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Abstract

This research work tackles the problem of dense three-dimensional reconstruction
from monocular and binocular image sequences. Recovering 3D-information has
been in the focus of attention of the computer vision community for a few decades
now, yet no all-satisfying method has been found so far. The main problem with
vision, is that the perceived computer image is a two-dimensional projection of the
3D world. Three-dimensional reconstruction can thus be regarded as the process
of re-projecting the 2D image(s) back to a 3D model, as such recovering the depth
dimension which was lost during projection.

In this work, we focus on dense reconstruction, meaning that a depth esti-
mate is sought for each pixel of the input image. Most attention in the 3D-
reconstruction area has been on stereo-vision based methods, which use the dis-
placement of objects in two (or more) images. Where stereo vision must be seen
as a spatial integration of multiple viewpoints to recover depth, it is also pos-
sible to perform a temporal integration. The problem arising in this situation
is known as the Structure from Motion problem and deals with extracting 3-
dimensional information about the environment from the motion of its projection
onto a two-dimensional surface. Based upon the observation that the human vi-
sual system uses both stereo and structure from motion for 3D reconstruction, this
research work also targets the combination of stereo information in a structure
from motion-based 3D-reconstruction scheme. The data fusion problem arising in
this case is solved by casting it as an energy minimization problem in a variational
framework.

xxi
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Chapter 1

Introduction to structure

from motion and its

applications

1.1 Visual 3D Perception

The physical world can be regarded as a three-dimensional geometric space. The
dimensions constituting this space are generally called the length, width and
height. This three-dimensional world is observed/perceived by humans by means
of their five senses: hearing, touch, smell, taste and vision. Of all these sensing
modalities, vision is the most powerful, which is shown by the fact that it occu-
pies the most cortical space. The physics of vision is relatively well understood:
properties of light and lenses and photo-receptors in the retina have been studied
intensively in the last century. Even early stages of image representation in terms
of neural signals leaving the retina have plausible theories which allow some in-
sight into the information collected by the eyes [88]. However, once higher level
representations are considered, the situation becomes less clear. How is visual
information coded? How is attention focussed? How does contextual (a priori)
information affect the raw information coming to the brain from the retina? How
do we recognize objects? These are all active areas of vision research.

One important area of vision research concerns our ability to understand the
three-dimensional nature of our environment. Indeed, the human eye can be
regarded as a two-dimensional imaging device, meaning that the resulting image
is (only) a 2D representation/projection of the 3D world. To recover the depth
dimension which was lost during projection on the retina, the human visual system
fuses multiple depth cues. These depth cues are grouped into two categories:
monocular cues (cues available from the input of just one eye), binocular cues
(cues that require input from both eyes) and motion cues. The monocular cues
include:

3
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• Relative size: Retinal image size allow us to judge distance based on our
past and present experience and familiarity with similar objects. Remark on
Figure 1.1 that background figures (the nudes) are pictured smaller than the
foreground figures (the holy family), suggesting they are positioned further
away.

• Interposition or occlusion: Interposition cues occur when there is overlap-
ping of objects. The overlapped object is considered further away. Remark
on Figure 1.1 that the foreground figures overlap the background figures,
suggesting they are nearer to the viewer.

• Perspective: When objects of known distance subtend a smaller and smaller
angle, they are interpreted as being further away. Parallel lines converge
with increasing distance such as roads, railway lines, electric wires, etc.
Remark on Figure 1.1 that the background figures are sitting on a bench-
like structure. The convergence pattern of this bench gives the impression
that it is further away from the viewer in the middle of the image and closer
to the viewer at the extreme left and right.

• Focus : The lens of the eye can change its shape to bring objects at different
distances into focus. Knowing at what distance the lens is focused when
viewing an object means knowing the approximate distance to that object.
Remark on Figure 1.1 that the foreground figures have very sharp details,
while the background is slightly out of focus.

• Light and shading: Highlights and shadows can provide information about
an object’s dimensions and depth. Because our visual system assumes the
light comes from above, a totally different perception is obtained if the image
is viewed upside down. Remark on Figure 1.1 that the painter used lively
shadows, notably on the clothes, to enhance the depth perception.

• Color : Relative color of objects also gives some clues to their distance. Due
to the scattering of blue light in the atmosphere, distant objects appear
more blue. Remark on Figure 1.1 that the mountains in the background are
bluish.

• Motion parallax : The apparent relative motion of several stationary ob-
jects against a background when the observer moves gives hints about their
relative distance.

• Kinetic depth: Movement of the observer causes objects that are close to
the observer to move rapidly across the retina. However, objects that are
far away move very little. In this way, the brain can tell roughly how far
away these objects are.

The major binocular cue for depth perception is stereopsis. Because the eyes
are about 5 cm apart, each eye sees a slightly different image of the world. By
fusing both images, the brain is capable of inferring depth information.
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Figure 1.1: Depth perception in art: The Holy Family with the infant St. John
the Baptist (the Doni tondo) by Michelangelo [21]. The artist uses multiple
monocular depth cues to re-create the illusion of depth in this painting.

The computer vision community has been researching for a few decades now
analogous methodologies mimicking the depth perception abilities of the human
visual system. Most attention has hereby been focussed on the stereopsis-based
depth cue. The result is that depth-from-stereo has now evolved to a mature
research subject. We refer the reader to the seminal paper [124] of Scharstein
and Szeliski for a broad taxonomy on stereo algorithms, but in general, it can be
noted that the current state of the art research in stereo vision is focussed on two
topics: one seeking to maximize the quality of the resulting reconstruction and one
seeking to minimize the algorithm execution speed. The first research direction
has lead to algorithms showing high-quality dense stereo reconstructions [117],
[167], with processing times of typically about 30 seconds per frame, whereas
the latter research direction has resulted in (near) real-time algorithms [177],
providing quasi-dense reconstruction results.

The transposition of human monocular depth vision skills to computer vision
has achieved less attention than the stereopsis case. This can be partly explained
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by the fact that most of these approaches require some higher level processing
and reasoning, which is not straightforward and, generally, not well understood
in the human visual system as well. Nevertheless, considerable research work
has been done in the areas of depth from shading, depth from (de)focus and depth
from interposition. Despite their merits, it is unlikely that, except in some limited
domains, these approaches will ever seriously rival stereo or motion-based sources
of depth information [181]. Motion-based depth reconstruction approaches like
motion parallax and kinetic depth present a more promising research direction.
Where stereo vision must be seen as a spatial integration of multiple viewpoints
to recover depth, motion-based depth reconstruction can be seen as perform-
ing a temporal integration. The problem arising in this situation is known as
the Structure from Motion problem and deals with extracting three-dimensional
information about the environment from the motion of its projection onto a two-
dimensional surface. The recovery of depth through structure from motion is
one of the main topics of this research work. Therefore, a short introduction to
structure from motion is given in the following section.

1.2 Structure from Motion - based Reconstruc-

tion approaches

In general, there are two approaches to structure from motion. The first, feature
based method is closely related to stereo vision. It uses corresponding features in
multiple images of the same scene, taken from different viewpoints. The basis for
feature-based approaches lies in the early work of Longuet-Higgins [82], describing
how to use the epipolar geometry for the estimation of relative motion. In this
article, the 8-points algorithm was introduced. It features a way of estimating
the relative camera motion, using the essential matrix, which constrains feature
points in two images. The first problem with these feature based techniques is of
course the retrieval of correspondences, a problem which cannot be reliably solved
in image areas with low texture. From these correspondences, estimates for the
motion vectors can be calculated, which are then used to recover the depth. An
advantage of feature based techniques is that it is relatively easy to integrate
results over time, using bundle adjustment [155] or Kalman filtering [3]. Bundle
adjustment is a maximum likelihood estimator that consist in minimizing the re-
projection error. It requires a first estimate of the structure and then adjusts the
bundle of rays between each camera and the set of 3D points.

The second approach for structure from motion uses the optical flow field
as an input instead of feature correspondences. Optical flow is the distribution
of apparent velocities of movement of brightness patterns in an image. Optical
flow can arise from relative motion of objects and the viewer. Consequently,
optical flow can give important information about the spatial arrangement of the
objects viewed and the rate of change of this arrangement. The applicability of
the optical flow field for structure from motion calculation originates from the
epipolar constraint equation which relates the optical flow to the relative camera
motion and 3D structure in a non-linear fashion.
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In [47], Hanna proposed a method to solve the motion and structure recon-
struction problem by parameterizing the optical flow and inserting it in the image
brightness constancy equation. More popular methods try to eliminate the depth
information first from the epipolar constraint and regard the problem as an ego-
motion estimation problem. Bruss & Horn already showed this technique in the
early eighties using substitution of the depth equation [19], while Jepson & Heeger
later used algebraic manipulation to come to a similar formulation [55].

The current state-of-the art in structure from motion systems mainly considers
the construction of sparse feature-based scene representations, e.g. from points
and lines. The main drawback of such systems is the lack of surface information,
which restricts their usefulness, as the number of features is limited. In the past,
optical flow - based structure from motion methods such as the famous Bruss &
Horn [19] and Jepson & Heeger [55] algorithms were also mainly aimed at motion
and structure recovery using very low resolution optical flows. With the increase
in available processing power, however, the structure from motion community
is now trying to address the dense reconstruction problem. The optical flow
based structure from motion approaches are more suited to address the dense
reconstruction problem, as they use the optical flow over the whole image field.

When reviewing the individual depth cues, as done in section 1.1, one must
not forget that the human visual system uses all the depth cues discussed there
concurrently. This indicates that robust and accurate depth perception requires
a combination of methods rather than a sole one. This constatation inspired
researchers to work on integrated three-dimensional reconstruction approaches
and this is also one of the main focus points of this dissertation: How to fuse a
monocular depth cue like structure from motion with a binocular depth cue like
stereo?

1.3 Applications of 3D Reconstruction

The potential applications of the presented three-dimensional reconstruction ap-
proaches are widespread.

The movie and entertainment industry more and more relies on 3D computer
graphics, requiring 3D models of real-world objects, scenes and actors to be placed
in a computer generated world. Automated 3D reconstruction of natural scenes
could greatly speed up this modeling process. Another interesting application
in this context is presented by the advent of 3D television. Three dimensional
television presents the viewer with a realistic 3D image of the television show,
by using a 3D display technique. 3D television is in fact not a recent evolution,
already in the beginning of the past century, 3D movies were recorded. The
main problem with all efforts towards 3D television in the past century was that
specialized glasses were required to achieve depth perception. These glasses see to
it that both eyes receive a different image, which tricks the human brain into re-
creating a sense of depth according to the stereopsis depth cue explained before.
As only one of the multiple human depth cues was triggered by this display
technique, this often led to motion sickness for the viewers, as the different depth
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sensors receive contradicting signals. However, due to the improvement in digital
display technology, it is now possible to develop 3D screens which do not require
specialized glasses. This technology advancement makes it possible to deliver 3D
content to a mass public and it can be envisaged that in the future all televisions
will have standard 3D functionality. This creates a new problem of course for the
content creation. For new content, specialized 3D equipment using stereoscopic
cameras is probably the best solution. However, for all the existing film material,
a solution will be required too. The automated calculation of dense depth maps
from monocular input data, as discussed in this work, can here be used to convert
legacy film and video material directly into 3D.

Another application domain is the field of augmented reality and human com-
puter interaction, where automated 3D reconstruction could play a crucial role
to enhance the human computer interfacing. Commercial applications here range
from real object modeling e.g. for architectural purposes, to novel view generation
algorithms, e.g. for enhancing the viewing experience of sporting events.

Currently, there is a wide range of research and applications for 3D reconstruc-
tion in the field of medical imaging and biometrics, with the purpose of accurately
modeling the internal body organs or external body state. The premise for these
medical applications is almost completely different than the one in our work: in
general there is an a priori model present, the object to be modeled is relatively
small and under control and often special imaging tools are used. As a result, the
methodologies and results presented in this dissertation are not the best suited
to be used in the field of medical imaging.

Another application field for 3D reconstruction is robotics. Indeed, in order
to understand and reason about its environment, an intelligent robot needs to
be aware of the three-dimensional status of this environment. Contemporary au-
tonomous robots are therefore generally equipped with an abundance of sensors
like for example Laser, ultrasound sensors, etc to be able to navigate in an en-
vironment. However, this stands in contrast to the ultimate biological example
for these robots: us humans. Indeed, humans seem perfectly capable to navigate
in a complex, dynamic environment using primarily vision as a sensing modality.
With the advance in computer processing power, 3D reconstruction becomes in-
creasingly available to the field robotics, where not only the quality of the end
result is important, but also the required processing time.

1.4 Research Objectives

In light of the previous work done in the field of 3D reconstruction, the main
objective of this research work is to develop a dense structure from motion recovery
algorithm. This algorithm should operate on monocular image sequences, using
the camera movement as a main depth cue. The term dense indicates that a
depth estimate for each pixel of the input images is required. We will show
that an iterative variational technique is able to solve this 3D reconstruction
problem. However, to converge to a solution, the iterative technique requires
proper initialization. For this initialization process, standard sparse structure
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from motion techniques are employed. These classical methods are not capable
of estimating a dense reconstruction, but they do suffice to estimate the camera
motion parameters and the 3D positions of some feature points, which is used as
an initial value for the iterative solver.

Dense structure from motion is a promising technology, but suffers from one
major disadvantage: the processing time is in general very long. This is the
case for most of the existing approaches and it is no different in our work. This
drawback makes it less suited for a number of applications where the timely
delivery of results is an issue (e.g. robotics). To deal with these issues, a second
research objective was to integrate the developed dense structure from motion
algorithm into a stereo reconstruction context. In this way, the processing time
could be drastically reduced (although this methodology is algorithmically more
complex), as stereo adds a valuable constraint, which limits the search domain
for solutions dramatically.

1.5 Main Contributions

As indicated in the previous section, the focus of this research work is dual:

1. The development of a novel dense structure from motion approach.

We propose an approach which fuses sparse and dense information in an
integrated variational framework. The aim of this approach is to combine
the robustness of traditional sparse structure from motion methods with the
completeness of optical flow based dense reconstruction approaches.

The base constraint of the variational approach is the traditional image
brightness constraint, but parameterized for the depth using the 2-view ge-
ometry. This estimation of the geometry, as expressed by the fundamental
matrix, is automatically updated at each iteration of the solver. A regular-
ization term is added to ensure good reconstruction results in image regions
where the data term lacks information. An automatically updated regu-
larization term ensures an optimal balance between the data term and the
regularization term at each iteration step.

A semi-implicit numerical scheme was set up to solve the dense reconstruc-
tion problem. The solver uses an initialization process which fuses optical
flow data and sparse feature point matches.

2. The development of a novel dense reconstruction method, combining stereo
and structure from motion in an integrated framework.

We propose a stereo - motion reconstruction technique which combines
stereo and motion data in an integrated framework. This technique uses
the theorem of the Augmented Lagrangian to integrate stereo and motion
constraints. The presented methodology is compared to a more classical
global optimization technique.

An important aspect of our work and a differentiating factor with respect to
similar research work is that we specifically target the reconstruction of outdoor
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scenes. This poses extra difficulties due to the unstructured, unbounded and
complex nature of the terrain, the difficult lighting conditions, ... Other research
on 3D reconstruction is mostly focused on indoor (lab) environments, which are
small and nicely controlled.

1.6 Structure of this Dissertation

In order to enhance the readability, this dissertation is subdivided into three main
parts.

The first part is essentially an introduction to the used methodologies and an
extended state of the art, aiming at familiarizing the reader with the developed
algorithms. The first chapter introduces the problem of dense reconstruction
through structure from motion and points out the main contributions and ap-
plications of this research work. In the second chapter, an overview is given of
the image formation process and some basic tools for image processing - required
later in this dissertation - are introduced. The third and fourth chapter present
an extended state of the art in the research fields of respectively sparse and dense
structure from motion.

The second part of this document presents the monocular dense structure
from motion algorithms which have been developed in the course of this PhD.
work. The fifth chapter presents and discusses the methodologies and algorithms
for monocular dense structure from motion and chapter six analyzes the results
offered by these algorithms.

The third part of this document is devoted to the combination of stereo and
structure from motion in an integrated framework. Chapter seven reviews the
current state of the art techniques for the integration of multiple depth cues.
Chapter eight presents the integrated framework for binocular dense structure
from motion developed in the course of this PhD. work, while the results of this
methodology are analyzed and discussed in chapter nine. Conclusions and closing
remarks can be found in the final chapter ten.



Chapter 2

Basic Image Formation and

Processing

2.1 Introduction

In this chapter, some basic computer vision concepts and tools are introduced.
These concepts and tools are required to understand the algorithms introduced
in the following chapters.

Section 2.2 explains how an idealized camera arrives at generating a 2D image
of our 3D world. The perspective projection model introduced here defines the
relationship between 3D world and 2D image data. Chapters 3 and 4 rely on this
model to express sparse and dense 3D structure as a function of the information
contained in the 2D image.

The problem of structure from motion can be re-stated as the problem of
reconstructing a description of the geometry between multiple camera views. Once
the geometry description is known, 3D structure and motion can be extracted
accordingly. This is explained in section 2.3, where the projective geometry for
multiple views is discussed.

Many image processing algorithms, notably sparse structure from motion al-
gorithms as the ones presented in chapter 3, are based upon the analysis of the
movement of salient image regions, called features. A basic requirement for this
analysis is that these features can be detected, described and matched across dif-
ferent images. Section 2.4 introduces the selected algorithms for each of these
processing steps.

Section 2.5 introduces the concept of optical flow, how it is related to the
3D structure and how it can be estimated. The dense reconstruction algorithms
which are presented in parts 2 and 3 are all optical-flow based. Basically, they
rely on the evaluation of the relationship between the 3D scene structure and 2D
optical flow.

11
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2.2 Image Formation

An image is created by projecting the 3D scene on a 2D image plane, which
is a discrete and possibly highly discontinuous function (see appendix C). The
drop from three-dimensional world to a two-dimensional image is a projection
process in which one dimension is lost. The usual way for modeling this process
is by central projection in which a ray from a point in space is drawn from a 3D
world point through a fixed point in space, the center of projection. This ray will
intersect a specific plane in space chosen as the image plane. The image plane is
located at the distance of the focal length from the origin of the 3D axis along
the Z-direction, and it is perpendicular to it. The complete scene is located at
positive Z-ordinates and we view the image with viewing direction on negative
Z-direction.

Let I(x, y) be the image intensity at time t at the image point (x, y). The
intersection of the ray with the image plane represents the image of the point.
This model is in accordance with a simple model of a camera, in which a ray of
light from a point in the world passes through the lens of a camera and impinges
on a film or digital device, producing an image of the point. Ignoring such effects
as focus and lens thickness, a reasonable approximation is that all the rays pass
through a single point, the center of the lens.

y-axis

x-axis

X(X,Y,Z)

COP

f

z-axis

Image

Projection

Plane

x(x,y)

xp(x,y,f)

Figure 2.1: The Perspective Projection

In order to analyze the mapping process, it is advisable to first define the
projective space P

n. The Euclidean space R
n can be extended to a projective space

P
n by representing points as homogeneous vectors. In this text, we denote the

homogeneous counterpart of vector x as x̃. A linear transformation of Euclidean
space R

n is represented by matrix multiplication applied to the coordinates of the
point. In just the same way a projective transformation of projective space P

n

is a mapping of the homogeneous coordinates representing a point, in which the
coordinate vector is multiplied by a non-singular matrix.

Central projection is then simply a mapping from P
3 to P

2. To describe this
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mapping, three coordinate systems need to be taken into account: the camera,
image and world coordinate system.

Consider a point in P
3 in the camera coordinate system, written in terms of

homogeneous coordinates X̃c(Xc, Yc, Zc, T )T , where T is the homogeneous pa-
rameter, introduced due to the switch to homogeneous coordinates. We can now
see that the set of all points X̃(X,Y, Z, T )T for fixed X , Y and Z, but varying T ,
form a single ray passing through the point center of projection. As a result, all
these points map onto the same point, thus the final coordinate of X̃(X,Y, Z, T )T

is irrelevant to where the point is imaged. In fact, the image point is the point
in P

2 with homogeneous coordinates x̃c(xc, yc, f)T , as defined by the projection
equation




xc

yc

f



 =




1 0 0 0
0 1 0 0
0 0 1 0









Xc

Yc

Zc

1



 , (2.1)

with f the focal length of the camera lens.
The mapping may thus be represented in its most simple form by a mapping

of 3D homogeneous coordinates, represented by a 3× 4 matrix P0 with the block
structure P0 = [I3×3 |03×1 ] , where I3×3 is the identity matrix and 03×1 is a zero
3-vector.

In the image coordinate system, the mapping from x̃c(xc, yc, f)T to image
coordinates is described. This mapping takes into account different centers of
projection (x0, y0), non-square pixels and skewed coordinate axes. As such, it
encompasses all the internal camera parameters. This mapping can be expressed
in terms of matrix multiplication as:

x̃i =




x
y
1



 =




αx αx cot(θ) x0

0 αy y0
0 0 1
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f
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xc

yc

f



 , (2.2)

where (x0, y0) is the coordinate of the principle point or image center, αx and αy

denote the scaling in the x and y direction and θ is the angle between the axes,
which is in general equal to π/2. The matrix K is an upper triangular matrix
which provides the transformation between an image point and a ray in Euclidean
3-space. It encompasses all internal camera parameters and is called the camera
calibration matrix. Throughout this work, we will assume that the cameras are
calibrated, which means that K is known.

As a last step of projection, the description of the transformation between the
camera and the world coordinate system is required. Changing coordinates in
space is equivalent to multiplication by a 4 × 4 matrix:





Xc

Yc

Zc

1



 =

[
R t
0T 1

]




Xw

Yw

Zw

1



 , (2.3)

with R the rotation matrix and t the translation vector.
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Concatenating the expressions 2.3, 2.2 and 2.1, it is clear that the most general
image projection can be represented by an arbitrary 3×4 matrix of rank 3, acting
on the homogeneous coordinates of the point in P

3 mapping it to the imaged point
in P

2:

x̃i =




x
y
1



 = K




1 0 0 0
0 1 0 0
0 0 1 0




[

R t
0T 1

]




Xw

Yw

Zw

1



 = K [R| t]





Xw

Yw

Zw

1



 .

