis
is performed by comparing the current output to a running average of previous out-
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puts, which is transformed to a normalized standard deviation. For the stereo vision
behaviour, these standard deviations are expressed by Equations [10] and [11]:

2

N
i Z VS,J
=1
o5,V = Cv Z Vs, — 2 N [10]
k=i—h
N 2
i Z TSJ
=1
US,T—CTkZ} Tsp— 2 N [11]
=i—h

with ¢y and ¢ two normalization constants.

The larger this standard deviation, the more unstable the output values of the be-
haviour are, so the less they can be trusted. The same approach is followed for the
image motion (subscript M) and the goal seeking (subscript P) behaviours. This
leads to an estimate for the activity levels as expressed by Equation [12]:

Asivyp = (1—osmypy) + (1 —osm/pr) [12]

For stability reasons, the activity level is initialized at a certain value (in general 0.5)
and this estimate is then iteratively improved. The presented approach towards cal-
culating the activity levels has some major advantages over traditional methods. In
comparison to classic fuzzy logic data fusion approaches where the number of rules
grows in general rapidly with the number of inputs, the complexity only increases lin-
early in this approach. Moreover, it is very modular, easily updateable and the result
can be calculated very quickly. One of the disadvantages of this method is that the nor-
malization constants ¢; must be user-determined. However, this process of parameter
tuning only needs to be performed once for each abstract sensor, as the normalization
constants ¢; are independent of one another.

As such, all information necessary to calculate Equations [8] and [9] is known,
meaning that the behaviour-based navigation controller can propose a robot control
command in the form of a velocity and turning command. This data is given as an
input to the robot motion scheduler which will execute it, unless another module has
a higher priority task (and trajectory) to perform.
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3.5. The robot motion scheduler

The robot motion scheduler needs to decide which of the modules is executed and
which of them can influence the robot actuators through robot commands. Its flow
diagram is sketched on Figure 7.

There are two main paths through the robot scheduler, one for the (normal) situa-
tion of exploring while avoiding obstacles and detecting metals and one for the situa-
tion where metal is found and more thorough investigation is needed (mine detection)
while the robot is standing still.

In a normal situation, occurring e.g. in an initial situation (default inputs), the metal
detector is activated but the scanner is turned off. The navigation module returns at all
time instances a robot action prescript, as this module loops infinitely without interac-
tion with the other modules. This trajectory is set as the trajectory to be executed, but
with a low priority.

If the metal found trigger is given, the metal detector is switched off. The trajec-
tory for the robot is set to a predefined movement, more specifically, to back off a
little. This is done to be able to centre the scanning metal detection better around the
suspicious object. This trajectory has a high priority. When this movement is com-
pleted, the robot is halted, by giving a "no movement" trajectory with a high priority.
Finally, the scanning metal detection module is activated.

Default Navigation Metal
Inputs 'ga
i i
Scanning Metal
Metal Detection COC;?::::] d
Off off
|

R N R

Trajectory = Trajectory =
Calculated from Path Planning Backwards movement|

Inputs

Primary
Actions

Robot
v Command
Trajectory =
No movement

A B |
)
Metal Scanning

Detection Metal Detection Secondary
on on Actions

Figure 7. The control architecture for the robot motion scheduler
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4. A modular software architecture
4.1. An introduction to MCA

As control architectures which aim to mimic human thinking tend to rapidly be-
come highly complex, the use of a flexible, extendable and real-time capable software
architecture is very important. Such a software architecture has to ease the develop-
ment and reuse of software components. The chosen software architecture, MCA
(Modular Controller Architecture) as presented by Scholl in (Scholl et al., 2002),
achieves this by employing simple modules with standardized interfaces. The com-
munication in MCA is managed via transporting edges that connect modules together.
The main programs only consist of constructing modules that are connected via edges
and pooled into a group. This results in an equal programming on all system lev-
els. As modules can be integrated both on Windows, Linux and on RT-Linux without
changes, they can be developed on Linux-side and then transferred later to RT-Linux.
As errors in RT-Linux lead to system-hangs this development strategy prevents from
many reboot cycles and results in faster software development.

Each MCA module has a structure as shown on Figure 8 and is determined by
four connectors with the outside world: Sensor input (left below), Sensor output (left
top), Control Input (right top), Control Output (right below). As a result sensor data
streams up, control commands stream down. The Sensor input and output are con-
nected through a Sense procedure which enables to process the sensor data and the
Control input and output are connected through a Control procedure which enables
to process the control commands. On Figure 8, sensor data flow is shown in yellow,
control command flow in red.