(2.4)
It thus turns out that the most general imaging projection is represented by

an arbitrary 3 × 4 matrix of rank 3, acting on the homogeneous coordinates of
the point in P

3 mapping it to the imaged point in P
2:

x̃i = PX̃, (2.5)

with:

P = K [R| t] (2.6)

This matrix P is known as the camera matrix. It expresses the action of a
projective camera on a point in space in terms of a linear mapping of homogeneous
coordinates.

When returning to non-homogeneous coordinates for a camera based in the
origin and ignoring non-square pixel aspect ratios (this means P = [I3×3 |03 ]), it
can be observed that to map a 3D point X = (X,Y, Z) to the image coordinates
x = (x, y, f), the following perspective projection equations can be written:

x =

(
x
y

)
=
f

Z

(
X
Y

)
, (2.7)

in which x and y are the image coordinates. In order to reduce the complexity of
some equations and for numerical stability, we can parameterize the depth by a
proximity factor d = 1

Z .

2.3 Multi-View Image Geometry

2.3.1 Two-View Geometry described by the Fundamental

Matrix

The geometry between two views is called the epipolar geometry. This geometry
depends on the internal parameters and relative position of the two cameras. The
fundamental matrix F encapsulates this intrinsic geometry and was introduced
by Faugeras in [38] and Hartley in [52]. It is a 3 × 3 matrix of rank 2. The fun-
damental matrix describes the relationship between matching points: if a point
X̃ is imaged as x̃ in the first view, and x̃′ in the second, then the image points
must satisfy the relation x̃′T Fx̃ = 0. In this section, the epipolar geometry is
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described and the fundamental matrix is derived. The fundamental matrix is in-
dependent of scene structure. However, it can be computed from correspondences
of imaged scene points alone, without requiring knowledge of the cameras internal
parameters or relative pose.

To describe this mapping, first the geometric entities involved in epipolar ge-
ometry are introduced in figure 2.2. Here, the epipole ẽ is the point of intersection
of the line joining the camera centers (the baseline) with the image plane. Equi-
valently, the epipole is the image in one view of the camera center of the other
view. It is also the vanishing point of the baseline (translation) direction. An
epipolar plane is a plane containing the baseline. There is a one-parameter family
of epipolar planes. An epipolar line is the intersection of an epipolar plane with
the image plane. The epipolar line corresponding to x̃ is the image in the second
view of the ray back-projected from x̃. Any point x̃′ in the second image match-
ing the point x̃ must lie on the epipolar line l̃′. All epipolar lines intersect at the
epipole. An epipolar plane intersects the left and right image planes in epipolar
lines, and defines the correspondence between the lines.

The mapping from a point in one image to a corresponding epipolar line in
the other image may be decomposed into two steps. In the first step, the point x̃
is mapped to some point x̃′ in the other image lying on the epipolar line l̃′. This
point x̃′ is a potential match for the point x̃. In the second step, the epipolar line
l̃′ is obtained as the line joining x̃′ to the epipole ẽ′. Figure 2.2 illustrates this
mapping process.

π

X
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Figure 2.2: The mapping process from one camera according to the epipolar
geometry

Consider a random plane π in space not passing through either of the two
camera centers. The ray through the first camera center corresponding to the
point x̃ meets the plane π in a point X̃. This point X̃ is then projected to a point
x̃′ in the second image. This procedure is known as transfer via the plane π.
Since X̃ lies on the ray corresponding to x̃, the projected point x̃′ must lie on the
epipolar line l̃′ corresponding to the image of this ray, as illustrated in 2.2. The
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points x̃ and x̃′ are both images of the 3D point X̃ lying on a plane. The set of
all such points x̃i in the first image and the corresponding points x̃′

i in the second
image are projectively equivalent, since they are each projectively equivalent to
the planar point set X̃′. Thus, there is a 2D homography Hπ mapping each x̃i

to x̃′
i.

Given the point x̃′, the epipolar line l̃′ passing through x̃′ and the epipole ẽ′

can be written as l̃′ = ẽ′ × x̃′ = [ẽ′]× x̃′ ([ẽ′]× being the skew-symmetric matrix
form of ẽ′). Since x̃′ may be written as x̃′ = Hπx̃, we have:

l̃′ = [ẽ′]× Hπx̃ = Fx̃, (2.8)

where we define F = [ẽ′]× Hπ as the fundamental matrix. Since [ẽ′]× has rank 2
and Hπ rank 3, F is a matrix of rank 2, which is logic as F represents a mapping
from a 2-dimensional onto a 1-dimensional projective space.

The fundamental matrix satisfies the condition that for any pair of correspond-
ing points x̃ and x̃′ in the two images

x̃′T Fx̃ = 0 (2.9)

This is true, because if points x̃ and x̃′ correspond, then x̃′ lies on the epipolar
line l̃′ = Fx̃ corresponding to the point x̃. In other words 0 = x̃′T l̃′ = x̃′T Fx̃. If
image points satisfy the relation x̃′T Fx̃ = 0 then the rays defined by these points
are coplanar. This is a necessary condition for points to correspond. The impor-
tance of the relation 2.9 is that it gives a way of characterizing the fundamental
matrix without reference to the camera matrices, i.e. only in terms of correspond-
ing image points. This enables F to be computed from image correspondences
alone.

2.3.2 Two-View Geometry described by the Essential Ma-

trix

The essential matrix is the specialization of the fundamental matrix to the case of
normalized image coordinates. Historically, the essential matrix was introduced
by Longuet-Higgins in [82] before the fundamental matrix, and the fundamental
matrix may be thought of as the generalization of the essential matrix in which the
inessential assumption of calibrated cameras is removed. The essential matrix has
fewer degrees of freedom, and additional properties, compared to the fundamental
matrix.

Consider a camera matrix decomposed as P = K[R|t], and let x̃ = PX̃ be a
point in the image. If the calibration matrix K is known, then we may apply its
inverse to the point x̃ to obtain the point x̂ = K−1x̃. Then x̂ = [R|t]X̃, where
x̂ is the image point expressed in normalized coordinates. It may be thought of
as the image of the point X̃ with respect to a camera [R|t] having the identity
matrix I as calibration matrix. The camera matrix K−1P = [R |t ] is called
a normalized camera matrix, the effect of the known calibration matrix having
been removed. Now, consider a pair of normalized camera matrices P = [I|0]
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and P′ = [R|t]. The fundamental matrix corresponding to the pair of normalized
cameras is customarily called the essential matrix and has the form:

E = [t]× R = R
[
RT t

]
× (2.10)

The essential matrix can then be defined as:

x̂′T Ex̂ = 0 (2.11)

in terms of the normalized image coordinates for corresponding points x̃ and
x̃′. Substituting for x̂ and x̂′ gives x̃′T K′−1T

EK−1x̃ = 0. Comparing this with
the relation x̃′T Fx̃ = 0 for the fundamental matrix, it follows that the relationship
between the fundamental and essential matrices is:

E = K′T FK (2.12)

This relationship shows that once the camera calibration matrix K is known, the
essential matrix can be calculated from the fundamental matrix.

The essential matrix holds all the information about the external calibration
parameters: rotation and translation between the two camera frames.

E = R [t]× , (2.13)

with [t]× the skew-symmetric matrix form of the translation vector.

[t]× =




0 −tz ty
tz 0 −tx
−ty tx 0



 (2.14)

Hartley introduced in [52] a method to decompose the essential matrix to find
back the rotation matrix and translation vector using singular value decomposi-
tion and writing

E = UΛVT , (2.15)

where Λ = diag(λ, λ, 0). By defining the following two matrices:

W =




0 −1 0
1 0 0
0 0 1



 , Z =




0 1 0
−1 0 0
0 0 0



 (2.16)

it is possible to write out the translation and rotation matrices:

[t]× ≈ UZUT ; R1 ≈ UWVT ; R2 ≈ UWTVT . (2.17)

As can be noted, the solution to this problem is not unique. There are four
possible rotation/translation pairs that must be considered based on the two
possible choices of the rotation matrix, R1 and R2, and two possible signs of
t. Longuet-Higgins remarked in [82] that the correct solution to the camera
placement problem may be chosen based on the requirement that the visible points
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be in front of both cameras. Therefore, the transformation matrices for the two
camera frames are calculated. For the first camera frame, we have P = (I|0) and
for the second P

′

is equal to one of the four following matrices:

P
′

1 =
(
UWVT |U (0, 0, 1)

T
)

P
′

2 =
(
UWVT | − U (0, 0, 1)T

)

P
′

3 =
(
UWTVT |U (0, 0, 1)

T
)

P
′

4 =
(
UWTVT | − U (0, 0, 1)

T
)

(2.18)

The choice between the four transformations for P
′

is determined by the re-
quirement that the point locations (which may be computed once the cameras
are known) must lie in front of both cameras. Geometrically, the camera rota-
tions represented by UWVT and UWTVT differ from each other by a rotation
through 180 degrees about the line joining the two cameras. Given this fact, it
may be verified geometrically that a single pixel-to-pixel correspondence is enough
to eliminate all but one of the four alternative camera placements.

Once the rotation matrix is found, it can be written in the form of a rotation
vector ω = ω1ω, using the Rodrigues formula:

R = cos (ω) I + sin (ω) [1ω]× + (1 − cos (ω))1ω1T
ω (2.19)

with the axis of rotation:

1ω =




R32 − R23

R13 − R31

R21 − R12



 (2.20)

and the magnitude (angle) of rotation:

ω = arccos

(
Trace (R) − 1

2

)
(2.21)

2.3.3 Three-View Geometry described by the Trifocal Ten-

sor

The trifocal tensor approach is an extension to the case of three views of the
two-view geometry description. This approach maintains a similar projective
geometry spirit and has been proposed and developed by Sashua [133], Hartley
[49] and Faugeras [37]. The trifocal tensor is a 3 × 3 × 3 array of numbers that
relate the coordinates of corresponding points or lines in three views. Just as the
fundamental matrix is determined by the two camera matrices, and determines
them up to projective transformation, so in three views, the trifocal tensor is
determined by the three camera matrices, and in turn determines them, again up
to projective transformation.
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Figure 2.3: A line in 3-space is imaged as the corresponding triplet l,l′,l′′ in three
views indicated by their centers, c,c′,c′′, and image planes.

There are several ways that the trifocal tensor may be approached. Here, the
method followed by Hartley in [51] is taken over. Consider a line L in 3D space,
which is projected onto three cameras, resulting in 3 lines l, l′ and l′′ in image
space, as illustrated by Figure 2.3. These lines are obviously inter-related. The
trifocal tensor expresses this relation by mapping lines in 2 images to a line in
the remaining image. According to the three-view geometry model, the incidence
relation for the ith coordinate li of l can be written as:

li = l′
TTil

′′ (2.22)

By definition, the set of three matrices T1, T2, T3 constitute the trifocal tensor in
matrix notation. In tensor notation, the basic incidence relation 2.22 becomes:

li = l′jl
′′
kT jk

i (2.23)

By defining the vectors ai and bi as the ith columns of the camera matrices
for the three views, the three-view trifocal tensor formulation can also be written
as:

T jk
i = aj

ib
k
4 − aj

4b
k
i , (2.24)

where a4 and b4 are the epipoles in views two and three respectively, arising from
the first camera.

As with the fundamental matrix, once the trifocal tensor is known, it is possible
to extract the three camera matrices from it, and thereby obtain a reconstruction
of the scene points and lines. As ever, this reconstruction is unique only up to a
3D projective transformation; it is a projective reconstruction.

It is straightforward to compute the fundamental matrices F21 and F31 be-
tween the first and the other views from the trifocal tensor:

F21 = [e′]× [T1, T2, T3] e
′′; F31 = [e′′]×

[
T T

1 , T T
2 , T T

3

]
e′ (2.25)
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To retrieve the camera matrices, the first camera may be chosen as P = [I|0].
Since F21 is known from equation 2.25, it is possible to derive the form of the
second camera as:

P′ = [[T1, T2, T3] e
′′|e′] (2.26)

The third camera cannot be chosen independently of the projective frame of the
first two. It turns out that P′′ can be written as:

P′′ =
[(

e′′e′′
T − I

) [
T T

1 , T T
2 , T T

3

]
e′|e′′

]
(2.27)

This decomposition shows that the trifocal tensor may be computed from
the three camera matrices, and that conversely the three camera matrices may
be computed, up to projective equivalence, from the trifocal tensor. Thus, the
trifocal tensor completely captures the three cameras up to projective equivalence
and we are able to generalize the method for two views to three views. There are
several advantages to using such a three-view method for reconstruction.

• It is possible to use a mixture of line and point correspondences to compute
the projective reconstruction. With two views, only point correspondences
can be used.

• Using three views gives greater stability to the reconstruction, and avoids
unstable configurations that may occur using only two views for the recon-
struction.

2.3.4 Extension to Multiple Viewpoints

Like the trifocal tensor is an extension of the fundamental matrix in the case of
3 views, a similar extension can be made to the case of 4 views. This leads to
the definition of a quadrifocal tensor, which relates coordinates measured in four
views. The quadrifocal tensor was introduced by Triggs [154] and an algorithm for
using it for reconstruction was given by Heyden [58] and Hartley [53]. Even though
this seems a logical extension of the already presented two-view and three-view
methods, the quadrifocal tensor suffers from some disadvantages, which impede
its practical use. One of the main problems is the fact that the quadrifocal tensor
is greatly overparametrized, using 34 = 81 components to describe a geometric
configuration that depends only on 29 parameters. The number of degrees of
freedom can be calculated as follows. Each of the 4 camera matrices has 11 degrees
of freedom (5 internal and 6 external), which makes 44 in total. However, the
quadrifocal tensor is unchanged by a projective transformation of space, since its
value is determined only by image coordinates. Hence, we may subtract 9+6 = 15
for the degrees of freedom of a general 3D projective transformation. This means
that no less than 81−29 = 52 extra constraints must be fulfilled, which makes the
quadrifocal tensor estimation process very difficult. Therefore, a more popular
approach is to progressively reconstruct the scene, using two-view [113] or three-
view [51] techniques and merge these results over time.
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The task of reconstruction becomes easier if we are able to apply a simpler
camera model, known as the affine camera. This camera model is a fair ap-
proximation to perspective projection whenever the distance to the scene is large
compared with the difference in depth between the back and front of the scene. If
a set of points are visible in all of a set of n views involving an affine camera, then
a well-known algorithm, the factorization algorithm, as introduced by Tomasi
and Kanade in [149], can be used to compute both the structure of the scene and
the specific camera models in one step using the Singular Value Decomposition.
This algorithm is very reliable and simple to implement. Its main difficulties are
the use of the affine camera model, rather than a full projective model, and the
requirement that all the points be visible in all views. This method has been ex-
tended to projective cameras in a method known as projective factorization [146].
Although this method is generally satisfactory, it can not be proven to converge
to the correct solution in all cases. Besides, it also requires all points to be visible
in all images.

Other methods for n-view reconstruction involve various assumptions, such as
knowledge of four coplanar points in the world visible in all views [121], or six or
seven points that are visible in all images in the sequence. Methods that apply
to specific motion sequences, such as linear motion, planar motion or single axis
(turntable) motion have also been developed.

The dominant methodology for the general reconstruction problem is bundle
adjustment [155]. This is an iterative method, in which one attempts to fit a non-
linear model to the measured data (the point correspondences). The advantage
of bundle-adjustment is that it is a very general method that may be applied to a
wide range of reconstruction and optimization problems. It may be implemented
in such a way that the discovered solution is the Maximum Likelihood solution to
the problem, that is a solution that is in some sense optimal in terms of a model for
the inaccuracies of image measurements. Unfortunately, bundle adjustment is an
iterative process, which can not be guaranteed to converge to the optimal solution
from an arbitrary starting point. Much research in reconstruction methods seeks
easily computable non-optimal solutions that can be used as a starting point for
bundle adjustment. An excellent survey of these methods is given in [155]. A
common impression is that bundle-adjustment is necessarily a slow technique,
but when implemented carefully, it can be quite efficient.

2.4 Feature Detection, Description and Matching

Sparse image processing algorithms, as the ones presented in the following chapter,
rely on the analysis of the movement of distinctive image features like step edges,
line features or points in the image where the Fourier components are maximally in
phase [101]. This analysis requires three steps. First, a feature detector identifies
a set of image locations presenting rich visual information and whose spatial
location is well defined. The second step is description: a vector characterizing
local texture is computed from the image near the nominal location of the feature.
Finally, the set of features needs to be correlated over the different images during



22 Chapter 2. Basic Image Formation and Processing

the Feature Matching step.
The ideal system will be able to detect a large number of meaningful features

in the typical image, and will match them reliably across different views of the
same scene / object. Critical issues in detection, description and matching are
robustness with respect to viewpoint and lighting changes, the number of features
detected in a typical image, the frequency of false alarms and mismatches, and
the computational cost of each step. Different applications weigh these require-
ments differently. For example, viewpoint changes more significantly in object
recognition, SLAM and wide-baseline stereo than in image mosaicking, while the
frequency of false matches may be more critical in object recognition, where thou-
sands of potentially matching images are considered, rather than in wide-baseline
stereo and mosaicing where only few images are present.

A couple of studies are available to choose the best combination of feature
detector, descriptor and matcher for a given application. Schmid [125] charac-
terized and compared the performance of several features detectors. Mikolajczik
and Schmid [94] focused primarily on the descriptor stage. For a chosen detec-
tor, the performance of a number of descriptors was assessed. These evaluations
of interest point operators and feature descriptors, have relied on the use of flat
images, or in some cases synthetic images. The reason is that the transformation
between pairs of images can be computed easily, which is convenient to establish
ground truth. However, the relative performance of various detectors can change
when switching from planar scenes to 3D images [42].

Different studies [99], [70], [125], [94], [42] have evaluated the performance of
feature detectors and descriptors for images of 3D objects viewed under different
viewpoint, lighting and scale conditions. These studies in general agree that the
SIFT-approach delivers the most robust detection and description results. Based
on these results, it was decided to use the SIFT-detector and descriptor. For
feature matching, a k-D tree matching approach was used.

In recent years, several research groups have proposed improvements to the
original SIFT detector, mainly for making it faster. Grabner et al. present in [46]
an approach which approximates the original SIFT method, but is considerably
faster through the use of efficient data structures. Sinha et al. have adopted in
[135] a different approach for accelerating the SIFT detector, by implementing
it on a Graphical Processing Unit (GPU). The idea here is to offload as much
of the calculation work as possible to the GPU. In this research work, we still
use the original SIFT method, as the speed of the SIFT process is not the main
computational bottleneck in our processing pipeline.

These different approaches towards feature detection, description and match-
ing are described more in detail in appendix A .

2.5 The Optical Flow

2.5.1 Definition of the Optical Flow

Optical flow is defined [61] as the apparent motion of brightness patterns observed
when a camera is moving relative to the objects being imaged. It can be repre-
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sented with a two-dimensional velocity vector u associated with each point on
the image plane. u(x, y) and v(x, y) are the two components of the optical flow
vector u. Figure 2.4 gives an example for illustration. The optical flow contains
important information about cues for region and boundary segmentation, shape
recovery, and so on.

(a) (b)

Figure 2.4: Yosemite sequence with (a) an image, (b) optical flow.

The optical flow calculation starts from the assumption that at each image
point (x, y), we expect that the intensity will be the same at time t + ∆t at
the point (x + ∆x, y + ∆y), where ∆x = u∆t and ∆y = v∆t. The consistency
intensity hypothesis of a point during its movement states that the intensity of
a point keeps constant along its trajectory through the conservation of image
intensity. This hypothesis is reasonable for small displacements or short range
motion for which changes of light source are small. That is

I(x+ u∆t, y + v∆t, t+ ∆t) = I(x, y, t) (2.28)

for a small time interval ∆t. If intensity varies smoothly with x, y and t, we can
expand the left-hand side of the equation in a Taylor series.

I(x, y, t) + ∆x
∂I

∂x
+ ∆y

∂I

∂y
+ ∆t

∂I

∂t
+ e = I(x, y, t) (2.29)

where e contains second and higher-order terms in ∆x,∆y and ∆t, which is
assumed negligible. After ignoring e, we get

∆x
∂I

∂x
+ ∆y

∂I

∂y
+
∂I

∂t
= 0 (2.30)

Observing the notations u = ∆x, v = ∆y and with Ix, Iy, and It defined as
the first order partial derivatives of I (Ix = ∂I

∂x , Iy = ∂I
∂y , It = ∂I

∂t ) and ∇I defined

as the spatial intensity gradient (∇I = (Ix, Iy)), equation 2.30 can be written as:

Ixu+ Iyv + It = 0 or ∇I · u + It = 0 (2.31)
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In the later discussion, ∆t is normalized to 1. From this expression, a normal
velocity u⊥ can be defined as the vector perpendicular to the constraint line, that
is, the velocity with the smallest magnitude on the optical flow constraint line.

In the above linearized optical flow constraint, we assume that the object dis-
placements are small or the image varies slowly in the spatial space. For large
displacement fields and images, this linearization is no longer valid. Frequently,
instead of the expression in equation 2.29, an alternative equality is used as fol-
lows, with the optical flow centered in the first image I1.

I1(x, y) = I2(x+ u, y + v) (2.32)

This equation avoids the linearization. If the optical flow is centered in the
second image I2, the alternative equation states:

I1(x − u, y − v) = I2(x, y) (2.33)

The equation 2.31 is known as the optical flow constraint or brightness con-
stancy assumption. It defines a single local constraint on image motion.

The optical flow constraint expressed in equation 2.31 or equation 2.32 is not
sufficient to compute both components of u as the optical flow constraint is ill-
posed. Indeed, it is clear that one equation can not determine the two components
of the optical flow, it requires to be supplemented with additional assumptions.
Otherwise, only u⊥, the motion component in the direction of the local gradient
of the image intensity function, may be estimated. This phenomenon is known as
the aperture problem [159] and only at image locations where there is sufficient
intensity structure can the motion be fully estimated with the use of the optical
flow constraint equation. How the optical flow can be calculated in an efficient
way is discussed more in detail in appendix B.

2.5.2 The Relation of the Optical Flow to 3D Structure

Normally what we need for interpreting the 3D structure and motion of the scene
is the image flow, which is the 2D projection of the instantaneous 3D velocity of
the corresponding point in the scene. However, a sequence of intensity images of
the scene (not the scene itself) is typically available. For motion, what is available
to people is the optical flow, which is the best we can hope to recover starting
from the intensity images alone. As the optical flow only describes 2D projected
motion, in order to use it for structure from motion recovery, we have to depend
on the assumption that, except for special situations, the optical flow is not too
different from the motion field. This will allow us to estimate relative motion by
means of the changing image intensities. [61].

The optical flow is related to the structure and motion parameters through
the rigid motion equation:

v = ω × X + t (2.34)

To understand this relation between the optical flow field and the structure and
motion parameters, it is necessary to expand the formulation of the optical flow
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u = (u, v)T . As stated in section 2.5.1, the optical flow is defined as the apparent
image motion, meaning it can be written as the derivative of the projected image
points (in 3D coordinates) to time:

u =
dxp

dt
(2.35)

This formulation contains no information on the 3D structure. However, by ap-
plying the chain rule, the 3D point coordinates X can be introduced:

u =
dxp

dX

dX

dt
, (2.36)

where dX
dt is of course the 3D velocity of equation 2.34 and xp and X can be

written as:

u =
d(x, y, f)T

d(X,Y, Z)T
v. (2.37)

Observing the relationship between 2D and 3D point coordinates in the perspec-
tive projection model expressed by equation 2.7, it is possible to rewrite equation
2.37 to:

u =
d( f

ZX,
f
Z Y, f)T

d(X,Y, Z)T
v, (2.38)

which can be expanded to:

u =





f
Z

dX
dX

fX
Z

d(1)
dY fX d(1/Z)

dZ
fY
Z

d(1)
dX

f
Z

dY
dY fY d(1/Z)

dZ
d(f)
dX

d(f)
dY

d(f)
dZ



 . (ω × X + t) . (2.39)

Expanding the derivatives in equation 2.39 yields:

u =




f
Z 0 fX −1

Z2

0 f
Z fY −1

Z2

0 0 0



 . (ω × X + t) , (2.40)

or:

u =
f

Z




1 0 −X

Z

0 1 −Y
Z

0 0 0



 .
(
ω × (X,Y, Z)T + t

)
. (2.41)

The problem with this formulation is that it contains only 3D coordinate points,
which cannot be measured directly. Therefore, the perspective projection equation
2.7 is used again, this time to convert from 3D coordinates X to image coordinates
x:

u =
f

Z




1 0

−Z
f

x

Z

0 1
−Z

f
y

Z
0 0 0



 .

(
ω × (

Z

f
x,
Z

f
y,
Z

f
f)T + t

)
, (2.42)
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or shorter:

u =




1 0 − x

f

0 1 − y
f

0 0 0



 .

(
ω × (x, y, f)T +

f

Z
t

)
. (2.43)

Equation 2.43 formulates a (rank 2) matrix - vector multiplication. Expanding
this vector yields:

u =




1 0 − x

f

0 1 − y
f

0 0 0



 .




−ωZy + ωY f + f

Z tX
ωZx− ωXf + f

Z tY
−ωY x+ ωXy + f

Z tZ



 . (2.44)

The product can now written out completely, giving:

u =

(
−ωZy + ωY f + f

Z tX − x
f (−ωY x+ ωXy + f

Z tZ)

ωZx− ωXf + f
Z tY − y

f (−ωY x+ ωXy + f
Z tZ)

)
. (2.45)

This equation expresses the optical flow u as a function of the motion parame-
ters (translation t and rotation ω), image coordinates x(x, y), focal length f and
structural information contained in the Z depth coordinate.

A more compact formulation can be obtained by rewriting 2.45 as:

u = Qωω + dQtt, (2.46)

by defining the proximity d as d = 1
Z and the matrices Qω and Qt:

Qω =

[
xy
f −f − x2

f y

f + y2

f −xy
f −x

]

Qt =

[
−f 0 x
0 −f y

] (2.47)

The above equation can be expressed as:

u = u (x, y, d, t,ω) , (2.48)

or, which is more interesting for us:

d = d (u, x, y, t,ω) (2.49)

This defines the relation between the optical flow and the structure and motion
parameters and leads to think that once optical flow and motion are known,
structural information can be readily retrieved. Indeed, when we look at equation
2.46, it is clear that we can calculate the depth information given by the d depth
parameter in two ways: one for each of the components of the optical flow:






u =
3∑

j=1

Qω
1,j

ωj + d
3∑

j=1

Qt
1,j

tj

v =
3∑

j=1

Qω
2,j

ωj + d
3∑

j=1

Qt
2,j

tj

(2.50)
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from where proximity estimates, d∗1 and d∗2, can be extracted:






d∗1 =
u−

3∑
j=1

Qω
1,j

ωj

3∑
j=1

Qt
1,j

tj

d∗2 =
v−

3∑
j=1

Qω
2,j

ωj

3∑
j=1

Qt
2,j

tj

(2.51)

The problem is that this process, which is called back-projection, is very sensitive
to noise in the optical flow estimates as well as in the motion vector estimates.
In practice, more advanced processing techniques are required to obtain a useful
reconstruction result.

2.5.3 The Relation of the Optical Flow to 3D Scene Flow

While the optical flow is the two-dimensional motion field of points in an image,
the 3D scene flow is the three-dimensional motion field of points in the world [161].
In the same way that optical flow describes an instantaneous motion field in an
image, we can think of scene flow as a three-dimensional flow field dX

dt describing
the motion at every 3D point X in the scene. Suppose there is a point X = X(t)
moving in the scene. The image of this point in camera i is xp = xp(t). If the
camera is not moving, the rate of change of xp is uniquely determined as:

dxp

dt
=
∂xp

∂X

dX

dt
(2.52)

Inverting this relationship is impossible without knowledge of the surface of
the 3D model. To invert it, note that X depends not only on xp, but also on the
time, indirectly through the surface, that is X = X(xp(t), t).

Differentiating this expression with respect to time gives:

dX

dt
=

∂X

∂xp

dxp

dt
+
∂X

∂t

∣∣∣∣
xp

(2.53)

This equation says that the motion of a point in the world is made up of two
components. The first is the projection of the scene flow on the plane tangent to
the surface and passing through X. This is obtained by taking the instantaneous
motion on the image plane (the optical flow u =

dxp

dt as defined by equation 2.35),

and projecting it out into the scene using the inverse Jacobian ∂X
∂xp

.

The second term is the contribution to scene flow arising from the three-
dimensional motion of the point in the scene imaged by a fixed pixel. It is the
instantaneous motion of X along the ray corresponding to xp. The magnitude of
∂X
∂t

∣∣
xp

is proportional to the rate of change of the depth of the surface along this
ray.

Combining both terms, Equation 2.53 shows how the 3D scene flow is an
extension of the 2D optical flow towards the three-dimensional case. The 3D
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scene flows is able to hold much more structural information than the 2D optical
flow, but, as a drawback, it is more difficult to estimate, as will be discussed in
section 4.5.



Chapter 3

Sparse Structure from

Motion: Overview

3.1 Problem Statement and Global Methodology

Sparse structure and motion estimation poses the following problem: From a set
of matched feature points across multiple images, how can we

• estimate the camera motion between all camera views, and

• estimate for each feature point its location in 3D for all camera views?

This problem is solved by setting up a relationship between the movement of
features from one image to another and to the camera motion and the scene
structure. The estimation of this relationship requires the knowledge of the ge-
ometry between the different camera views. This geometry can be described by
the models for two-view, three-view and n-view image geometry presented in sec-
tion 2.3. This chapter explains how these tools have been integrated to form a
coherent framework for sparse structure and motion estimation.

The presented framework employs essentially a three-view sliding window ap-
proach where consecutive three-view matches are used to compute a trifocal ten-
sor. To extract useful information, the trifocal tensor is then decomposed into
camera matrices and fundamental matrices, which contain information on the
structure and the camera motion. All three-view reconstructions are then merged
together. The global methodology is sketched on figure 3.1. Three main parts can
be discriminated: two-view pre-evaluation of the data, three-view reconstruction
and multi-view integration. In the pre-evaluation phase, two-view reconstruction
techniques are employed to select the best feature data from the total set of fea-
ture matches. Based on these matches, three-view reconstruction is performed in
a following phase for all sets of 3 consecutive camera views, through the estima-
tion of the three-view geometry as expressed by the trifocal tensor. This yields a
set of reconstruction results which are temporally and spatially unrelated. There-
fore, in a final multi-view integration phase, all three-view reconstruction results
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are aligned and merged, such that a consistent estimation for the structure and
motion parameters can be obtained in a common reference frame. The remain-
ing sections of this chapter describe each of the aspects of the reconstruction
procedure illustrated by figure 3.1 more in detail.

Figure 3.1: Framework for sparse structure and motion estimation

The choice of this three-view reconstruction technique over the more tradi-
tional two-view reconstruction method returns multiple advantages. First, three-
view matches are inherently more robust than two-view matches as they contain
data over a wider time-span. Secondly, the trifocal tensor estimation is more
robust than direct fundamental matrix estimation. While the direct fundamen-
tal matrix estimation approach leads often to highly fluctuating estimates for
the camera motion parameters, these parameters are already more correct and
more smoothed out by the trifocal tensor reconstruction method, as more data
has been taken into account for the estimation process. As a last advantage, the
three-view reconstruction method is far better suited for multi-view merging, as
it is possible for multiple views and camera motions to overlap between individual
reconstructions.

The methodology adopted here is strongly related to the approach as pro-
posed by Hartley and Zisserman in [51]. The technique proposed in this work on
computer vision has become the de facto standard for sparse structure from mo-
tion estimation and is adopted by numerous researchers. The approach proposed
here extends the work of Hartley and Zisserman by introducing the GRIC scoring
scheme introduced by Torr in [151] to optimize the automatic feature matching
process by assessing the validity of the epipolar geometry model and estimat-
ing an optimal framerate. Other extensions based on the work of Torr in [152]
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which were adopted in this approach include optimized robust estimators for the
fundamental matrix.

Input: A sequence of Images Ii
Output: Camera Motion (Ri, ti), Fundamental Matrices Fi and Sparse

Structure (Xi)

1. Two-view pre-evaluation of the input data:
1.1 Compute point matches using SIFT between all view pairs, as

described in Appendix A.
1.2 Compute the fundamental matrix using RANSAC and prune the

matches, as described in [150].
1.3 Compute the optimal framerate using the GRIC criterion from the

pruned matches, following equations 3.1 to 3.3.

2. Three-view reconstruction: For all consecutive image triplets:
2.1 Compute 3-view matches from 2-view matches, by keypoint

matching, as described in Appendix A.3.
2.2 Compute the trifocal tensor using RANSAC and prune the 3-view

matches, by computing equation 3.4.
2.3 Re-estimate the trifocal tensor using only inlier correspondences.
2.4 Compute the camera matrices and fundamental matrices from the

trifocal tensor, by calculating equations 2.26 and 2.27.
2.5 Compute the structure information from the camera matrices, by

expressing equation 3.6.

3. Multi-view integration:
3.1 Merge all views into a common projective structure, by solving

equation 3.15.
3.2 Refine the reconstruction result using bundle adjustment, by

solving equation 3.16.
3.3 Extract the camera motion from the camera matrices, following

equation 2.6.

Algorithm 1: Overview of the Sparse Part of the Proposed Reconstruc-
tion Algorithm

The presented approach aims to combine the benefits of the existing two-
view, three-view and n-view reconstruction approaches. The global methodology
for sparse structure and motion estimation is sketched by Algorithm 1.

As such, the presented sparse structure from motion approach does not present
any novel ideas; it’s aim is to integrate the best performing state of the art
algorithms to come to a 3D motion and structure estimation which can be used
by the dense estimation process for initialization purposes.

3.2 Two-view pre-evaluation of the input data

In this phase, two-view reconstruction is performed to enhance the quality of the
feature data the subsequent reconstruction algorithms need to operate on. Indeed,
as pointed out before, all sparse analysis uses as a basis feature point detection,
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description and matching over a sequence of images. In chapter 2, section 2.4
and appendix A, a number of powerful tools for feature detection, description
and matching were introduced, most notably the SIFT-features. However, as
performant as these matching algorithms may be, using this raw match data
directly for reconstruction operations, would lead to some serious problems:

• There will always be some outlier matches. As a result, estimating the scene
geometry using for example a classical least-squares minimization method
will fail, as the presence of outliers will prevent a correct solution to be
found.

• The framerate at which images are taken, and thus at which features are
matched, will not always allow reliable reconstruction results. This is the
case because some minimal movement between the feature points in different
images is needed to have a substantially high signal-to-noise ratio to be able
to correctly assess the scene projection model.

To address the first issue, robust estimation of the fundamental matrix between
pairs of views mi,i+1 is performed using RANSAC [150]. The matches which do
not obey the epipolar model, described by the as such estimated fundamental
matrix F, are considered as outliers and disregarded for further evaluation, leading
to a gset of matches m′

i,i+1 which is pruned in space.
The second issue is addressed by the estimation of an optimal framerate us-

ing the Geometric Robust Information Criterion (GRIC)[151], which proposes an
optimal framerate for the image sequence. The basic idea behind the framerate
calculation is to estimate both the fundamental matrix and a plain homography
and compare how well both models fit the data using the GRIC information cri-
terion. The GRIC or Geometric Robust Information Criterion is a robust model
selection criterion that is completely general. It is a scoring function for each
model comprising two parts, one for the goodness of fit and one for the parsimony
of the model. The first term is the minimum log likelihood of the data, the second
is a penalty term, loosely proportional to a product of the number of parameters
and the precision in those parameters. Assuming a Gaussian error model for the
inliers, GRIC calculates a score function for each motion model taking into ac-
count the number n of inlier plus outlier correspondences, the residuals r , the
standard deviation of the measurement error σ, the dimension of the data υ (4
for two views) the number η of motion model parameters (η = 7 for F , η = 8 for
H), and the dimension κ of the structure (κ = 3 for F , κ = 2 for H):

GRIC = ρ

(
r2

σ2

)
+ λ1κn+ λ2η, (3.1)

where ρ
(

r2

σ2

)
is a robust function of the residuals:

ρ

(
r2

σ2

)
= min

(
r2

σ2
, λ3(υ − κ)

)
. (3.2)

It can be seen that this is composed of a the standard sum of squares error term, a
term to compensate for the dimension of the manifold and a differently weighted
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term proportional to the number of motion model parameters. These parameters
have values λ1 = ln 4, λ2 = ln(4n) and λ3 = 2. For each model, the GRIC
criterion is calculated and the model with the lowest score is indicated as most
likely. Note that unlike other model selection criteria the GRIC criterion does not
assert that the model with lowest score is the correct one, rather it provides the
(negative) log of the posterior probability that the model is correct. Given two
models under consideration the ratio of the exponentiated GRIC scores provides
the relative odds of one being correct over the other.

Taking into consideration the constraints and parameters for a homography
and the fundamental matrix, equation 3.1 can be written out to form the following
GRIC-scoring equations for the homography and the fundamental matrix model:

GRICH = min

(‖x′ − Hx‖2

σ2
, 4

)
+ 2n ln (4) + 8 ln (4n)

GRICF = min

(‖x′Fx‖2

σ2
, 2

)
+ 3n ln (4) + 7 ln (4n)

(3.3)

Robust estimation of the fundamental matrix will only be possible when the
epipolar geometry model is better suited to describe the current feature set than
the homography model, i.e. GRICF ≤ GRICH . In general, it will be noticed that
for high framerates, the homography model will provide a better fit to the data as
the disparity for the feature points is too small to reliably estimate F. Therefore,
it is advisable to skip some frames in this situation until GRICF ≤ GRICH before
making a final robust estimate of F. The number of frames for which GRICF

becomes smaller than GRICH is the optimal inter-frame skip k.
To come to one consistent framerate for the whole image sequence to be re-

constructed, a globally optimal framerate is calculated by taking an average of
the individual optimal time steps for each frame.

3.3 Three-view reconstruction

In a second stage of reconstruction, the trifocal tensors are estimated for each
consecutive set of three views. For this, first a set of matches over three views
mk(i−1)+1,ki+1,k(i+1)+1 is calculated by feature matching the 2 sets of two-view
matches m′

k(i−1)+1,ki+1 and m′
ki+1,k(i+1)+1 . Then, the three-view geometry is

estimated by calculating the trifocal tensor Tk(i−1)+1,ki+1,k(i+1)+1 . Here, we take
over the robust trifocal tensor estimation process as introduced by Hartley in [51].

The main problem for the estimation of the trifocal tensor is that only 18 of the
27 parameters are independent, as geometry only has 18 degrees of freedom. The
fundamental matrix also satisfies an internal constraint, but in this case it is only
a relatively simple one: the elements obey det(F) = 0. Here, T must thus satisfy
several constraints to be a geometrically valid trifocal tensor. To get good results,
one must take account of these constraints. For this we need the formulation of
equation 2.24 which generates only valid trifocal tensors. The parameters of this
formulation are the entries aj

i and bk
i . This is still over-parametrized as there are

24 parameters in all.
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For the algebraic estimation of T the algebraic error ‖Qta‖ needs to be min-

imized, subject to the constraint ‖ta‖ = 1 and that T is of the form T jk
i =

aj
ib

k
4 − aj

4b
k
i .

The difficulty is that this constraint is a quadratic constraint in terms of the
parameters. We must thus search the epipoles aj

4 and bk
4 first. If aj

4 and bk
4 are

known, then T is linear in terms of the other parameters. We may write ta = Gtb,
where tb is the matrix of 18 remaining entries of camera matrices A and B, ta is
the 27-vector of entries of T , and G is a 27 × 18 matrix.

The function to minimize then becomes

‖QGtb‖ = 1, (3.4)

subject to ‖Gtb‖ = 1.
The strategy, as proposed by Hartley in [51] for iterative algebraic T estimation

is to vary the epipoles aj
4 and bk

4 to minimize the algebraic error ‖Qta‖ = ‖QGtb‖
and after that to use the Levenberg-Marquardt method to minimize this error.
This is a 6 × 27 minimization problem with 6 inputs (the entries of the two
epipoles) and 27 outputs (the algebraic error vector ‖Qta‖ = ‖QGtb‖), where
each step requires estimation of tb using the algebraic method.
In practice, this parameter estimation process is embedded into a RANSAC -
scheme to enhance the robustness of the solution. The algorithm for the robust
estimation of the trifocal tensor T can thus be summarized as:

• Select a random sample of 6 correspondences;

• Compute T (as explained above) from these correspondences;

• Measure support (number of inliers) for the solution;

• Choose the T with the largest number of inliers;

• Re-estimate T from inlier correspondences.

After the trifocal tensors are estimated, the camera matrices can be calculated
by applying equations 2.26 and 2.27. Three camera matrices Pi

k(i−1)+1, Pi
ki+1

and Pi
k(i+1)+1 (one for each view) are estimated as such. From the camera ma-

trices, the structure in each camera view, Xi
k(i−1)+1, Xi

ki+1 and Xi
k(i+1)+1, can

be estimated by observing the general perspective projection equations from 3D
to 2D, as explained in section 2.2:

x = PX; x′ = P′X. (3.5)

As such, once the P matrices are recovered the structure X may be recovered
by triangulation [50]. However, obtaining an optimal solution can be costly. This
is because the optimal estimate would minimize the reprojection error of the
3D points i.e. minimize the sum of squares of Euclidean distance between the
observed point in each image and the reprojection using the projection matrices
and putative 3D structure i.e:
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argmin
X

dE (x,PX)2 + dE (x′,P′X)
2

(3.6)

where dE(a,b) is the Euclidean distance between a and b. This is equivalent
to finding (x̂, ŷ, x̂′, ŷ′) such that

∑
dE = (x− x̂)

2
+ (y − ŷ)

2
+ (x̂′ − x′)

2
+ (ŷ′ − y′)

2
(3.7)

is a minimum and (x̂, ŷ, x̂′, ŷ′) satisfies x̂′Fx̂ = 0 .

3.4 Multi-View integration

Figure 3.1 illustrates that for each consecutive set of three views, a new trifocal
tensor is estimated. As each trifocal tensor returns 3 camera matrices, there is an
overlap of camera matrices. In general, for each camera view, 3 different camera
matrices and associated structure representations are calculated, as illustrated by
figure 3.1. Up until this point in the structure estimation procedure, these 3D
reconstructions between image triplets were treated independently of one another.
Therefore, the individual correspondences of all pairs and triplets, must now be
merged into a whole sequence to create a consistent N -view geometry encoded by
the projective structure in the multi-view reconstruction phase.

We present here the hierarchical merging strategy introduced by Fitzgibbon
and Zisserman in [40]. This approach uses image triplets as the basic building
blocks. In such a basic unit, the structure of the scene observed by three cameras
can be computed by calculating the associated trifocal tensor from point-to-point
correspondences across the three views. These triplets are then registered into
sub-groups, followed by merging these subsets and thus building the entire group.
This situation is illustrated in figure 3.2.

The view-merging approach starts from the assumption that some 3D points
are common in both sets. The homogeneous representation of these points may
be denoted as Xi in the first frame and X′

i in the second frame. The point
representations in the different metric frames are related by a 3-space homography
H according to:

Xi = HX′
i (3.8)

Equivalently,

Pj
n = P′j

nH−1 (3.9)

holds for the corresponding normalized projection matrices of the cameras
common to both triplets. Since all measurements in real images are noisy, equa-
tions 3.8 and 3.9 will not be satisfied exactly. Therefore an error minimizing
estimate for H has to be determined in order to register one triplet in the metric
frame of the other triplet. The procedure proceeds in two steps: first, a homog-
raphy of 3-space is computed which approximately registers one triplet in the
other frame. Next, an optimal registration is obtained by bundle adjusting the
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Camera 1           Camera 2         Camera 3                Camera 4

Triplet 1

Triplet 2

Merged

Views

...... ... ...

Figure 3.2: Hierarchical merging of 3-view reconstructions for multi-view recon-
struction

entire sub-group of cameras and all observed 3D scene points. The approxima-
tions found in the first step provide initial guesses for this non-linear optimization
procedure.