A A 4
Sersor Outut Cornraler nput

Irtemal
Parimeters
Jerse Corfrolg

Intermal
Wariables

Sersolinput Contoler Output
) v

Figure 8. An MCA module made up of a Sensor Input and Sensor Output edge, linked
by a Sense procedure and a Control Input and Control Output edge, linked by a Con-
trol procedure

This modular structure is particularly convenient for behaviour-based architectures
as the individual behaviours translate easily to corresponding MCA-modules. This is
why we chose MCA above other software architectures.
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4.2, The general control architecture

The general robot control architecture, as presented in Section 3.1, is translated
into an MCA scheme as shown on Figure 9. The architecture features a layered hi-
erarchical structure with three levels. The first level consists of low level sensor pro-
cessing modules such as the stereo framegrabber and the metal detector, together with
low-level actuator controlling modules such as the uplink to the Robudem robot and
to the cartesian scanner. One level higher in the hierarchy, high-level abstract sensors
such as the stereo vision module, the image motion analysis module and the mine
imaging module process the data received by the low-level sensors. These image pro-
cessing steps were explained more in detail in Section 2. Also the robot kinematics
and dynamics module which provides the odometry data can be found at this level. It
can be observed that when changing the robot platform, only the robot kinematics and
dynamics module and the robot uplink need to be rewritten. This allows for fast and
easy development of control architectures for multiple robotic platforms, based upon
a common codebase. Eventually, the high-level abstract sensors output their data to
the navigation controller, which decides on the robot actions, in conjunction with the
robot motion scheduler, as explained in Section 3.1. The structure of this navigation
controller in MCA 1is explained in Section 4.3.

‘ Sensor OQutput ‘ Controllerinput

Navigation
Controller

4n

RobotMoticn
Scheduler
Stereo Vision Image Mo_tlon _ Robot_ Mln_e
Analysis Kinematics Imaging
Stereo RobuDem Metal Cartesian
Framegrabber Uplink Detector Scanner

‘ Sensor Input ‘ Controller Qutput

Figure 9. General MCA scheme for the robot controller
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4.3. The general behaviour-based navigation controller

The MCA scheme for the behaviour-based controller is shown on Figure 10. It
consists of the three main behaviours explained before, controlled (fused) by a Be-
haviourSelector module.

Figure 10. MCA scheme for the behaviour-based controller

The sensory input received by the behaviour-based controller and represented on
the bottom left of Figure 10, consists of the distances to obstacles: d;, d., d, from
the stereo vision module; the motion in the left and right camera m;, m, from the
image motion analysis module and the robot position (zg,yr) and orientation 0
as estimated by the odometry. This data is processed by the stereo vision, image
motion and goal seeking behaviours, outputting a velocity and turning prescript. The
BehaviourSelector module receives as input the output of the different behaviours and
calculates the activity levels for each of these behaviours according to Equations [12].

All of the three main behaviours also send the calculated velocity setup value to the
Velocity module, where the data fusion occurs, based on the activity levels which were
calculated by the BehaviourSelector module. The EmergencyStop behaviour, which
can be triggered by the user or when an obstacle is detected within a security distance,
ensures that the velocity command is only transferred to the robot in safe conditions.

For the turning behaviour, a similar approach is followed; only in this case there
are two separate fusion behaviours the navigation behaviours can send their results
to. As explained before, this is the case because the robot can assume different drive
modes. For example, for car-like driving, only the front wheels are steered and for
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crab-like driving, all wheels turn in the same direction. It is the BehaviourSelector
which decides on the drive mode based on user input and sets the activity levels for
front and rear steering accordingly.

5. Results

The result of the presented research project is a generic robot control architecture
which can be used for the control of different real and simulated robots. Of course,
when switching robots, some modules need to be interchanged, such as for example
the RobuDem Uplink module, which is responsible for translating MCA commands to
robot commands and back. The global achievements of this research project can be
discussed by taking a look at the Graphical User Interface (GUI) in Figure 11, as it
shows the important features of the Robudem controller.

-----
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Figure 11. User Interface of the Robudem navigation controller

On the upper left, the stereo camera images are visible, which are rectified to
facilitate the calculation of the depth map. The dense depth map is then postprocessed,
as is shown on the images on the lower left. In the top middle of the interface, the
measurements of the abstract visual sensors stereo vision and image motion analysis
are shown using colored bars. These indicate for the stereo vision sensor the distances
to obstacles on the left, middle and centre and for the image motion sensor the motion
in the left and right camera image.
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At the right of the interface, the activity levels of the different behaviours are
shown. As can be noticed, the BehaviourSelector has found here that the Image-
Motion behaviour delivers more reliable results than the StereoVision behaviour. This
is in this case due to the lack of texture in the camera images, which renders the dense
depth map estimation less robust. On the lower right of this robot control interface
the map of suspected mine locations is shown, as detected by the robot metal/mine
detector. Red dots indicate suspected mine areas.

6. Conclusions

In this paper, we presented three main aspects of the design process of an intelli-
gent autonomous robotic agent for demining interventions: visual sensing, behaviour-
based control and the software architecture. Multiple visual cues, stereo vision and
image motion analysis, were integrated into the robot control and software architec-
ture. A behaviour based control architecture was proposed, using statistical reasoning
to solve the action selection problem. All components were implemented using a
modular software architecture to achieve a future-proof design. The integration of
these aspects enables the robot to search for mines in a designated area while avoiding
obstacles.

The purely reactive nature of the presented framework is certainly the major draw-
back of the approach. Therefore, it is the aim of future research to combine the pre-
sented behavior-based approach with model based reasoning. For this, we are de-
veloping a visual simultaneous localization and mapping (V-SLAM) system, which
can automatically map the environment and place the robot in this map. Moreover,
a differential GPS system and an orientation sensor will be placed on the robot. By
integrating the information from these sensors with visual data in a SLAM context,
the precision of the robot localisation will be further increased.
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