The result of this operation is a globally optimal and unique structure and
motion description per camera view. The motion data is contained in the camera
matrices P′

i. However, as we consider only calibrated cameras, it is straightfor-
ward to compute the rotation matrices Ri,j and translation vectors ti,j from the
camera matrices, by solving the perspective projection equation 2.6.

The multi view merging process can thus be summarized as: [51]

• Merge the two correspondences between two sub-sequences using the two
overlapping images.

• Estimate the space homography Hs between two common cameras using
linear least squares.

• Apply the space homography for one of the two sub-sequences to bring both
of them into the same projective basis.

• Optimize the sequence [i...j] with all merged corresponding points using
Bundle Adjustment.

• Calculate the motion parameters from the camera matrices

The final result of this step is a set of 3D points and camera poses, projectively
consistent with all camera projection matrices on a common space projective basis.
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The following two paragraphs explain the calculation of the space homography
and the bundle adjustment processes more in detail.

Homography computation The homography between two metric frames can
be described by a metric transformation:

H =





σr11 σr12 σr13 tx
σr21 σr22 σr23 ty
σr31 σr32 σr33 tz

0 0 0 1



 , (3.10)

with rij the coefficients of the rotation matrix R, ti the coefficients of the
translation vector t and σ the relative scale between the structures. Therefore,
the transformation between the two different metric frames counts 7 unknowns.
Two stages are used to derive accurate estimates for those parameters: first a
closed-form solution is obtained, which is then further refined in a non-linear
stage. In order to compute a direct solution for the 7 parameters, the first step
is to estimate the relative scale σ. Therefore the centroid of the each structure
(consisting of the common 3D points Xi, X′

i respectively) denoted with C, C′

is computed, then the distance of each point in the structure to its centroid is
calculated. The relative scale between the two structures is then determined by
the quotient of the mean distances:

σ =

1
n

n∑
i=1

‖Xi − C‖

1
n

n∑
i=1

‖X′
i − C′‖

(3.11)

where ‖.‖ denotes the L2-norm and n is the number of common points in both
triplets. The second structure may then be re-scaled according to:

X′
si

= σX′
i, (3.12)

such that equation 3.8 becomes:

Xi = HsX
′
si
, (3.13)

with Hs =

(
R t

01×3 1

)
.

In order to obtain an initial estimate for the coefficients of R and t the squared
distance between these two structures is minimized with respect to the coefficients
of Hs using linear algebraic methods:

min
R,t

∑

i

dE (Xi,HsX
′
si

)
2
, (3.14)

where dE(v1,v2) denotes the Euclidean distance between the points v1 and
v2. Finally, this is followed by a nonlinear minimization stage in order to refine the
above derived initial values. This nonlinear estimation minimizes the reprojection
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error to the original measured and normalized image points with respect to all
parameters of H.

min
σ,R,t

∑

ij

dE

(
Pj

nHX′
i, x

j
ni

)2
+ dE

(
P′j

nH−1Xi, x
j
ni

)2

(3.15)

This non-linear minimization may be solved using standard techniques as for
instance the Levenberg-Marquardt algorithm.

Hierarchies of larger sub-groups can be built, after all subsets, defined by their
camera matrices and 3D points, are computed. By registering those subsets in
one common coordinate frame an initial guess for the observed 3D structure (rep-
resented by 3D points) and all normalized camera matrices in the entire set of
cameras is obtained. Again the registration of sub-groups is achieved by com-
puting homographies of 3-space, as defined by equation 3.8 and 3.9, between the
different subgroups.

Bundle Adjustment Bundle adjustment is the problem of refining a visual
reconstruction to produce jointly optimal 3D structure and viewing parameter
(camera pose and/or calibration) estimates [155]. It is used as the last step of
sparse reconstruction in order to optimize the estimated structure and camera
pose. The name bundle adjustment refers to the bundles of light rays originating
from each 3D feature and converging on each camera center, which are adjusted
optimally with respect to both structure and viewing parameters. It is often used
as a last step of the structure and motion estimation process to produce globally
optimal 3D structure and camera motion estimates.

This is achieved by minimizing a cost function that quantifies the model fitting
error:

min
PjXi

∑

i∈points

∑

j∈frames

dE

(
xj

i ,P
jXi

)2

, (3.16)

Solutions of this minimization problem are simultaneously optimal with respect to
both structure and camera variations. Bundle adjustment thus amounts to min-
imizing the reprojection error between the observed and predicted image points,
which is expressed as the sum of squares of a number of non-linear real-valued
functions.

The minimization is achieved using non-linear least squares algorithms, of
which the Levenberg-Marquardt algorithm has proven to be the most successful
due to its use of an effective damping strategy that lends it the ability to converge
promptly from a wide range of initial guesses.

The Levenberg-Marquardt algorithm involves the solution of linear systems
known as the normal equations. Considering that the normal equations are solved
repeatedly in the course of the Levenberg-Marquardt algorithm and that each
computation of the solution to a dense linear system has complexity O(N3) in
the number of parameters, it is clear that general purpose implementations of
the Levenberg-Marquardt algorithm are computationally very demanding when
employed to minimize functions depending on many parameters. Fortunately,
when solving minimization problems arising in BA, the normal equations matrix
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has a sparse block structure owing to the lack of interaction among parameters for
different 3D points and cameras. Therefore, considerable computational benefits
can be gained by developing a tailored sparse variant of the Levenberg-Marquardt
algorithm which explicitly takes advantage of the normal equations zeroes pattern.

One of those sparse bundle adjustment algorithms is the Sparse Euclidian
Bundle Adjustment (SBA) algorithm presented by Lourakis in [83], which was
used throughout this work. SBA is a generic sparse bundle adjustment package
which is usable from C++ and is generic in the sense that it grants the user full
control over the choice of parameters and functional relations describing cameras,
3D structure and image projections. Therefore, it can support a wide range of
manifestations/parameterizations of the multiple view reconstruction problem.





Chapter 4

Dense Structure from

Motion: Overview

4.1 Problem Statement

This chapter addresses the problem of dense recovery of structure from motion,
more precisely the problem of estimating dense maps of depth and 3D motion
from a temporal sequence of monocular images.

As mentioned in the previous chapter, sparse recovery, where depth is com-
puted at a sparse set of points of the image, has been the subject of numerous
well-documented studies [51, 151] and [152]. For dense recovery, however, one
seeks to compute a depth and 3D motion estimate over the whole image. This
subject has been significantly less researched in spite of the many studies on dense
estimation of image motion [108, 54, 104] and [9]. This is mainly due to a lack
of computing power in the past, as it is only thanks to the dramatic increase in
processing power over the last decade, that dense reconstruction becomes possible
on commodity computer hardware.

The problem of dense reconstruction from motion is different from the one
posed in stereoscopy, as discussed in chapter 3. The two problems are conceptually
similar, because one can be considered as a discrete version of the other, but their
input and the processing of this input are dissimilar. As indicated in [131], one
can see a difference from an abstract point of view, because stereoscopy implies a
geometric motion or displacement between views, whereas structure from motion
deals with the kinematic notion of motion of the viewing system and viewed
objects in temporal sequences. A displacement is defined by an initial position
and a final position, intermediate positions being immaterial. Consequently, the
notions of time and velocity are irrelevant in stereoscopy. With structure from
motion, in contrast, time and velocity are fundamental dimensions. One can also
see a difference from a more practical point of view, because both the viewing
system and viewed objects can move when acquiring temporal image sequences
and all these motions have to be taken into account for 3D reconstruction, which

41
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is not the case in stereoscopy.

At the least, this leads to computational complications. For instance, assum-
ing that environmental objects are rigid and images are sized 640 × 480, there
can be over 2 million variables to evaluate at each instant of interpretation (six
parameters for the motion and one for depth, and this for all image pixels). The
number of these variables can be reduced if some form of motion-based segmenta-
tion [12] is applied first, but it is obvious that such a process is computationally
quite intensive itself.

The main purpose of this chapter is to give the reader a quick overview of
existing dense structure from motion approaches. A more extensive review of
some commonly used 3-D reconstruction techniques can be found in [86].

The taxonomy presented here roughly divides the modern approaches towards
dense reconstruction into one of 2 classes:

On one hand, there are model-based approaches [145], using as a basis mostly
a volume-based description of the 3D structure to be reconstructed. Examples
are voxel coloring [75], photo hulls [137], and level sets [39]. Volume-based meth-
ods start from a volumetric description (model) of a surface and fit this model
to the measurements, which are the images. These approaches are generally not
referred to as dense reconstruction from motion methods as they often do not
directly exploit the motion between the different camera images. Instead, they
use a large amount of images integrated into a single scheme, often without even
trying to explicitly reconstruct the 3D camera motions. These approaches use
a discretized volume and restrict possible depth values to a predefined accuracy.
The 3D points can be represented by 3D pixels or voxels or the 3D model can be
described directly by a mesh [44, 182]. Volume-based methods often use an energy
minimization approach and are known to reconstruct high-quality models of small
objects. Large, unbounded data-sets typically pose problems for these approaches
as this leads to a combinatorial explosion. Multiple researchers [140, 158] have
aimed to solve this problem, by using more simple 2D depth maps as a repre-
sentation. Strecha uses in [140] the EM-algorithm to jointly estimate depths and
visibility, which are modeled as a hidden Markov Random Field to model the
inlier and outlier processes generating the images. Tylecek formulates in [158] the
reconstruction problem in a Bayesian framework and minimizes the geometric
error between the measured 3D points and the depth estimates, also taking into
account the visibility constraints. Both techniques achieve a very high reconstruc-
tion precision, but have difficulties when scaling up to large sequences. Therefore,
it is questionable whether volume based algorithms can combine reasonable speed
and memory requirements for large image sequences with high accuracy for high-
resolution images with fine details. For applications where visualization is the
primary goal and accuracy is not the main issue or for applications where the
model size is bounded, these algorithms perform very well, which explains their
success in 3D imaging [67].

A second series of methods are pixel-based approaches [2, 141], which do not
need 3D discretization and can compute depth for every pixel.

The algorithmically most simple pixel-based approaches aim to extend the
feature-based sparse reconstruction methods discussed in chapter 3, by introduc-
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ing some form of segmentation to estimate a depth value for all image pixels.
Jancosek presents in [66] a method which oversegments the input images into
segments of low variation in color and intensity. For each segment, a candidate
3D planar patch is generated. By combining the planar patches from multiple
images, the algorithm can reduce the overall reconstruction error by filtering out
the erroneous patches. Lee et al. present a similar method in [77], employing be-
lief propagation as a method to combine, filter and refine the different segments.
However, as the application of their work is geared towards 3D TV, they use a
depth map as a representation.

A second series of pixel-based approaches are based upon the iterative solution
of a partial differential equation (PDE), minimizing an energy functional. In
many cases [131, 138, 178, 73, 175] the main data term of this energy functional
expresses the optical flow constraint, as expressed by equation 2.31. Optical
Flow based methods use the apparent motion of brightness patterns to relate
estimate structure by relating the optical flow field, the structure and the camera
motion. A basic problem with this approach is that the optical flow only provides
projected 2D motion information. Moreover, due to noisy measurements, the
presence of occlusions and some linearizing assumptions, advanced processing
methods are required to obtain robust structural data. Pollefeys presented in
[113] an approach to solve the dense reconstruction problem by combining state-
of-the-art algorithms for uncalibrated projective reconstruction, self- calibration
and dense correspondence matching. Faugeras presented a version of this method
by adapting the level set technique to the scene reconstruction problem [39].
With the initial surface encompassing the scene, level sets was used to evolve the
surface towards the objects in the scene. The advantage of level sets, although
it has a tendency to be trapped in local minimas, is that it is fast and well-
developed through the work of Osher and Sethian [111]. This method can also
model occlusions through the computation of the visibility of each zero level set
at each evolution step. Thus only cameras with an unoccluded viewpoint of the
zero level set surface contribute to the computation of the speed function for
the next time step. Unlike voxel coloring, a continuous surface and an analytic
framework of the surface propagation can be modeled. However, many of the
existing PDE-based techniques that aim to reconstruct the 3D scene through
energy minimization, have applied the method to pair-wise feature matching of
the available images. The limitation is that pair-wise matching techniques can at
best only reproduce a 2.5D sketch of the scene (e.g. a depth map) and cannot
produce a true 3D reconstruction.

To be able to avoid ambiguities when describing dynamic 3D objects, a third
series of pixel-based approaches uses the counterpart of optical flow in 3D space,
the 3D scene flow. 3D scene flow was introduced in [162] and [183] and later
used as a basis for dense 3D reconstruction in [114] and [184]. Scene flow based
methods try to avoid the projection problems of the optical flow. Their main
problem is that upgrading the optical flow to the scene flow drastically increases
the number of unknowns, such that the reconstruction problem becomes even
harder.

In the following sections, the methodologies which are briefly introduced above,
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are explained. As the approach applied in this work is a variational pixel-based
optical flow-based method, this methodology is discussed more in detail.

4.2 Volume-based Methods

There exists a large body of work on building volumetric models from multiple
calibrated images. A survey and performance evaluation of recent approaches are
presented in [129].

The Voxel Coloring method [128] is one of the first deterministic methods that
combine image silhouette and color information to build 3D volumetric models.
Since any voxel on a Lambertian surface corresponds to consistent image patterns,
a photo consistency test is applied to every voxel: if the color variance is larger
than a threshold, the voxel is labeled as empty; otherwise it is labeled as part of
the object surface. A number of subsequent approaches, such as Space Carving
[75] and Generalized Voxel Coloring [136], extend the original approach with more
general camera placements and more efficient labeling methods. These determin-
istic methods, however, face the difficulty of finding an appropriate threshold for
carving the inconsistent voxels, which is inherently varying in different image re-
gions. Furthermore, these methods do not impose global smoothness and may
make conflicting decisions in the sequential carving process.

In contrast, energy minimization based methods do not have such problems.
Instead of making a harsh decision for each voxel, a global energy function is
defined to accumulate the variance of all voxels. This energy function is minimized
by discrete optimization techniques, such as Graph Cuts [17]. Snow et al. first
introduced the graph cuts method in [139] to find the optimal visual hull. This
approach is extended in [164] and [112] by utilizing the visual hull as a topological
constraints over the scene and searching for an optimal 3D volumetric cut in a
voxel based graph. Further constraints are imposed with known surface patches.

Many modern reconstruction methods employ a surface model S ⊂ R
3 to

produce high-quality 3D models. Such a model can consist of an evolutive mesh
surface, as presented by Zaharescu in [182]. Based on this, Zaharescu defines a
similarity measure Mij as the similarity between image Ii and the reprojection of
image Ij into the other camera i via the surface S. The surface evolution equation
can then be written as:

∂S

∂t
= [−λEregularization + Edata]N, (4.1)

where Eregularization depends on the curvature, N represents the surface normal
and Edata is a photoconsistency term that is a summation across pairs of cameras
which depends upon derivatives of the similarity measure M. Zaharescu solves
this energy minimization problem using a level set method, using a mesh-based
approach. Tylecek proposes in [158] a different approach, modeling the surface as
a continuous Poisson-surface and incorporates also visibility estimation, next to
the surface similarity measure. This leads to an over-determined linear system,
which is solved using the quasi-minimal residual method. Other researchers like
Jancosek [66] and Furukawa [44] model the surface by using a number of 3D planar
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patches. Jancosek builds these patches by oversegmenting the input images, while
Furukawa directly uses the sparse matching data. An important aspect for the
performance of these techniques is the approach towards expanding the surface
model and filtering false matches, while enforcing photometric consistency and
visibility constraints. In [140], Strecha goes a step further by jointly modeling
the depth and visibility using a hidden Markov Random Field. The maximum
likelihood estimates of the statistics of the inlier and outlier processes are obtained
by an Expectation-Maximisation algorithm [32]. This algorithm keeps track of
which points of the scene are visible in which images, and accounts for all likely
visibility configurations.

Most volumetric approaches are limited to static scenes, but in [180] and [161],
space carving approaches are extended to handle dynamic scenes with moving
objects.

4.3 Segmentation-based Methods

Segmentation-based approaches use a feature-based technique as a starting point,
and apply some form of image segmentation to divide the image in a number of
regions. They then assume that all pixels within a given region move uniformly,
and hence have the same depth. In [35], Ernst et al. propose a method to create
segments corresponding to the underlying objects, or more accurate, to segment
the image in regions containing only a single depth. This leads to a chicken-and-
egg problem: for segmentation, the depth is needed, but for depth estimation,
the segmentation is needed. For foreground-background segmentation or scenes
containing a small number of well-defined objects, one could iteratively solve scene
structure and segmentation [179]. For general video sequences, these methods
always make the same key assumption that discontinuities in depth coincide with
discontinuities in color (which is often true, but not always). The matching of
segments S in the first image I1 to the next image I2, can be written as a match
penalty [31], as a function of the disparity δ:

E(d) =
∑

|I2(x + ∆x(δ)) − I1(x)| (4.2)

i.e. for all pixels x in a segment S, their location in I2 is estimated, based upon
the proposed disparity δ by computing the absolute difference between the image
intensities between their positions in I1. The camera transformation relates the
disparity value δ to a motion vector ∆x.
Solving equation 4.2 results in a depth per segment. Segmentation then groups
pixels into a number of 4-connected segments, such that every pixel is part of ex-
actly one segment. A multitude of feature-based and region-based methods have
been presented to tackle the segmentation problem.
Ping Li et al. propose in [79] to use Delaunay triangulation to obtain a dense
depth map from feature-based SfM. The triangulation technique assumes that the
complete scene consists of piece-wise planar surfaces described by the triangles.
Generally, this assumption works well if the three vertices of the triangle are close
to each other and lie in the same object. However, problems may arise in certain
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cases. The dense depth estimate is not accurate for those triangles covering the
edges of two objects and the transition area between foreground and background.
Another problem of triangulation is that in some image areas where too few fea-
ture points can be detected and tracked, triangulation is not applicable at all.
The layered approach [6], [166],[153] aims to segment the image into a set of re-
gions, such that pixels within each region move in a manner consistent with a 2D
parametric transformation (e.g. affine). Then, the edges of the region correspond
to occlusion boundaries and the motion of all the pixels within the region (tex-
tureless or not) is determined by the (six in the case of affine) parameters of the
motion model. Typically, an EM (expectation maximization) algorithm [32] is
used to effect a segmentation. The use of the 2D affine motion model corresponds
to an assumption that the layer maps to a plane in 3D viewed under orthographic
conditions. This assumption is valid for a wide variety of scenes, even for non-
planar objects for which the distance to the camera is sufficiently large relative
to the depth variation across the object. The layered method tends to fail when
non-planar objects are viewed in close up as the representation is not adequate in
this case. In fact, any object that contains significant parallax effects will cause
the breakdown of a layered representation with a global motion model. In order
to overcome this problem, Torr et al propose in [153] an approach in which each
pixel within a layer can have an associated disparity. The 2D layers, are usually
not intended to capture 3D scene structure. In contrast, it was proposed in [7]
that the scene should be decomposed into a collection of 3D layers (or sprites),
each of which consists of a plane equation, a color image that captures the appear-
ance of the sprite, a per-pixel opacity map, and a per-pixel depth-offset relative to
the nominal plane of the layer. The advantage of this approach is that roughness
or parallax effects on the layer can be modeled without the over-fragmentation
and instability inherent in a purely 2D parametric approach. This approach to
layered representation can be viewed as an extension of the plane plus parallax
decomposition of image disparities across multiple views. The class of scenes the
method works well for includes those that the 2D layered method works well for,
but the method tends to fail for scenes for which there is a small amount of per
pixel parallax on each plane.

4.4 Optical Flow-based Methods

Direct Methods Structure and motion can be computed either starting from
the estimated flow or by inserting a suitable parameterization of the optical flow
u in equation 2.46 or equation 2.31 and extracting structure and motion from the
resulting equations. These Direct Methods were introduced by Horn and Weldon
in [63]. One problem with these approaches is that for a single image pair, one has
N equations and N +6 unknowns, where N is the number of points in the image,
so some added constraint is needed. Negahdaripour and Horn [107] presented a
closed form solution assuming a planar or quadratic surface. McQuirk [92] showed
that, assuming a pure translation model, the subset of the image points with a
non-zero spatial derivative but a zero time derivative gives the direction of motion.
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The Focus Of Expansion is on a line perpendicular to the gradient at these points.
The drawback of this approach is that using only this subset of points, a large
part of the image information is ignored. Heel presented in [56] an approach to
avoid this problem, by using multiple images of an image sequence. He employs
Kalman Filters to build up a structure model from more than one image pair.
However, due to its noisy nature, dense optical flow is not extremely suitable for
tracking purposes. Moreover, dense flow fields are estimated at pixel locations,
so some kind of re-sampling is required during the tracking between consecutive
frames. The error introduced by this dense tracking is difficult to evaluate [174].
As in the discrete case, the Kalman filter has proved to be an efficient tool for
multi-view integration, especially for keeping the complexity constant over time.
However, dense flow poses serious problems for these algorithms along occlusion
boundaries or in regions of low texturing and as a result, these problems are in
general not addressed. Generally speaking, the Kalman filter is an optimal esti-
mator under the hypothesis of linearity and Gaussian noise. This is rarely the
case when real images are used.

Energy Formulation of Variational Methods Another category of dense
structure from motion methods are variational approaches, where the reconstruc-
tion problem is formulated in an energy minimization framework, under the as-
sumption of global smoothness of the solution. Variational methods thus seek to
find a 3D interpretation of the image sequence that minimizes an energy func-
tional:

E (d, t, ω) =

∫

Ω

(Edata + µ.Eregularization) dxdy (4.3)

In equation 4.3, the first term in the integrand is the term of conformity to data
according to a fitting function. The other term is a regularization term which
aims to smooth the solution over areas with continuous structure, trying to fill in
the missing information in the data. Note that the energy functional expressed
by equation 4.3 is implicitly also a function of the time (Edata = Edata(t)), as this
term necessarily expresses a motion constraint.

For solving equation 4.3, often the Euler-Lagrange equation is written out,
which leads to a partial differential equation problem:

∂E

∂q
− d

dt

(
∂E

∂q̇

)
= 0, (4.4)

where q is a vector containing the independent variables which are defined in the
energy definition (e.g. t, ω, d) and q̇ = ∂q

∂t . The problem is that a discretization
of equation 4.4 yields a large system of nonlinear equations that is very difficult
to solve in general.

Several alternatives have been proposed for defining the energy term as well
as for solving the energy minimization problem. We will now give an overview of
some of these approaches:
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• The variational method presented by Mitiche and Hadjres in [96] follows
the minimum description length principle [102], [186]. This method as-
sumes that environmental objects are rigid and seeks to partition the image
domain into regions of constant depth and 3D motion by minimizing an
objective function that measures the cost in bits to code the length of the
boundaries of the partition and the conformity of the 3D interpretation to
the image sequence spatio-temporal variations within each region of the par-
tition. Mitiche and Hadjres ignore rotation, which allows them to obtain a
simple constraint equation by substituting equations 2.46 in equation 2.31:

α1t1 + α2t2 + α3t3 + ItZ = 0, (4.5)

with α1 = fIx, α2 = fIy and α3 = −xIx − yIy. They consider the transla-
tion vector t to be an independent variable at each image point and define
an objective function over t and Z as:

Edata = 1
2 log 2

∑
i∈Ω

(α1t1i+α2t2i+α3t3i+ItZi)
2

σ2

+ b
2

∑
i∈Ω

∑
j∈Ni

(
1 − δ (Zi − Zj)

∏
l=1,2,3

δ (tli − tlj)

)
,

(4.6)

with b the sum of the number of bits to code the direction of a boundary
line segment, Ni is the set of the 4-neighbors of i, and

δ(x) =

{
1 for x = 0
0 for x 6= 0

(4.7)

As this method is in essence a region filling approach, it does not have a
smoothing term.

Like many other researchers [178][36], Mitiche and Hadjres make use of
the gradient descent algorithm to minimize equation 4.3. Following this
approach, the gradient of the objective function is calculated w.r.t. the
independent variable(s) in the problem stated and the solution is evolved
in the direction of the negative gradient. In this case, Mitiche and Hadjres
differentiate the equation 4.6 with respect to t1i, t2i, t3i and Zi and write
out the necessary conditions for a minimum.

• In another publication [131] of the same research group, Sekkati and Mitiche
take into consideration general 3D rigid motion without ignoring rotation.
By substituting equations 2.46 in equation 2.31, they then obtain a more
general constraint from the optical flow:

It + rTρ = 0, (4.8)
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where ρ is a 6-dimensional per-pixel motion vector: ρ =
(

t
Z ,

ω
Z

)
and:

r =





fIx
fIy

−xIx − yIy
−fIy − y

f (xIx + yIy)

fIx + x
f (xIx + yIy)

−yIx − xIy




, (4.9)

which allows them to formulate the data term as:

Edata =

∫

Ω

(It + rρ)2dΩ, (4.10)

As a regularization term, Sekkati and Mitiche opted for the anisotropic
diffusion function defined in [5]:

Eregularization =

∫

Ω

6∑

i=1

Φ (‖∇ρi
‖)dΩ (4.11)

with Φ(s) = 2
√

1 + s2 − 2.

For solving the energy minimization problem, Sekkati and Mitiche use the
half - quadratic minimization algorithm proposed in [5]. With the half
- quadratic algorithm, equation 4.3 is minimized via the minimization of
another functional which E∗(ρ,b), with b a field of auxiliary variables.
E∗(ρ,b) is then minimized using an iterated two-step greedy minimization
algorithm. The first step consists of computing the minimum of E∗(ρ,b)
with respect to b with ρ fixed, followed by finding the minimum of E∗(ρ,b)
with respect to ρ with b fixed. These two steps are repeated until conver-
gence.

• Slesareva et al. chose in [138] for the data term a gradient constancy assump-
tion

(
∇Ii+1(x + δ) = ∇Ii(x)

)
between corresponding structures within con-

secutive frames, depending on a disparity δ. This leads to a data term of
the following form:

Edata =

∫

Ω

1

N

N−1∑

i=0

ψ
(
∇Ii+1(x + δ) −∇Ii(x)

)2
dx, (4.12)

where N the number of frames, Ω ⊂ R
2 denotes the rectangular image

domain, and ψ(s2) =
√
s2 + ε2 is a L1 penalizer with a small regularizing

constant ε > 0 ensuring differentiability.

This approach has as an advantage that it is not affected by perturbations on
the image intensities caused by illumination changes. For the regularization
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term, Slesareva uses the anisotropic image-driven regulariser of Nagel and
Enkelmann [105], leading to a regularization term of the form:

Eregularization =

∫

Ω

∇δTD (∇I)∇δdx. (4.13)

Where D is the regularized projection matrix given by equation B.6.

For minimizing the combined energy functional, Slesareva et al. write out
the Euler-Lagrange equation of formulation 4.3, introducing the data term of
equation 4.12 and regularization term of equation 4.13 with the appropriate
boundary conditions. They solve the resulting nonlinear partial differential
equation with the help of two nested fixed point iterations. The outer loop
fixes nonlinearities with previously computed values of δ, while the inner
loop solves the resulting linear problem with the successive overrelaxation
(SOR) method.

• Yezzi and Soatto presented in [178] an approach specifically targeted at
being able to handle scenes with smooth surfaces and constant isotropic
radiance. These scenes challenge most Structure from Motion algorithms
because of the lack of photometrically distinct features. They seek to infer
the shape of the scene, represented by a description of the surface S, and
set up a cost functional that aims at matching regions, and integrate the
irradiance over the entire domain of each image. Their data fidelity term
quantifies the discrepancy between measured images and the images pre-
dicted by the model. Therefore, they define a foreground radiance function
f : S → R and a background radiance function h : Θ → R which projects
the surface S and background to the image domain and a back-projection
function π−1 : Ω → S which ray-traces an image point xi to a surface S.

Edata(f ,h,S) =

N∑

i=1

∫

Ω

(
f
(
π−1

i (xi)
)
− Ii (xi)

)
dxi (4.14)

Yezzi and Soatto define two regularization terms, one which enforces the
smoothness of the surface Eregularization1

=
∫

S

dA, and one which enforces

the smoothness of the foreground and background radiance functions f and
h: Eregularization2

=
∫

S

‖∇f‖2 dA +
∫

Background

‖∇h‖2 dΘ. Using this objec-

tive function, the shape of the model surface and the radiances are adjusted
to match the measured images.

Like Mitiche and Hadjres in [96] and Faugeras and Keriven in and [36],
Yezzi and Soatto use the gradient descent algorithm to solve the energy
minimization problem.

• Kolmogorov & Zabih present in [73] an approach which is able to handle
occlusions. Occlusions are a major challenge for the accurate computation
of visual correspondence. Occluded pixels are visible in only one image, so
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there is no corresponding pixel in the other image. Ideally, a pixel in one
image should correspond to at most one pixel in the other image, and a
pixel that corresponds to no pixel in the other image should be labeled as
occluded. This requirement is referred to as uniqueness. They address the
correspondence problem by constructing a problem representation and an
energy function, such that a solution which violates uniqueness will have
infinite energy. Therefore, they define an energy function composed of 3
components. A data term Edata measures from the differences in inten-
sity between corresponding pixels

∑
p,q∈A

(I1(p) − I2(q))
2
. An occlusion term

Eocclusion imposes a penalty Cp for making a pixel occluded:

Eocclusion =

N∑

i=1

Cp ∀ occluded pixels (4.15)

A smoothness term Esmoothness makes neighboring pixels in the same image
tend to have similar disparities. The smoothness term requires the notion
of a neighborhood of pixels N and is based on an interaction potential V :

Esmoothness =
∑

{a1,a2}∈N
{a1,a2}∈A

Va1,a2 (4.16)

where A is the set of (unordered) pairs of pixels that may potentially cor-
respond. In their experiments, Kolmogorov and Zabih used a simple Potts
model for the smoothness term, consisting of an empirically selected de-
creasing function of ∆I(a1, a2):

Va1,a2
=

{
3λ if ∆I(a1, a2) < 5

λ otherwise
(4.17)

where ∆I(a1, a2) is the average of intensity values and λ is an empirically
chosen parameter.

In [73], Kolmogorov & Zabih present an approach to solve the energy min-
imization problem through graph cuts. Although graph cut methods have
been popular for minimizing energy functions, only a few researchers have
attempted to apply graph cuts to reconstruct 3D scenes [73], [134], [139],
[122]]. This approach avoids being trapped by early hard decisions and is
able to resolve projection ambiguities that are spatially coherent. Of the
different graph cuts algorithms applied to scene reconstruction, [122] did
not consider visibility and had a spatial smoothness term that was not dis-
continuity preserving and thus have a tendency to produce over-smoothed
results. Snow et al. compute in [139] the global minimum of an energy func-
tion that was an alternative to silhouette intersection and thus consequently
does not consider photo-consistency. Kang et al. [134] do not treat input im-
ages symmetrically and subsequently compute a disparity map with respect
to a single camera; while [73] considers a selection of pairs of interacting
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cameras and can compute a disparity map for each camera. While graph
cuts are extremely powerful and can be formulated to compute the optimal
solution avoiding being stuck in local minima, not all energy functions can
be embedded into a graph for minimization. Kolmogorov has presented a
paper [74] that discusses which energy functions can be minimized using
graph cuts. The approach followed in [73] is called the expansion move al-
gorithm. Simplified, it can be described as follows: a disparity δ is selected
(in a fixed order or at random), the unique configuration within a single δ-
expansion move (the local improvement step) is calculated. If this decreases
the energy, then this configuration is selected; if there is no δ that decreases
the energy, then the iteration is done. The critical step in this method is to
efficiently compute the δ-expansion with the smallest energy, which is done
using graph cuts.

• Strecha and Van Gool presented in [141] a PDE-based method for dense
reconstruction which is based on an extensive evaluation of the confidence
that the system has in the data coming from the different views. This
confidence estimation ensures that only reliable data is spread. Their work is
heavily based upon the work of Proesmans in [116], but adds a methodology
to cope with variable lighting conditions. To this end, they expand the
traditional optical flow constraint, serving as a basis for their data term,
with an additional term, accounting for illumination changes:

I2(x + δ0) − I1 +
∂I2(x + δ0)

∂x
(δ − δ0) + (1 − k(x))I1(x) = 0, (4.18)

where k(x) takes care of a local intensity scaling in the image I1.

As a regularization term, Strecha and Van Gool adopt an anisotropic diffu-
sion method, blocking diffusion from places with a lower confidence in their
correspondences.

The problem is solved through the iteration of a system of coupled, non-
linear diffusion equations. It is inspired by the work of Proesmans et al.
[116]. Proesmans et al. propose a system of 6 coupled, nonlinear diffusion
equations, yielding both disparity and depth discontinuity maps contain-
ing information on the occluded parts. The high number of equations is
due to the symmetric exploitation of the two images: the system evaluates
simultaneously a forwards and backwards correspondence search.

• Faugeras presented in [39] a method which originally expresses the sim-
ple image brightness brightness assumption between corresponding points
m1(x, y) and m2(x, y):

Edata =

∫

Ω

(I1(m1(x, y) − I2(m2(x, y))
2
dxdy (4.19)

He then extends this functional in two ways. The first improvement consid-
ers that the scene is made of fronto-parallel planes and replaces the difference
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of intensities by a measure of correlation:

Edata = −
∫

Ω

〈I1, I2〉
|I1| |I2|

dxdy (4.20)

with 〈I1, I2〉 the cross-correlation measure and |I|2 = 〈I, I〉. A second im-
provement to this functional is to relax the hypothesis and to take into
account the orientation of the tangent plane to the surface of the object.
This improvement takes into account the fact that the rectangular window
centered at m2 is in fact not rectangular, but is the image in the second
retina of the backprojection on the tangent plane to the object at the point
(x, y) of the rectangular window centered at m1. As, such Faugeras ap-
proximates the object and its depth Z = f(x, y) in a neighborhood of each
pixel by its tangent plane, but without assuming that this plane in fronto
parallel. This leads to a third version of the data term, this time explicitly
including the surface function f .

Edata =

∫

Ω

〈I1, I2〉
|I1| |I2|

(f,∇f, x, y) dxdy (4.21)

For solving this problem, Faugeras employs the level set approach. With
the initial surface encompassing the scene, level sets are used to evolve the
surface towards the objects in the scene. The advantage of level sets, al-
though it has a tendency to be trapped in local minima, is that it is fast and
well-developed through the work of Osher and Sethian [111]. This method
can also model occlusions through the computation of the visibility of each
zero level set at each evolution step. Thus only cameras with an unoccluded
viewpoint of the zero level set surface contribute to the computation of the
speed function for the next time step. Using this method, a continuous sur-
face and an analytic framework of the surface propagation can be modeled.

More dense reconstruction methods are discussed in the following chapter, where
they are directly compared with the approach presented by this research work.

Advantages and Disadvantages of Variational Methods Compared to
other methods variational techniques offer a number of specific advantages: They
allow transparent modeling without hidden assumptions or post-processing steps.
Moreover, their continuous formulation enables rotationally invariant modeling
in a natural way. The filling-in effect creates dense depth maps with sub-pixel
precision by propagating information over the entire image domain.
Most of these variational methods, however, do not allow for object motion, as-
suming that the viewing system alone is in movement. As indicated in [130],
when the viewing system moves but environmental objects do not, the problem is
simpler and 3D interpretation can be inferred by an indirect method which recov-
ers depth following least-squares estimation of 3D motion. The interpretation of
scenes where object movement can occur was investigated in [130],[96],[91],[100].
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Many of the existing PDE-based techniques that aim to reconstruct the 3D scene
through energy minimization, have applied the method to pair-wise feature match-
ing of the available images. The limitation is that pair-wise matching techniques
can at best only reproduce a 2.5D sketch of the scene and cannot produce a true
3D reconstruction.

4.5 Scene Flow-based Methods

A drawback of using optical flow as a basis for dense reconstruction is that optical
flow only provides projected 2D motion information. It is clear that ambiguities
exist when dynamic 3D objects/scenes are explained by using 2D optical flow.
This is why the counterpart of optical flow in 3D space, 3D scene flow us =
us(u, v, w), is introduced [162], [183]. Like optical flow, 3D scene flow is defined
at every point in a reference image. The difference is that the velocity vector in
scene flow field contains not only x, y, but also z velocities. This also means that
a multi camera setup is often required to compute reliable 3D scene flow.

Two types of methods prevail in the scene flow literature. In the first family of
methods [162],[184], scene flow is constructed from previously computed optical
flows in all the input images. Then, the scene structure is estimated from scene
flow. It is obvious that once optical flow u(u, v) and disparity δt are estimated
separately in the reference image sequence, the 3D scene flow is as simple as
(u, v, δt+1 − δt). Ideally, if the optical flow and the disparity are accurate enough,
this is correct. However, in practice both optical flow and disparity may be noisy
and/or physically inconsistent through cameras. The heuristic spatial smoothness
constraints applied to optical flow may also alter the recovered scene flow.

The second family of methods [184], [23] relies on spatio-temporal image
derivatives. These variational methods are closely related to the optical flow
based reconstruction techniques presented in section 4.4, as they also aim to solve
an energy minimization problem as expressed by equation 4.3.

Zhang et al. formulate in [184] the problem as computing a four dimensional
vector (u, v, w, d) at every point on the reference image, where the initial disparity
is used as an initial guess. However, with serious occlusion and limited number
of cameras, this formulation is very difficult because it implies solving four un-
knowns at every point. At least four independent constraints are needed to make
the algorithm stable. Therefore, Zhang et al. formulate constraints on motion,
disparity, smoothness and optical flow, and they add a confidence measurement
on the disparity estimation. A problem with this method is that it is often limited
to slowly-moving Lambertian scenes under constant illumination.

The method advocated by Pons et al. in [114] handles projective distortion
without any approximation of shape and motion and can be made robust to
appearance changes. The metric used in their framework is the ability to predict
the other input views from one input view and the estimated shape or motion.
Their method consists in maximizing, with respect to shape and motion, the
similarity between each input view and the predicted images coming from the
other views. They warp the input images to compute the predicted images, which
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simultaneously removes projective distortion. Their method allows for generic
similarity measures M , but in [114], the opposite of the mutual between the
images is used:

Edata =

N∑

i=1

∑

j 6=i

f (δ2M) (4.22)

The variation of the matching term involves the derivative of the similarity mea-
sure with respect to the second image δ2M , as documented in [114]. The regu-
larization term is typically the area of the surface, and the associated minimizing
flow is a mean curvature motion:

Eregularization =

∫

Ω

Hdx, (4.23)

where H denotes the mean curvature of S.
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Chapter 5

Dense 3D Structure

Estimation

5.1 Introduction and Problem Formulation

Dense structure from motion algorithms aim at estimating a 3D location for all
image pixels. One could say that they seek to transform a normal camera from
a 2D imaging device into a 3D imaging sensor. As discussed in chapter 4, there
are multiple approaches towards dense structure from motion. The most modern
dense structure from motion algorithms minimize the optical flow constraint and
enforce smoothness in the depth field in a variational framework. However, due
to the noisiness of the optical flow and due to projection ambiguities (leading
a.o. to occlusions), these algorithms are still not very robust when confronted
with unconstrained 3D camera motion and changing illumination conditions. One
could argue that these problems are due to the fact that dense structure from
motion is a relatively new field of research that emerged recently thanks to the
rise in computing power.

5.2 The Proposed Methodology

5.2.1 Global Methodology

To address the classical dense structure from motion shortcomings, we adopt a
dual approach for dense structure estimation, trying to combine the robustness
of sparse reconstruction techniques with the completeness of the end result, as
provided by dense reconstruction algorithms. This is achieved by first solving the
sparse reconstruction problem, as explained in chapter 3. These results then serve
as initial guesses for the dense reconstruction process, which fuses the sparse data
with dense information coming from a densely estimated optical flow field. The
optical flow is a projection of the 3D motion field and is related to the struc-
ture and motion properties, as explained in section 2.5.2. This relation between

59
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optical flow and structure and motion on one hand and the available sparsely
reconstructed structure and motion parameters allow for integrated sparse-dense
reconstruction, as sketched by figure 5.1.

Figure 5.1: Dual structure from motion approach: Sparse Analysis of an image
sequence returns a description of the multi-view geometry in the form of a linked
series of Fundamental Matrices; Dense Analysis of the same image sequence re-
turns a dense optical flow field. Both data streams are fused in a variational
framework.

Here, a variational approach is presented to tackle this high-dimensional data
fusion problem. This methodology formulates the problem of fusing dense image
data - in the form of the image brightness constraint from the optical flow - with
sparse data - in the form of the epipolar constraint of the sparse reconstruction -
as an optimization problem. The basic problem of the calculus of variations is to
determine the function q(x, y) which minimizes or maximizes a functional in the
domain [x1, x2]

J =

∫ x2

x1

F (q(x, y), qx(x, y), qy(x, y), x, y) dxdy, (5.1)

with qx(x, y) = ∂q(x,y)
∂x and qy(x, y) = ∂q(x,y)

∂y .

The integrand F (q(x, y), qx(x, y), qy(x, y), x, y) is in our case composed of two
constraint equations. A first constraint, φmodel(x, y), expresses the conformity of
the current depth estimate at each pixel to the dense and sparse constraint mod-
els. A second constraint, φregularization(x, y), introduces anisotropic regulariza-
tion to preserve the structure smoothness, while preserving depth discontinuities
at boundary locations. The functional can thus be written as:

J =

∫

Ω

φmodel(x, y) + µφregularization(x, y)dxdy (5.2)

µ is a positive constant, denoting the relative impact of the regularization term.
We will later show how this parameter can be estimated automatically.
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Note that J depends not only on x and y but also on the motion vectors. This
formulation is similar to the one presented by Alvarez in [2], but the difference is
that Alvarez considers a pair of stereo images, whereas we consider time-shifted
images from one and the same camera.

The extremal functions of equation 5.1 can be obtained by expressing the
Euler-Lagrange equations:

∂F

∂q
− d

dx

(
∂F

∂qx

)
− d

dy

(
∂F

∂qy

)
= 0. (5.3)

The Euler-Lagrange equations are obtained by setting the first variational deriva-
tives of the functional J with respect to each function equal to zero. Solving this
partial differential equation (PDE) in an analytical way is in general not possi-
ble. Hence, iterative approaches are required. The result of these iterative solvers
depends strongly on the initialization method, which is why we also introduce a
dense depth map initialization method which fuses sparse and dense data. The
numerical method for solving the partial differential equation problem is further
discussed in section 5.3.

5.2.2 Image Brightness and Epipolar Constraint

As sketched by figure 5.1, there are two main input paths to the dense recon-
struction process: the sparse epipolar reconstruction and the dense optical flow
estimation. Each of these paths needs to be present in the formulation of the
energy minimization problem. Therefore, sparse information in the form of an
estimate of the fundamental matrix F is introduced in the dense optical flow.

As expressed by equations 2.33 and 2.31, there are 2 - equivalent - ways of
expressing the optical flow constraint:

1. Directly from the constant image brightness assumption, which follows from
the Lambertian assumption that corresponding pixels have equal grey val-
ues:

I1(x) − I2(x + u) = 0, (5.4)

where I1,2 are the image intensities of the first and second image.

2. As a function of the image derivatives:

I1,xu+ I1,yv + I1,t = 0 or ∇I1 · u + I1,t = 0 (5.5)

The latter formulation is to be preferred, as it relies on more robust derivatives
of the image, instead of directly on the image brightness values. This may seem
counter-intuitive, as applying a gradient operation is a classical source for errors
in computer vision. However, in this work, we used the spatial gradient estimator
proposed by Vieville and Faugeras in [163], which provides a robust intensity
gradient estimate.

To express the optical flow as a function of depth, we adopt the approach
introduced by Alvarez in [2]. This formulation uses the fundamental matrix,
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which has as an advantage that, as the fundamental matrix is one of the most
basic descriptors of the two-view geometry, it is more robust. The disadvantage
is that it is more difficult to work with, as no direct depth parameterization is
obtained. This formulation uses the definition of the optical flow as the image
flow between corresponding pixels, x′ = x + u, or:

x′ = x + ‖u‖1u, (5.6)

with ‖u‖ the magnitude of the optical flow ‖u‖ =
√
u2 + v2 and 1u =

[
u√

u2+v2

v√
u2+v2

]

the unitary flow vector associated to the points x and x′.
The position of the matching coordinates can thus be considered a function

the current pixel location x, the pixel depth Z, and the 3D camera motion, which
can be expressed by the motion parameters t and ω, or by the fundamental matrix
F:

I1(x) = I2(ϕ(x, Z,F)) (5.7)

To know the function ϕ, we first introduce the notations:

a(x, y) = f11x+ f12y + f13

b(x, y) = f21x+ f22y + f23

c(x, y) = f31x+ f32y + f33

, (5.8)

with fi,j the components of the fundamental matrix F, as defined by equation
2.9. Using this notation, the epipolar line le can be written as:

a(x, y)x′ + b(x, y)y′ + c(x, y) = 0 (5.9)

We can now express the unitary normal vector 1N and unitary tangential
vector 1T of the epipolar line le given by equation 5.9:

1N =

[
a√

a2+b2
b√

a2+b2

]
;1T =

[
b√

a2+b2−a√
a2+b2

]
. (5.10)

This yields a new formulation for expressing the relationship between 2 corre-
sponding pixels:

x′ = x − γ1N − ζ1T , (5.11)

with:

• γ =
x̃t

1Fx̃1√
a2+b2

: the distance (modulus a sign) of the point x to its epipolar

line le in the second image. γ can be calculated easily for each point thanks
to the knowledge of the fundamental matrix.

• ζ: the distance (modulus a sign) of x0, the projection of the point x on the
epipolar line le, to the point x′ that lies along the epipolar line le. ζ can be
regarded as a parameter related to the depth and remains to be estimated.
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Substituting equation 5.11 in equation 5.6 allows to deduce a relationship
between the optical flow and the depth parameter ζ:

u1u = −γ1N − ζ1T . (5.12)

Using this relationship, Alvarez derived in [2] the following expression for the
disparity components:

u(x, y) =
−ζ(x, y)b(x, y)√
a2(x, y) + b2(x, y)

− a(x, y)x + b(x, y)y + c(x, y)

a2(x, y) + b2(x, y)
a(x, y)

v(x, y) =
ζ(x, y)a(x, y)√
a2(x, y) + b2(x, y)

− a(x, y)x+ b(x, y)y + c(x, y)

a2(x, y) + b2(x, y)
b(x, y)

(5.13)

Equation 5.13 can be written more simply as:

u (ζ(x, y),F) = a1(x, y)ζ(x, y) + b1(x, y)
v (ζ(x, y),F) = a2(x, y)ζ(x, y) + b2(x, y)

, (5.14)

by introducing the following definitions:

a1(x, y) = −b√
a2(x,y)+b2(x,y)

a2(x, y) = a√
a2(x,y)+b2(x,y)

b1(x, y) = −a(x,y)x+b(x,y)y+c(x,y)√
a2(x,y)+b2(x,y)

a(x, y)

b2(x, y) = −a(x,y)x+b(x,y)y+c(x,y)√
a2(x,y)+b2(x,y)

b(x, y)

(5.15)

As the distance γ(x, y) of a point to its epipolar line is known for each point
(x, y), equation 5.14 indicates that the computation of the magnitude of the opti-
cal flow u(x, y), also called the disparity, is equivalent to the computation of the
depth function ζ(x, y).

‖u(x, y)‖2 = ζ(x, y)2 + γ(x, y)2 (5.16)

This depth - optical flow relation of equation 5.14 can now be introduced in the
optical flow equations to find an expression for the term φmodel(x, y) of equation
5.2. Using the constant brightness based optical flow constraint, we get:

φdata = (I1(x, y) − I2(x+ a1ζ + b1, y + a2ζ + b2))
2 (5.17)

For the image derivatives based optical flow constraint of equation 5.5, we get:

φdata = (I1,x [a1ζ + b1] + I1,y [a2ζ + b2] + I1,t)
2

(5.18)

The parameters a1, a2, b1, b2 in equations 5.17 and 5.18 depend on the two-
view geometry expressed by the fundamental matrix F. As discussed in chapter 3,
we assume the fundamental matrix to be known through a preliminary sparse re-
construction procedure, such that the depth field ζ(x, y) can be estimated through
minimization. In practice, the estimate for F is often not very accurate and it



64 Chapter 5. Dense 3D Structure Estimation

can be seen immediately from equation 5.14 that this would seriously corrupt
the disparity estimates. To address this issue, the estimate for the fundamental
matrix F is iteratively improved over time, as will be discussed in section 5.2.5.

When working with color images, the color information can be used as well,
instead of solely the image intensity. Practically, this means that we have to sum
the intensity over of the color bands:

φdata =
N∑

m=1

(Icm

1 (x, y) − Icm

2 (x+ a1ζ + b1, y + a2ζ + b2)
2, (5.19)

or

φdata =
N∑

m=1

(
Icm

1,x [a1ζ + b1] + Icm

1,y [a2ζ + b2] + Icm

1,t

)2
, (5.20)

where N is the number of color channels (in general N = 3) and ci denotes the
ith color channel. To be able to cope with changing illumination conditions, the
images can be preprocessed with a color constancy algorithm or the image can be
converted to a color space which is more invariant to illumination changes.

5.2.3 Depth Regularization

Using only the constraint equations described in the previous section would lead
to serious problems due to (image) and temporal (movement) ambiguities. For
example, matching of image intensities typically fails on monochrome surfaces,
because due to the fact that there are multiple solutions, the numerical stabil-
ity cannot be assured and the solver converges to random solutions or does not
converge at all. What is needed to solve this problem is a regularization term
which extrapolates and smooths the structural data over pixels which belong to
the same physical object at the same distance. Multiple smoothing function have
been proposed and used in a structure from motion framework, as discussed in
section 4.4. The main problem these smoothing terms face is the preservation
of discontinuities. Indeed, regularization should not over-smooth the solution
such that depth discontinuities are no longer visible. Nagel and Enkelmann took
into account this consideration and proposed in [105] an anisotropic smoothing
term which preserves the depth discontinuities. The Nagel and Enkelmann reg-
ularization model has already been proven successful in a range of independent
experiments [138][2] and formulates a regularization term of the following form:

φregularization = (∇ζ)T
D (∇I1) (∇ζ) (5.21)

Where D is a regularized projection matrix given by:

D (∇I1) =
1

|∇I1|2 + 2υ2




(

∂I1
∂y

)2

+ υ2 −∂I1
∂x

∂I1
∂y

−∂I1
∂x

∂I1
∂y

(
∂I1
∂x

)2
+ υ2



 , (5.22)

with υ a regularization parameter.
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D(∇I1) has the eigenvectors ∇I1 and ∇I⊥1 . The corresponding eigenvalues
are given by:

λ1 =
υ2

‖∇I1‖2 + 2υ2
, λ2 =

‖∇I1‖2 + υ2

‖∇I1‖2 + 2υ2
(5.23)

D(∇I1) has the following properties:

• In the interior of objects ‖∇I1‖ becomes zero, such that λ1 → 1/2 and λ2 →
1/2. This results in isotropic behavior within regions and the smoothing of
the ζ(x, y) function in the interior of regions.

• At boundaries ‖∇I1‖ goes to ∞, such that λ1 → 0 and λ2 → 1. As a result
the contribution of the regularization term of equation 5.21 will be minor
compared to the image brightness constraint term. This assures that the
smoothing takes place only along the direction of the boundaries and not
across boundaries.

Using this approach, discontinuities can be preserved while the energy func-
tional is minimized. The linear isotropic model can be regarded as a special case
with D(∇I1) = Id.

5.2.4 Derivation of the Euler-Lagrange Equation

Following the definition of equation 5.3, the Euler-Lagrange equation for this
problem can be written as:

∂F

∂ζ
− d

dx

(
∂F
∂ζ
dx

)
− d

dy

(
∂F
∂ζ
dy

)
= 0, (5.24)

with F = φdata(x, y)+µφregularization(x, y). φdata(x, y) is defined by the con-
straint equation 5.17 for the constant brightness based optical flow constraint, or
by equation 5.17 when the image-derivatives based optical flow constraint is con-
sidered. φregularization(x, y) defined by the regularization constraint of equation
5.21.

Following the constant image brightness based optical flow constraint, the first
term in equation 5.24 only concerns the constraint equation 5.17, such that:

∂F

∂ζ
=
∂φdata

∂ζ
=
∂ (I1(x, y) − I2(x+ a1ζ + b1, y + a2ζ + b2))

2

∂ζ

= 2 (I1(x, y) − I2(x+ a1ζ + b1, y + a2ζ + b2)) ∂ζI2,

(5.25)

where ∂ζI2 =
∂I2(x+δx(ζ(x,y),F),y+δy(ζ(x,y),F))

∂ζ is a spatial derivative of the im-
age intensity in the direction of the epipolar line.
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Following the image derivatives based optical flow constraint, the first term in
equation 5.24 yields:

∂F

∂ζ
=
∂φdata

∂ζ
=
∂ (I1,x [a1ζ + b1] + I1,y [a2ζ + b2] + I1,t)

2

∂ζ

= 2 (I1,x [a1ζ + b1] + I1,y [a2ζ + b2] + I1,t) (a1I1,x + a2I1,y)
(5.26)

Only the regularization term in the function F contains derivatives of the form
∂ζ
dx and ∂ζ

dy , such that:

d
dx

(
∂F
∂ζ
dx

)
+ d

dy

(
∂F
∂ζ
dy

)
= d

dx

(
∂(µ(∇ζ)T D(∇I1)∇ζ)

∂ζ
∂x

)
+ d

dy

(
∂(µ(∇ζ)T D(∇I1)∇ζ)

∂ζ
∂y

)

= 2µD1,1
∂2ζ
∂x2 + 4µD1,2

∂2ζ
∂x∂y + 2µD2,2

∂2ζ
∂y2

= 2µdiv (D (∇I1)∇ζ)
(5.27)

In summary, the proposed method for dense reconstruction poses the problem
as a variational problem, expressed by the combination of a data-driven term
and a regularization term, as posed by equation 5.2. The data-driven term ex-
presses the conformity of the depth estimate at each pixel to the dense and sparse
constraint models. The regularization term introduces anisotropic regularization
to preserve the structure smoothness, while preserving depth discontinuities at
boundary locations.

The solution for this problem is obtained by writing the Euler-Lagrange equa-
tions for this problem, following equation 5.24. For the regularization term, the
expression given by equation 5.27 is obtained in this way. For the data-driven
term, two formulations are proposed.

The first formulation uses the image brightness based optical flow constraint
of equation 5.4, leading to the Euler-Lagrange term given by equation 5.25. Sub-
stituting the equation 5.25 and 5.27 in the Euler-Lagrange equation (equation
5.24), a first formulation of the PDE-problem is obtained:

Formulation 1:

2 (I1(x, y) − I2(x+ a1ζ + b1, y + a2ζ + b2)) ∂ζI2 − 2µ∇ (D (∇I1)∇ζ) = 0 (5.28)

The second formulation uses the image derivatives based optical flow con-
straint of equation 5.5, leading to the Euler-Lagrange term given by equation
5.26. Substituting the equation 5.26 and 5.27 back in the Euler-Lagrange equa-
tion (equation 5.24), a second formulation of the PDE-problem is obtained:

Formulation 2:

2 (I1,x [a1ζ + b1] + I1,y [a2ζ + b2] + I1,t) (a1I1,x + a2I1,y) − 2µ∇ (D (∇I1)∇ζ) = 0
(5.29)
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Solving these partial differential equations for ζ(x, y) returns a solution for
the depth field. How this is effectively done is explained in section 5.3. However,
before one can begin solving equation 5.28 or 5.29, it is necessary to formulate
a methodology to update the estimated description of the two-view geometry,
as expressed by the fundamental matrix, and to integrate these results in the
variational framework.

5.2.5 Iterative Update of the 2-view Geometry

The methodology for estimating the per-pixel depth field, as described above,
starts from a fixed estimate of the two-view geometry, as described by the funda-
mental matrix F. F can be estimated through traditional sparse structure from
motion algorithms as described in chapter 3. However, this estimate is subject
to noise, which will bias the results. Therefore, the estimate of the 2-view geom-
etry should be improved, taking into account the structural data. This can be
done iteratively, as the depth estimation process is an iterative one. Indeed, the
depth parameter ζi(x, y) is in fact a function of the iteration number, expressed
by the time parameter t: ζi(x, y) = ζt

i (x, y), as with each iteration, a new value
for ζt

i (x, y) is estimated. It is therefore possible to re-insert these structure results
at each iteration to improve the estimation of the two-view geometry.

Considering that the depth parameter for each pixel ζt
i (x, y) is known and the

components of the fundamental matrix are the unknown parameters, the problem
can be expressed as:

Formulation 1:

argmin
f1..9

N∑

i=1

(
I1 (xi) − I2

(
xi + u

(
xi, ζ

t
i , f
)))2

, (5.30)

Formulation 2:

argmin
f1..9

N∑

i=1

(
a1 (f) ζt

i I1,x + b1 (f) I1,x + a2 (f) ζt
i I1,y + b2 (f) I1,y + I1,t

)2
, (5.31)

with f = f1..9 a vector consisting of the components of the fundamental ma-
trix.
Equations 5.30 and 5.31 both express a non-linear least squares problem, aiming
at minimizing the sum of squared residuals ri = I1 (xi) − I2 (xi + u (xi, ζ

t
i , f)) or

ri = a1 (f) ζt
i I1,x + b1 (f) I1,x + a2 (f) ζt

i I1,y + b2 (f) I1,y + I1,t. This least squares
problem can be solved iteratively using the Gauss-Newton algorithm:

fk+1 = fk −
(
JT J

)−1
JT r, (5.32)
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with r the vector of residuals ri and J is the Jacobian matrix consisting of partial
derivatives of ri to the different components of f :

Jij =
∂ri
∂fj

. (5.33)

In some cases (degenerative motion), the condition number of the Jacobian
matrix can become very high, making the problem ill-conditioned. This means
that the application of equation 5.32 will lead to problems. To this end, we
introduced a Kalman-filtering post-processing step to the motion update process,
to make sure that erroneous results are disregarded.

Following the fundamental matrix update equation 5.32, the two view geome-
try description (expressed by the fundamental matrix F) is iteratively updated by
using the current estimate of the structure description (expressed by the depth pa-
rameter ζt). Consecutive structure reconstruction results are used to improve the
estimate of F, which are on their turn used to improve the structure estimation,
as explained in section 5.2.2.

5.3 Numerical Implementation

5.3.1 Model Discretization

A first numerical scheme for solving the Euler-Lagrange problem stated by equa-
tions 5.28 and 5.29 which was implemented consisted of an explicit scheme. In
the explicit scheme, forward differencing is used to discretize the depth field ζ.
This way, the numerical solution at the current iteration level is computed from a
discrete approximation of the original PDE, in which the data and regularization
terms are evaluated at the previous time level. This numerical scheme provides
a simple solution to the discretization problem, as it consists of a straightfor-
ward loop over N iterations. However, although the cost of each iteration step
is quite low, the total computational cost is rather large, as the time parameter
∆σ must be very small to prevent oscillations. Experiments using this numerical
scheme showed that, in order to achieve stable results with this scheme, the time
parameter ∆σ should be chosen extremely low, making the number of iteration
steps prohibitively large. As a result, a more stable scheme was adopted and
a semi-implicit scheme was chosen. The semi-implicit scheme can be seen as a
compromise between the simplicity of the explicit scheme and the stability of the
implicit scheme. Like the implicit scheme, the semi-implicit scheme is uncondi-
tionally stable, thus ∆σ can be relatively large without producing any unstable
nonphysical oscillations.

The discretization of the Euler-Lagrange equation based on the constant image
differences based optical flow constraint (equation 5.28) is discussed first. For
this problem, the Euler-Lagrange equation can be solved, provided that an initial
condition is given, by introducing a time parameter σ and by calculating the
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asymptotic state for σ → ∞:

⇒
{

∂ζ(x)
∂σ = − (I1 (x) − I2 (x + u (ζ(x), f ))) ∂ζI2(x) + µ∇ (D (∇I1(x))∇ζ(x))
ζ(x, σ = 0) = ζ0

(5.34)
The method for obtaining the initial condition ζ0 is discussed in section 5.3.3.

A problem for the implementation of this semi-implicit scheme is the calcula-

tion of the derivative term ∂ζI2(x) = ∂I2(x+u(ζ(x),f))
∂ζ . Therefore, we develop this

derivative term further using the chain rule:

∂I2 (x + u (ζ (x) , f ))

∂ζ
=
∂I2 (x + u (ζ (x) , f))

∂ (x + u)

∂ (x + u)

∂ζ

=
∂I2 (x + u (ζ (x) , f))

∂x

−b (x)√
a (x)

2
+ b (x)

2

+
∂I2 (x + u (ζ (x) , f))

∂y

a (x)√
a (x)

2
+ b (x)

2

=
a (x) I2,y (x + u (ζ (x) , f)) − b (x) I2,x (x + u (ζ (x) , f))√

a (x)2 + b (x)2

(5.35)

The derivative uζk

i,j can then be calculated as:

uζk

i,j =
ai,jI2,y

(
xi,j + u

(
ζk
i,j (xi,j), f

k
))

− bi,jI2,x

(
x + u

(
ζk
i,j (x) , fk

))
√
a2

i,j + b2i,j

(5.36)

The notation uζk

i,j is used to stress that the depth parameter ζk
i,j at time index k is

involved in the calculation of uζk

i,j . This means that uζk

i,j needs to be re-calculated
after every iteration.

Combining this information a function φk
datai,j

can be defined, which represents
the data term for the constant image differences based optical flow constraint:

φk
datai,j

=
(
I1(xi,j)−I2

(
xi+a1i,j

(fk)ζk
i,j+b1i,j

(fk), yj+a2i,j
(fk)ζk

i,j+b2i,j
(fk)

))
uζk

i,j ,
(5.37)

with ζk
i,j the estimate of the depth parameter ζ at gridpoint (i, j) at time instance

k and fk the fundamental matrix components at time instance k, auto-updated
as discussed in section 5.2.5.

The discretization of the Euler-Lagrange equation based on the image deriva-
tives based optical flow constraint (equation 5.29) follows a similar, yet somewhat
more simple, approach:

⇒
{

∂ζ(x)
∂σ =−(I1,x [a1ζ+b1]+I1,y [a2ζ+b2]+I1,t) (a1I1,x+a2I1,y)+µ∇ (D (∇I1)∇ζ)
ζ(x, σ = 0) = ζ0

(5.38)
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Equivalently to equation 5.37, a function φk
datai,j

can be defined, which repre-
sents the data term for the image derivatives based optical flow constraint:

φk
datai,j

=
(
I1,x(xi,j)

[
a1i,j

(fk)ζk
i,j + b1i,j

(fk)
]

+ I1,y(xi,j)
[
a2i,j

(fk)ζk
i,j + b2i,j

(fk)
]

+I1,t(xi,j))
(
a1i,j

(fk)I1,x(xi,j) + a2i,j
(fk)I1,y(xi,j)

)
(5.39)

If D (∇I) =

(
p q
q r

)
with the parameters p, q, r defined by equation B.6,

then the diffusion term φk
regularizationi,j

can be written as:

φk
regularizationi,j

=µk

[
pi+1,j + pi,j

2

ζk+1
i+1,j − ζk+1

i,j

h2
1

+
pi−1,j + pi,j

2

ζk+1
i−1,j − ζk+1

i,j

h2
1

]

+ µk

[
ri,j+1 + ri,j

2

ζk+1
i,j+1 − ζk+1

i,j

h2
2

+
ri,j−1 + ri,j

2

ζk+1
i,j−1 − ζk+1

i,j

h2
2

]

+ µk

[
qi+1,j+1 + qi,j

2

ζk+1
i+1,j+1 − ζk+1

i,j

2h1h2

]

+ µk

[
qi−1,j−1 + qi,j

2

ζk+1
i−1,j−1 − ζk+1

i,j

2h1h2

]

+ µk

[
qi−1,j+1 + qi,j

2

ζk+1
i−1,j+1 − ζk+1

i,j

2h1h2

]

+ µk

[
qi+1,j−1 + qi,j

2

ζk+1
i+1,j−1 − ζk+1

i,j

2h1h2

]
,

(5.40)

with

h1, h2 the pixel size in the x and y direction;

µk the diffusion parameter regulating the influence of the regularization term,
automatically estimated as explained in section 5.3.2;

p, q, r the elements of the projection matrix D.

Combining the results of equations 5.37, 5.39 and 5.40, the linear semi-implicit
scheme becomes:

ζk+1
i,j − ζk

i,j

∆σ
= −φk

datai,j
+ φk

regularizationi,j
, (5.41)

with ∆σ the time step size.
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Separating the terms with time indices k and k + 1 yields:

ζk
i,j

∆σ
− φk

datai,j
= ζk+1

i,j

[
1

∆σ
+ µk pi+1,j + 2pi,j + pi−1,j

2h2
1

+ µk ri,j+1 + 2ri,j + ri,j−1

2h2
2

+µk qi+1,j+1 + qi−1,j−1 + qi−1,j+1 + qi+1,j−1

4h1h2

]

− µk pi+1,j + pi,j

2h2
1

ζk+1
i+1,j − µk pi−1,j + pi,j

2h2
1

ζk+1
i−1,j

− µk ri,j+1 + ri,j
2h2

2

ζk+1
i,j+1 − µk ri,j−1 + ri,j

2h2
2

ζk+1
i,j−1

− µk qi+1,j+1 + qi,j
4h1h2

ζk+1
i+1,j+1 − µk qi−1,j−1 + qi,j

4h1h2
ζk+1
i−1,j−1

− µk qi−1,j+1 + qi,j
4h1h2

ζk+1
i−1,j+1 − µk qi+1,j−1 + qi,j

4h1h2
ζk+1
i+1,j−1

(5.42)

As can be noted from equation 5.42, the system matrix S has the following struc-
ture:

S =
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(5.43)

The system matrix, represented by equation 5.43 is a huge, but sparse matrix.
When processing an image sequence with a resolution of M × N , the size of
the matrix is (MN)2. To put this into perspective: for a low-resolution camera
sequence consisting of images of resolution 640 × 480, this leads to a system
matrix with 94.371.840.000 elements. Luckily, the system matrix is also very
sparse: it is a 3-diagonal matrix with only 2.7 million non-zero entries, meaning
that only 0.003% of the system matrix is actually filled.
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Using the system matrix formulation, the system equation to be solved can be
written as:

Sζ = v, (5.44)

with ζ the vector of depth parameters and v the vector of known values, composed
from the left hand side of equation 5.42. The structure matrix S is a large, but
sparse matrix. Therefore, the system equation 5.44 can be efficiently solved using
sparse matrix algebra.
The system is solved by a least squares subspace trust region method based on the
interior-reflective Newton method, as described in [27]. Each iteration involves the
approximate solution of a large linear system using the method of preconditioned
conjugate gradients. The iteration ends when the difference between 2 consecutive
depth estimates falls below a chosen threshold.

5.3.2 Estimation of the Degree of Regularization

The diffusion parameter µ is used to control the diffusivity during the diffusion
process, i.e. to decide to which extent the disparity field is diffused at different
locations of the disparity field δ. In the literature, the diffusion parameter is
generally estimated empirically. There are several drawbacks related to this ap-
proach. First, the use of problem-dependent parameters with values which have
to be empirically re-estimated for each set of input data, is a tedious process
which hinders deterministic benchmarking of reconstruction algorithms. Second,
considering that the solution of equation 5.28 must be sought using an iterative
updating technique, there is no reason to assume that one and the same value
for the regularization parameter µ would be the optimal value throughout the
iterative process. Therefore, it is beneficial to dynamically select the diffusion
parameter.

Here, we use a method based upon the work of Yang who proposes in [176] a
method to dynamically estimate µ. This estimation is based upon the assump-
tion that pixels for which the gradient of the disparity field is above a certain
percentage, for example 90% of the maximum of the histogram, are discontinuous
locations. Here, the diffusion should stop or at least be largely reduced. This
threshold is defined by Yang as:

T k
g =

(µk)2

K̃k + 2(µk)2
. (5.45)

In equation 5.45, K̃k is the threshold of ‖∇δk‖2 at time instance k associated
with the location in the histogram of the disparity gradient where the percentage
of the histogram reaches 90% of the maximum of the histogram. T k

g is the cor-
responding value of the diffusion function at time instance k. It is a small (e.g.
0.01), but known value, allowing us to determine from equation 5.45 the diffusion
parameter µk by:
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µk =

√
K̃kT k

g

1 − 2T k
g

, (5.46)

where µk ensures that the diffusion function would be less than T k
g when the

pixel locations belong to discontinuities.
Using this strategy, µk can be automatically adjusted according to the dispar-

ity gradient distribution at each step of the diffusion process. The value of µk

is based upon the estimated disparity field during the diffusion process to better
control the diffusion. This gives a more reasonable estimate of µ compared to a
fixed value for the whole diffusion process.

5.3.3 Initialization

To obtain an initial value for the depth field ζ0, it is sufficient to calculate an
initial value for the flow field. Using equation 5.16, ζ0 can be written as:

ζ0 =
√
u2

0 − γ2 (5.47)

The calculation of u2
0 is based upon the fusion of dense information from the

optical flow and reconstructed sparse features. The reason for fusing both data
streams is that both cues have their advantages and disadvantages:

• From a set of sparsely matched feature points xF (xF , yF ) and x′F (x′F , y′F ),
it is straightforward to calculate a feature flow magnitude map δF :

uF (xF ) =

√
(x′F − xF )

2
+ (y′F − yF )

2
(5.48)

These sparse feature matches and the associated depth field can be estimated
accurately, but they only contain sparse information.

• A densely estimated optical flow field u has as a problem that, in general,
this optical flow field is scaled, such that it is only possible to retrieve
a relative estimate for the depth. To obtain an absolute measure, it is
necessary to estimate a scale factor, σs, as:

σs = argmin
σs

∑

xF

(
uF
(
xF
)
− σsu

(
xF
))2

(5.49)

The knowledge of the scale factor σs between the flow fields as estimated by
the dense optical flow and by the feature matching, allows to define a new
flow field magnitude map, which is correctly scaled:

uflow(x) = σs

√
u(x)2 + v(x)2 (5.50)

The remaining problem is that the estimated optical flow is in general less
robust than the feature flow as calculated by point correspondences. It
would thus be beneficial to combine the two types of data.
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The problem when trying to fuse the estimated flow field magnitude map uflow(x)
and the feature flow field magnitude map uF (xF ) is that the latter function is
only defined at the feature points, whereas the former is a dense function defined
at each image pixel. Therefore a region growing algorithm is applied to the sparse
disparity map uF (xF ).

For each pixel x, we estimate a weight function Ξ, expressing the possibility
that this pixel belongs to the same region (R

(
xF
)
) of a feature point xF , taking

into account the distance
∥∥x− xF

∥∥2
between the two points, and the difference

between the flow magnitude values uflow(x) and uF (xF ):

Ξ
(
x ∈ R

(
xF
))

=
1

1 + ‖x − xF ‖2

1

1 + (uflow(x) − uF (xF ))
2 (5.51)

At each pixel location x, the region with the highest weight is selected, and the
corresponding flow magnitude value uF

(
xF
)

is associated to the dense feature-
based flow field ufeatures (x).

The initial flow magnitude map u0(x) can then be calculated by combining
ufeatures (x) and uflow (x) as follows:

u0(x) = ufeatures(x) +
uflow(x) −

n∑
i=1

uflow(x)

n

max(uflow(x)) − min(uflow(x))
(5.52)

By substituting the initial flow magnitude map of equation 5.52 into equation
5.47, an initial value for the depth field ζ0 is obtained.

5.4 Overview and comparison of the proposed

method

5.4.1 Summary of the Dense Reconstruction Algorithm

Traditional structure from motion approaches limit themselves to the sparse re-
construction problem, which is well described in the literature [51] and has been
handled in chapter 3. The first dense structure from motion approaches were ex-
tensions of their sparse counterparts, e.g. feature-based or sparse-flow based [174]
methods using advanced postprocessing techniques to fill up the gaps between the
reconstruction points. The same approach is initially followed in this work. The
difference is that the obtained reconstruction result is only used as initialization
for an energy minimization process. The methodology for solving this problem is
illustrated by Algorithm 2, which sketches the dense reconstruction algorithm in
simplified way.
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Input: A sequence of Images Ii
Output: A dense map of the depth parameter ζ for each image

1. Initialization:
1.1 Perform sparse reconstruction, following Algorithm 1.
1.2 Compute the optical flow, as described in Appendix B.
1.3 Estimate an initial value for the depth field by computing

equation 5.47, as described in section 5.3.3.
1.4 Compute the spatial and temporal gradients of the image.
1.5 Compute elements of the regularization matrix, following

equation B.6.

2. Iterative optimization of the depth field:
2.1 Update the spatial gradient of the depth field.
2.2 Update the estimate of the diffusion parameter µ, according to

equation 5.46.
2.3 Construct the Structure Matrix S of equation 5.44.
2.4 Construct the v-vector of equation 5.44.
2.5 Solve the system equation 5.44.
2.6 Update the motion parameter estimate by expressing

equation 5.32.
2.7 Repeat step 2 if no convergence is reached.

Algorithm 2: Overview of the Dense Part of the Proposed Recon-
struction Algorithm

The initialization of the proposed algorithm is based upon the solution of the
sparse reconstruction problem according to the previously presented Algorithm 1
and the calculation of a dense optical flow field. These two types of information
are combined to estimate an initial value for the dense depth field, as described
in section 5.3.3.

The iterative optimization of the depth field uses the numerical scheme, de-
scribed in section 5.3.1. This scheme combines a data term and a regularization
term into a linear system, expressed by equation 5.44. The sparse structure ma-
trix S of the linear system is constructed using the elements of the regularization
matrix, following equation B.6. The v-vector of the linear system is constructed
using the data term of equation 5.17 or equation 5.18, depending on the chosen
formulation. The system is solved by a least squares subspace trust region method
based on the interior-reflective Newton method, as described in [27]. Additionally,
the diffusion parameter, balancing the degree of regularization, is re-estimated at
each iteration, by updating equation 5.46. Also the estimate of the fundamental
matrix and the motion parameters is re-estimated at each iteration, by updating
equation 5.32. The solver iterates until convergence, measured by calculating the
difference between two successive depth field estimates. Finally, the output of
this algorithm is a dense depth map for each of the input images.
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5.4.2 Relation to Related Work

The proposed methodology towards dense reconstruction falls into the category
of energy minimization based reconstruction techniques, as it poses the scene
reconstruction problem as an energy minimization problem, as defined by equation
4.3. These approaches pose a modern way of integrating different data cues into
a coherent framework and have been used before by a number of researchers
[39, 2, 141].

Other modern 3D scene reconstruction techniques [182, 158, 66, 44] build up
a surface model of the environment. These approaches have the added advantage
over our approach that the explicit estimation of a (surface) model of the 3D
structure implicitly handles spatial and temporal smoothness constraints, whereas
these have to be enforced explicitly in our approach, which does not make any
prior assumption on the model of the reconstructed 3D surface, nor does it aim
to build up a model explicitly. Furthermore, these methods have the benefit of
being capable of directly outputting a high-quality 3D model. Our approach only
calculates depth maps, which need to be integrated later ( for example, using a
technique like ICP [185]). On the other hand, as these model-based approaches
rely on the reconstruction of a high-resolution 3D model, they have difficulties
when scaling up to large sequences. The envisaged application domain for the
proposed algorithm mainly considers large unbounded natural sequences, and for
this situation, a pixel-based approach is preferable above a model-based approach.
The reason for this lies in the fact that model-based approaches require an a priori
model of the environment and that it is quite impossible to produce such an initial
3D model for large unbounded natural sequences.

In the context of energy minimization based reconstruction methodologies,
there are 2 main differentiating factors which can be identified to discriminate
between the different algorithms:

• The definition of the energy and regularization functions for equation 4.3.

• The choice of the numerical scheme for solving the energy minimization
problem.

We will now describe for each of these aspects how the presented algorithm com-
pares itself to related work and why these choices where made.

Definition of the energy and regularization functions The methodology
adopted here for dense reconstruction is strongly related to the approach as pro-
posed by Alvarez in [2]. In this work, Alvarez proposes an image-based PDE
solution for dense 3D reconstruction using stereo images. In this work, we extend
this approach towards another type of input data: a sequence of images and its
dense optical flow. This is not trivial, as upgrading the fixed stereo geometry to a
dynamically moving camera drastically increases the uncertainty on the relative
camera poses. The dynamic nature of moving camera sequences causes large dis-
placements, resulting in difficulties for correspondence matching. We addressed
these issues by introducing several new concepts to the algorithm:
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• A robust sparse reconstruction approach (Algorithm 1) to provide a good
initial estimate of the motion parameters and the sparse structure, in spite
of large dynamic movements in the scene.

• An intelligent approach towards estimating an initial value for the depth
field, by fusing dense optical flow and sparse reconstruction data, as de-
scribed in section 5.3.3.

• The implementation of a semi-implicit numerical scheme, guaranteeing con-
vergence to an unconditionally stable solution, as described in section 5.3.1.

• A dynamic approach for updating the estimate of the motion parameters,
integrated in the iterative depth field estimation and as described in section
5.3.3.

• A dynamic approach towards automatically re-estimating at each iteration
step the value of the diffusion parameter µ, thereby seeking an optimal
balance between data-driven convergence and regularization, as described
in section 5.3.2

Another related dense reconstruction approach is the method presented by Sle-
sareva et al. in [138]. Slesareva et al. also choose the constant image brightness
- based optical flow formulation (equation 4.12), which corresponds to equation
5.17. Moreover, they also use the Nagel-Enkelmann regularization model (equa-
tion 4.13). However, as will be proven in the following chapter, the constant
image brightness - based optical flow constraint, corresponding to formulation 1
and equation 5.28 is in practice vastly inferior to the image differences based opti-
cal flow constraint, corresponding to formulation 2 and equation 5.18. In fact also
the methods presented by Yezzi and Soatto in [178], Kolmogorov & Zabih in [73],
Strecha and Van Gool in [141] and Faugeras in [39] all use some form of the con-
stant image brightness - based optical flow constraint, but they have added some
extra data processing to deal with the limitations of this technique. Yezzi and
Soatto consider smooth surfaces and define a radiance function to which images
are matched, Kolmogorov & Zabih add a term to deal with occlusions, Strecha
and Van Gool try to reason with the reliability of the data and Faugeras includes
a surface function for matching. The experimental validations we conducted and
which are presented in the following chapter lead us to conclude that it was better
to abandon the constant image brightness - based optical flow formulation and use
only the image differences based optical flow constraint, which delivers far better
results than the constant image brightness - based optical flow formulation. It
could, however, be expected that extending our method with the added process-
ing techniques, presented by the aforementioned researchers, could improve our
approach even further, but examining this was out of the focus of this research
work. The expression of formulation 2 is related to the methodology advocated
by Sekkati and Mitiche in [131], and as defined by equation 4.10. However, the
regularization term used by Sekkati and Mitiche, given by equation 4.11, is totally
different, as it only considers the motion parameters and not the actual depth field.
As such, there is no actual regularization of depth data in this approach. This
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is a serious shortcoming, as it cannot be expected that - in practical situations
with natural sequences - a correct depth estimate is found at each pixel location,
without any diffusion of the solution from nearby points. Due to these consid-
erations, approaches which do not include any form of depth regularization, like
the one of Mitiche and Hadjres in [96] or the one of Faugeras in [39], are prone to
inconsistencies in the reconstructed depth field. It can be argued that the expres-
sion of the depth regularization is a key factor in the definition of the total energy
functional for dense depth reconstruction. For defining a regularization term,
Kolmogorov & Zabih use in [73] an interaction potential which relates points to
their matching neighborhoods. A problem with this kind of approaches arises at
depth boundaries, where the solution is smoothed out over the boundaries, due to
isotropic diffusion over the depth boundaries. This effect was noted by researchers
and anisotropic diffusion models were developed to counter this problem. Strecha
and Van Gool presented in [141] a method towards anisotropic smoothing based
upon the confidence of the depth data. This methodology provides an interest-
ing idea as it introduces reasoning with data confidence information in the 3D
reconstruction process. However, this method ignores the physical reality that
the smoothing of the depth solution should be stopped at object borders, which
coincide with depth boundaries, but not necessarily with data confidence regions.
Our approach makes use of the Nagel-Enkelmann regularization term, defined by
equation B.6, as this regularization model provides anisotropic smoothing. As the
anisotropic diffusion directly uses the (estimated) depth field, it preserves depth
boundaries. This is a particularly important aspect for the reconstruction of 3D
scenes, as the physical world is made up of objects with discontinuous depth pro-
jections, making it essential for a depth reconstruction to recognize and deal with
these boundaries. Due to its beneficial properties, the Nagel-Enkelmann regu-
larization technique has been used before for 3D reconstruction by a number of
researchers [138, 2].

Choice of the numerical scheme The numerical solution of the energy min-
imization problem posed by equation 4.3 is solved by many researchers [96, 178]
using the traditional gradient descent method. The main disadvantage of the
gradient descent approach is that convergence is only guaranteed locally, since
the algorithm can easily get trapped in local minima. To counter this problem,
other researchers [138] have written out the Euler-Lagrange equation (equation
4.4) of the energy functional, leading to a partial differential equation problem
with better convergence properties, but which is more difficult to solve. Also in
our approach, the Euler-Lagrange expression is used, but in contrast to Slesareva
et al. who choose a numerical solving method using successive overrelaxation,
we choose a semi-implicit numerical scheme as a method for the numerical so-
lution of the energy minimization problem. The reason for this choice is that a
semi-implicit scheme presents a balanced compromise between the simplicity of
an explicit scheme as proposed in [1] and the stability of an implicit scheme, as
used by Alvarez in [2].

The basis for each iterative solver is a good initialization of the depth field.
Therefore, we developed an intelligent approach for estimating an initial value
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for the depth field, based upon the fusion of dense optical flow data and sparse
reconstruction data, as described in section 5.3.3. Most other researchers initialize
the depth field to zero or some other constant value. This causes difficulties for
the numerical solver: as the solution is too far from the initial value, the solver
gets trapped in local minima which do not necessarily correspond to the global
minimum.

Due to the tight relation between structure and motion, it is not possible to cal-
culate a good estimate for the depth field and the scene structure without having a
good estimate for the (camera) motion. Depth and motion are deeply interrelated
parameters and should, as a consequence, be estimated simultaneously. Interest-
ingly, almost all researchers totally ignore this tight relation between depth and
motion. Instead, they assume the camera motion to be known or they assume
it was estimated a priori by a sparse reconstruction algorithm and they do not
consider any update for these motion parameters during the depth estimation
process. In [131], Sekkati and Mitiche present an iterated two-step algorithm for
solving the motion parameters and the depth field in an integrated way. In our
method, we follow a similar dynamic approach for updating the estimate of the
motion parameters. In contrast to the method presented by Sekkati and Mitiche,
our approach does not integrate the motion estimation into the energy functional
to be optimized. The reason for this is that the scale of the 2 problems is too
different to be considered in the same optimization scheme: for an image of reso-
lution M by N , the depth estimation features MN unknowns, whereas there are
only 6 unknowns (3 for translation and 3 for rotation) for the motion estimation.
To avoid this problem, we adopted a methodology where the 2-view geometry is
re-estimated after each iteration of the depth field, using the new depth estimate,
as such improving the estimate of the motion parameters at each iteration.

All energy - minimization based depth reconstruction methodologies which
are based on the combination of a data term and a regularization term, as pre-
sented by equation 4.3, are faced with the problem of choosing a value for the
diffusion parameter µ. This diffusion parameter controls the balance between the
data-driven convergence and regularization and is almost always chosen empiri-
cally using a process of trial-and-error. In our methodology, we have presented a
dynamic approach for choosing the diffusion parameter µ and for automatically
re-estimating it at each iteration step, as described in section 5.3.2. This is an im-
portant aspect of the algorithm, as it opens the door towards a more user-friendly
application of the 3D reconstruction algorithm, without the need for a tedious
parameter - setting process.

5.5 Conclusions

To reconstruct a dense depth field, it is necessary to maximize the information
which can be retrieved from the data. In this chapter, we proposed an approach
which fuses sparse and dense information in an integrated variational framework.
The aim of this approach is to combine the robustness of traditional sparse struc-
ture from motion methods with the completeness of optical flow based dense
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reconstruction approaches.
The base constraint of the variational approach is the gradient based optical

flow constraint, but parameterized for the depth using the 2-view geometry. This
estimation of the geometry, as expressed by the fundamental matrix, is automat-
ically updated at each iteration of the solver. A regularization term is added to
ensure good reconstruction results in image regions where the data term lacks
information. An automatically updated regularization term ensures an optimal
balance between the data term and the regularization term at each iteration step.

A semi-implicit numerical scheme was set up to solve the dense reconstruction
problem. The solver uses an initialization process which fuses optical flow data
and sparse feature point matches.



Chapter 6

Results & Analysis for

Monocular Reconstruction

6.1 Description of the Test Procedure

In this chapter, the results of the proposed dense structure from motion algorithm
are presented. The algorithm can be roughly subdivided into three main parts:

1. Sparse structure and motion estimation as discussed in chapter 3.

2. Estimation of an initial value for the disparity map, based on the sparse
structure data and the estimated optical flow, according to equations 5.47
- 5.52.

3. Estimation of a dense disparity field using the PDE-based approach dis-
cussed in chapter 5.

The analysis deals with each of these aspects separately.
The main problem in evaluating the performance of any 3D reconstruction

algorithm, is the absence of quality ground truth data. Available data on the
internet most often only consists of series of images (sequences) with some cam-
era data (calibration parameters and/or in exceptional cases camera motion). In
order to overcome this problem, we constructed an artificial 3D scene in a com-
mercial CAD package and added a well defined camera which we set up to follow
a predefined trajectory. Figure 6.1 shows the 3D model along with the camera
trajectory.

Following this approach, we were able to control all variables - depth infor-
mation, camera calibration data and camera motion - needing to be estimated by
the structure estimation algorithms. We then made photo-realistic renderings of
the scene as seen by the camera at different time-steps. These renderings serve as
base data for the image processing algorithms (feature detection and matching,
optical flow calculation, PDE - based reconstruction). Next to the photo-realistic
renderings, also the depth information was exported at this stage by constructing

81
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depth maps at each time frame. Figure 6.2 shows some frames out of a 40-frame
sequence which was constructed this way, together with the corresponding depth
map rendering.

Figure 6.1: 3D model and camera trajectory
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Based on this data, is is now possible to compute for any pixel of an image
the ground truth corresponding pixel in all frames of the sequence, and - at the
same time - the camera motion is completely known. As such, the ground truth
depth is known (see bottom row of Figure 6.2) and also the ground truth optical
flow (see Figure 6.3).

Figure 6.2: Some frames of the Seaside sequence, with the respective depth maps
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Ground Truth Optical FLow Field
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Figure 6.3: Ground Truth Optical Flow.

This allows us to extract useful data to analyze the whole calculation chain
of the algorithm., leading to a comprehensive testing and analysis workflow for
the evaluation of structure from motion algorithms. Current approaches mostly
limit themselves in the evaluation to the reconstruction one specific scene. It is
firstly hard to quantify the accuracy of a 3D reconstruction on paper and secondly,
this leads the way for algorithms to be tuned towards certain scenes or motion
patterns. In our workflow, it is straightforward to change the 3D scene and camera
trajectories.

Although the advanced rendering techniques of state of the art 3D CAD pro-
grams output very realistic images, one must be cautious in judging image pro-
cessing algorithms based on results based on synthetic input data. Therefore, in
a second series of performance evaluations, the presented algorithms were tested
on a traditional benchmarking sequence, provided by Strecha et al. [143]. The
fountain sequence consists of a series of shots from a water fountain, as shown
on figure 6.4, recorded by a high-resolution camera. The reconstruction results
from this sequence serve to compare the performance of the proposed method to
existing state-of-the-art approaches.
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(a) Image 0 (b) Image 3

(c) Image 6 (d) Image 9

Figure 6.4: Some frames of the Fountain sequence [143]

To further validate our approach, we used in a third phase a natural outdoor
sequence as input data. This sequence was recorded using a simple commercial low
resolution hand-held camera in outdoor conditions. The sequence, which is shown
on Figure 6.5, was filmed by a person walking around a statue featuring a mixed
background of trees, buildings and traffic. Due to the nature of this sequence,
no ground truth data is presentable, so the performance of the reconstruction
algorithm needs to be visually judged from the final 3D reconstruction.



86 Chapter 6. Results & Analysis for Monocular Reconstruction

Figure 6.5: Some frames of the Hands sequence, shot with a commercial in-hand
camera

A fourth image sequence used for experimental validation consists of a video,
filmed with a low-quality commercial camera from within a vehicle, while driving
around in town. Figure 6.6 shows some frames of this sequence which has a total
of 41 frames. For this sequence, only the dense 3D reconstruction results are
shown.

(a) Image 0 (b) Image 10

(c) Image 20 (d) Image 30

Figure 6.6: Some frames of the Street sequence
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Choosing an evaluation sequence like the last 2 sequences which were presented
above means that the reconstruction algorithm needs to deal with a number of
critical problems:

• Erratic, non-deterministic movement which is hard to estimate

• Low resolution and low-fidelity input data (see for example the torch on the
texture-mapped image which has turned from gray to violet in the second
frame of Figure 6.5)

• Difficult outdoor variable lighting conditions.

• Relatively large distance from the camera to the subject

• Complex background

Most existing benchmark sequences for multi-view image reconstruction nicely
avoid these problems. Typically small, simple objects are filmed with a camera
following a well-described motion path.
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6.2 Sparse Reconstruction

6.2.1 “Seaside” Synthetic Sequence

As described in section 2.4, we use SIFT features and kD-tree matching over
multiple images to obtain a set of reliably matched features. Figure 6.7(a) shows
(in blue) the trajectories of detected features in a sequence of 40 images. These
trajectories can be compared to the ground truth match trajectories in green. It
can be observed that, in general, both lines remain very close to one another.

The first step in the epipolar reconstruction process is checking wether the
epipolar geometry is the right model for the transform between the points x
and x′. When the distance between the two camera viewpoints is too small
(framerate too low), the mapping can better be described by a homography and
applying the epipolar model will likely lead to an unstable solution. Therefore,
the optimal framerate must be calculated by evaluating the GRIC criterion as
expressed by equation 3.1. The optimal framerate is first calculated for each
camera frame individually. This is achieved by comparing the GRIC-scoring given
by equations 3.3 for the homography model (GRICk→∆k

H ) and the GRIC-scoring
for the epipolar model (GRICk→∆k

F ) for a frame k and a frame k + ∆k, for
increasing ∆k. As soon as GRICk→∆k

F = GRICk→∆k
H , ∆k is said to be the

optimal optimal amount of frames to skip starting from camera frame k. Figure
6.7(c) shows the optimal framerate according to each frame. To have a constant
framerate over the whole sequence, we define the global optimal framerate to be
the mean of the votes of all individual camera frames (in this case: 40 frames).

Figure 6.7(d) shows the residual of the RANSAC - algorithm for the estimation
of the trifocal tensor T . This error is computed by calculating the re-projection

error
∑

features

(
[x′]×

(∑
i

xiTi

)
[x′′]×

)2

with the matches and the calculated cam-

era matrices from the trifocal tensor. It is thus a direct measure of how well the
model (the trifocal tensor T ) fits the data. The figure shows that the RANSAC
algorithm converges.

The trifocal tensor itself, having 27 elements, is a concept which is hard to
visualize. Therefore, we limit ourselves for the description of the multi-view ge-
ometry to an analysis of the two-view epipolar geometry derived from the trifocal
tensor. Figure 6.7(b) compares for one image the ground truth epipolar lines
(in green) with the estimated two-view geometry in red. The difference between
both geometry representations is certainly not negligible. However, the estimate
is sufficiently close to the correct result to allow it to be used in the further pro-
cessing stages. Note also that this result is iteratively improved later during the
PDE-based structure estimation, as explained in section 5.2.5.

Figure 6.8 illustrates the results of the sparse structure from motion recon-
struction process. For a sparse set of feature points, the 3D positions are estimated
and the pose of each camera viewpoint is estimated. The camera pose estimated
directly from three-view matches is shown in red, whereas the ground truth cam-
era poses are represented by green cones. It can be noted that the estimated
solution for the camera pose diverges from the ground truth solution. This is
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(a) Trajectories of Matched Features: The es-
timated feature matches (in blue) compared
to the ground truth matches

(b) Epipolar Geometry: The ground truth
(green) and estimated geometry (red) com-
pared
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Figure 6.7: Sparse Reconstruction Results
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normal, as no multi-view merging and integration is performed up until this point
in the algorithm. The bundle-adjusted camera pose estimation, represented by
blue cones, partly solves this divergence problem. This shows the strength of and
the need for the bundle adjustment processing step.

Figure 6.8: Estimated 3D sparse feature points and camera views for the synthetic
sequence. (green = ground truth; red = three-view motion estimation; blue =
after bundle adjustment)

Figure 6.8 shows a visual representation of the estimated structure and motion,
but does not allow to judge the reconstruction fidelity. To better assess the
accuracy of the motion and structure estimates, the square errors for the motion
and structure parameters are plotted in figure 6.9. Figures 6.9(a) and 6.9(b) show
the error on the estimation of the translation and rotation vector for the different
camera views, measured as an Euclidian distance between the estimated and
ground truth translation and rotation vector. The error on the sparse structure
estimation is shown in figure 6.10. The errors on the estimation of the motion
vectors are certainly significant, and they are more important for the rotation
vector than for the translation vector, but the algorithm generally succeeds in
providing an estimate which is close to the correct value and the error is close
to zero. The remaining error peaks are caused by an erroneous choice of the
motion parameters. Indeed, as indicated by equations 2.17 and 2.18, there are
four possible rotation/translation pairs, and sometimes the algorithm selects the
wrong one. It may be noted, from these error plots, that the camera views for
which the estimation is worst, that is between frame 20 and frame 25, correspond
to camera views for which the optimal framerate as calculated by the GRIC
scoring function was much higher (5), than the eventually chosen globally optimal
framerate of 2. It seems that for correctly estimating the motion vectors between
these camera views, we should have skipped some frames. However, for reasons
of consistency throughout the processing steps, it is necessary to choose 1 single
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(a) Error on the estimation of the translation
vector for the different camera views, mea-
sured as the Euclidean distance between the
estimated and ground truth translation vec-
tor.
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(b) Error on the estimation of the rotation
vector for the different camera views, mea-
sured as the Euclidean distance between the
estimated and ground truth rotation vector.

Figure 6.9: Errors on the Motion Estimation

globally optimal framerate, which we do by taking a mean of the framerates
proposed by the GRIC criterion. This proves the usefulness of the GRIC criterion
in predicting the optimal intra-frame step for correct motion estimation.

In theory, it should be possible to select for each frame the best framerate,
which would lead to a non-uniform framerate over the whole sequence. However,
this would mean that also in all subsequent processing steps, the framerate (step-
size) between images should be treated as a variable and not as a constant. This
would lead to major consistency problems in the numerical implementation, so
we chose not to go this way.
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Figure 6.10: Errors on the Structure Estimation.



92 Chapter 6. Results & Analysis for Monocular Reconstruction

6.2.2 “Fountain” Benchmarking Sequence

For the natural Fountain and Hands sequences, only the end result of the sparse
reconstruction is discussed. Figure 6.11 depicts the sparse reconstruction result
for the Fountain sequence. The colored dots depict the reconstructed 3D point
cloud and the blue line shows the camera trajectory.

The disperse nature of the point cloud makes it hard to see the structure of
the 3D model. The estimated camera trajectory coincides with the ground truth
camera trajectory within an error margin of 6.5%

Figure 6.11: Estimated 3D sparse feature points and camera trajectory for the
Fountain sequence.



6.2. Sparse Reconstruction 93

6.2.3 “Hands” Natural Sequence

Figure 6.12 illustrates the results of the sparse structure from motion reconstruc-
tion process for the Hands sequence. The colored dots depict the reconstructed
3D points and the blue line shows the camera trajectory. As for this experiment
the scene was filmed by an hand-held camera, the subsequent camera motions are
certainly not totally the same, nor perfectly following some trajectory, although
we tried to film in a smooth way.

As no ground truth data is present for this sequence, it is not possible to quan-
titatively assess the correctness of the presented result, but the general motion
pattern and sparse feature reconstructions are consistent with respectively the
camera movement and the real structure.

Figure 6.12: Estimated 3D sparse feature points and camera trajectory for the
natural sequence.
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6.3 Initialisation

6.3.1 “Seaside” Synthetic Sequence

Dense structure estimation relies on the calculation of an initial value for the
depth map. As discussed in section 5.3.3, the estimation of the initial depth map
is based on the fusion of dense data in the form of a densely estimated optical
flow field and sparse data in the form of sparsely reconstructed feature points.
Figure 6.13a shows the optical flow field. We used the optical flow estimation
approach presented by Lucas and Kanade in [87]. The optical flow is represented
as a vector field where each vector indicates a (scaled) image motion vector.

From the dense optical flow, a correctly scaled dense flow magnitude map
uflow is calculated by comparing sparse and dense data, as discussed in section
5.3.3. This flow magnitude map uflow is shown on Figure 6.13b.

Sparse reconstruction, as discussed in chapter 3, yields a full 3D reconstruction
for a limited set of feature points. From this information, a dense feature flow
magnitude map ufeatures is constructed by region growing, as discussed in section
5.3.3. This flow magnitude map ufeatures is shown on Figure 6.13c.

The information contained in the two magnitude maps, uflow and ufeatures, is
combined to estimate an initial depth map map ζ0, shown on Figure 6.13d, which
can be used for initialization.

To measure the effect that errors on the translation or rotation vector and on
the optical flow have on the initial value estimation, we measured the square root
error between the estimated initial value and the ground truth depth for different
amounts of Gaussian noise added to each of the algorithm parameters. The result
of this analysis is shown in Figure 6.14. This figure plots the error on the initial
value as a function of the percentage of additive Gaussian noise on the translation
and rotation vector and on the optical flow.

From this analysis on figure 6.14, it is clear that the initialization result is very
sensitive to the camera translation parameter. Normally distributed errors on the
optical flow and the rotation vector tend to have far less influence on the final
error of the initialization. As can be noticed on Figure 6.14a, the error values (on
the Y -axis) are much higher than for Figures 6.14b and 6.14c. It is apparent that
the result of the initialization is most sensitive to errors on the translation vector.
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Figure 6.13: Initialization for a Synthetic Sequence: a) Optical Flow; b) Disparity
Map reconstructed from the optical flow uflow; c) Disparity Map estimated from
sparsely reconstructed features ufeatures; d) Final initial value ζ0
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Figure 6.14: Total accumulated error (
∑

(ζEstimated − ζGroundTruth)2)on the ini-
tialization as function of the error on a) the translation vector, b) the rotation
vector, c) the optical flow. The X-axis indicates the percentage of additive Gaus-
sian noise.
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6.3.2 “Fountain” Benchmarking Sequence

Figure 6.15 shows the result of the initial estimation of the disparity map for
the Fountain sequence, while Figure 6.16 shows the initial flow field. From this
initialization of Figure 6.15, the form of the water fountain can already be dis-
tinguished. However, the initial estimate lacks detail, most notably on the back
wall. This is probably due to the fact that too few features were chosen in this
zone. One of the disadvantages of the feature detection and matching approach
adopted in this work, is that it does not enforce spatial spreading of the features.
This means that if there are feature-rich zones in the image, such as the fountain
itself and the side walls, then no features are chosen in the other areas of the
image, which will cause the initialization to fail in these zones.

Figure 6.15: Initial Estimation of the Disparity Map for the Fountain Sequence.
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Figure 6.16: Initial Estimation of the Optical Flow for the Fountain Sequence.
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6.3.3 “Hands” Natural Sequence

Figure 6.17 shows the result of the initial disparity map estimation for the natural
sequence. Figure 6.17(a) shows the densely estimated optical flow field from which
a dense depth and disparity map can be estimated. The statue on the foreground
is clearly distinguishable in the flow field. Figure 6.17(b) shows the disparity map
δfeatures from sparse feature reconstruction. The final disparity map ζ0, which is
used as an initial value for the optimization scheme is shown on Figure 6.17(c).

The reconstruction result of Figures 6.17(b) and 6.17(c) show some errors in
the top left and right of the image. The movement of the weaving treetops has
resulted in sparse reconstruction errors in these areas, leading to an erroneous
result. Also, the sky area was estimated too close because of a lack of features.

A quantitative measure of the error on this initialization result is not possible,
as no ground truth data is present for the natural sequence, but by comparing
Figure 6.17(c) with the color images of Figure 6.5, one can conclude that in
general, the foreground and background are well-separated and that the depth
gradient over the structure is correctly estimated. Figure 6.17(c) as such proves
that it is possible to obtain a reasonable initial estimate for the depth field with
this method, even in outdoor scenes with difficult lighting conditions.

Figure 6.17: Initialization for a Natural Sequence: a) Optical Flow; b) Depth
From Features; c) Estimated Initial Value ζ0
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6.4 Dense Reconstruction

In this section, the reconstruction results are discussed with different parameter
settings. The reconstruction result consists of an estimate for the depth map
and the optical flow field after the iteration. From the dense depth information,
a 3D model is reconstructed. For scenes with ground truth data, the obtained
results are compared to the ground truth data. Therefore, the following metrics
are employed:

•

ErrorDepth =

√∑M
i=1

∑N
j=1(ζ(i, j) − ζGroundTruth(i, j))2

MN
(6.1)

with ζ the estimated depth and ζGroundTruth the ground truth depth.

•

ErrorFlow =

√∑2
k=1

∑M
i=1

∑N
j=1(u(i, j, k) − uGroundTruth(i, j, k))2

2MN
(6.2)

with u the estimated optical flow field and uGroundTruth the ground truth
optical flow.

•

ErrorTranslation =

√∑3
i=1(t(i) − tGroundTruth(i))2

3
(6.3)

with t the estimated translation vector and tGroundTruth the ground truth
translation vector.

•

ErrorRotation =

√∑3
i=1(ω(i) − ωGroundTruth(i))2

3
(6.4)

with ω the estimated rotation vector and ωGroundTruth the ground truth
rotation vector.

• Accuracy[129]: Measures the the similarity between the reconstructed and
the ground truth model by calculating the distance d such that a given
percentage of the reconstruction is within d from the ground truth model.
Seitz [129] uses an accuracy threshold of 90%, i.e., an accuracy of 1.0mm
means that 90% of the points are within one mm of the ground truth model.

• Completeness[129]: Measures the the similarity between the reconstructed
and the ground truth model by calculating the percentage of the ground
truth model that is within a given distance from the reconstruction. For
completeness, Seitz uses an inlier threshold of 1.25mm, i.e., a completeness
of 95% means that 95% of the points are within 1.25mm of the ground truth
model.
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6.4.1 “Seaside” Synthetic Sequence

The dense reconstruction algorithm, discussed in chapter 5, introduces two dis-
tinct ways of formulating the energy minimization problem. The first approach
uses the constant image brightness constraint of equation 5.4 to come to the for-
mulation expressed by equation 5.28. The second method uses the image deriva-
tives - based optical flow constraint of 5.5 to obtain the formulation given by
equation 5.29. Moreover, chapter 5 presented some methodologies to enhance the
reconstruction process, such as automatically estimating the degree of regulariza-
tion (as discussed in section 5.3.2) and iteratively updating the estimate of the
motion parameters (as discussed in section 5.2.5). Experimental validation must
point out which of these formulations delivers the best results and whether the
proposed enhancements do deliver an added value for the dense reconstruction
result. Therefore, the analysis in this section is split up for each of the proposed
formulations, such that a quantitative and qualitative comparison is possible and
such that the effect of each of the enhancements can be measured.

a) Formulation 1 given by Equation 5.28, not using the diffusion pa-
rameter update, not using the motion parameter update Figure 6.18
shows the results of dense reconstruction using the formulation of Equation 5.28.
When analyzing the reconstructed depth map of Figure 6.18(a), it is clear that
the resulting depth map features too much contrast, rendering the depth map
unusable. This behavior is due to the nature of the image brightness constraint
of equation 5.4, which relies on a direct per-pixel comparison of image brightness
values. This approach is highly susceptible to mismatches, leading to badly re-
constructed pixels and zones, showing up as the black areas on the depth map of
Figure 6.18(a). The evolution of the reconstruction error during the iterative pro-
cess, measured according to equation 6.1, is visualized on Figure 6.18(c). It can
be noted that the error drops significantly, indicating that the algorithm does con-
verge. However, the error doesn’t substantially evolve after about 10 iterations.
This behavior is due to the choice of the constraint equation: the mismatched
zones cannot be reconstructed correctly and lead to a steady-state error. For the
optical flow estimation, whose end result is shown on Figure 6.18(b), the situation
is better: the final optical flow field of Figure 6.18(b) is very close to the ground
truth flow field of Figure 6.3. This can also be judged from the evolution of the
error on the optical flow, measured according to equation 6.2, as shown on Figure
6.18(d). The error on the optical flow shows a descending behavior, indicating
that the algorithm using the first constraint equation is better suited for optical
flow estimation, than for dense depth estimation.



102 Chapter 6. Results & Analysis for Monocular Reconstruction

Depth Map after iteration
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Figure 6.18: Performance Evaluation on the Seaside Synthetic Sequence. Param-
eters: First Optical Flow Constraint, not using the diffusion factor update; not
using the motion parameter update.
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b) Formulation 2 given by Equation 5.29, not using the diffusion param-
eter update, not using the motion parameter update When comparing
the results of Figure 6.18 with those of Figure 6.19, which shows the same exper-
imental results, using the second formulation of Equation 5.29, based upon the
image - derivatives based optical flow constraint, it becomes immediately appar-
ent that the depth reconstruction of Figure 6.19(a) is much better. The relative
depths of all objects in the scene are much better represented in Figure 6.19(a),
using the second formulation, than in Figure 6.18(a), using the first formulation
of Equation 5.28. This is because the second formulation of Equation 5.29 does
not rely on per-pixel image brightness differences, but rather on image deriva-
tives, which is a more spatially and temporally coherent measure. The remaining
errors in the depth reconstruction of Figure 6.19(a) can mainly be found at the
edges of objects. This is to be expected, because at these locations, the spatial
derivatives are often not consistent and lead to erroneous depth estimations. The
depth reconstruction result can also be judged from analyzing the error on the
depth map during the iterative process, as visualized by Figure 6.19(c), which
shows a better behavior than Figure 6.18(c) in the previous case. However, also
here, there is a remaining steady-state error, as the errors due to the spatially
incoherent image gradient calculation cannot be removed entirely. Also due to
this fact, the optical flow estimation result using the second constraint equation is
slightly less good than in the previous case, as evidenced by Figures 6.19(b) and
6.19(d). This is, however, not our main concern, as the algorithm is supposed to
be in the first place a depth estimation algorithm, not an optical flow estimation
algorithm. The conclusion from this comparison is thus that the second formula-
tion is to be preferred when considering depth reconstruction and as a result, it
is only this formulation which we’ll discuss further on.
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Depth Map after iteration
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Figure 6.19: Performance Evaluation on the Seaside Synthetic Sequence. Param-
eters: Second Optical Flow Constraint, not using the diffusion factor update; not
using the motion parameter update.
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c) Formulation 2 given by Equation 5.29, using the diffusion parameter
update, not using the motion parameter update The experimental results
discussed above did not consider the use of the update of the diffusion parameter
µ. To evaluate the importance of the introduction of this additional aspect of
the presented algorithm, Figure 6.20 shows the reconstruction results when using
the diffusion parameter update, as explained in section 5.3.2. By comparing the
results of Figures 6.19(c) and 6.20(c), it can be noted that the final error on the
depth reconstruction is substantially lower when using the diffusion parameter
update, allowing us to conclude that the inclusion of the diffusion parameter
update presents a valuable added value for the algorithm.
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Figure 6.20: Performance Evaluation on the Seaside Synthetic Sequence. Parame-
ters: Second Optical Flow Constraint, using the diffusion factor update; not using
the motion parameter update.

The evolution of the diffusion parameter value during the iterative process is
shown in Figure 6.21. It can be noted that the diffusion parameter increases grad-
ually to boost regularization in the early phases of the iterative process. However,
when the solver has converged to a static solution, the diffusion parameter also
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settles for a static value of - in this case - about 0.65.
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Figure 6.21: Evolution of the Diffusion Parameter µ
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d) Formulation 2 given by Equation 5.29, using the diffusion parame-
ter update, using the motion parameter update A second aspect of the
computational work-flow which was not considered in the experimental results
presented so far, is the update of the estimates for the motion parameters, as
discussed in section 5.2.5. In order to evaluate the usefulness of the motion pa-
rameter update, Figure 6.22 shows the reconstruction results when using motion
parameter updating.
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Figure 6.22: Performance Evaluation on the Seaside Synthetic Sequence. Param-
eters: Second Optical Flow Constraint, using the diffusion factor update; using
the motion parameter update.

Comparing the results of Figure 6.22 with those of Figure 6.20 shows that
the final depth reconstruction result of Figure 6.22(a) has improved even further.
Although the final error on the depth field is lower than in the previous cases,
the error on the depth map, as shown on Figure 6.22(c), has a more fluctuating
behavior. This is because the motion parameter estimation process gives at each
iteration a new estimate for the motion parameters, which is a priori uncorrelated
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with the previous estimate. Since the depth estimation is highly susceptible to
changes in the values of the motion parameters (see the analysis of Figure 6.14),
this leads to a more fluctuating error value on the depth map. We did apply
(Kalman) filtering to smooth these results, but did not want to go too far in this,
in order not smooth out completely the results of the motion parameter update
process.

The added value of using the motion parameter update is further evidenced
by analyzing the resulting optical flow field, visualized in Figure 6.22(b) and the
error on the flow field, shown on Figure 6.22(d). It can be noted that the error
on the flow field decreases far better than in the previous cases. This is of course
due to the fact that using this motion parameter updating technique, the final
estimates for the motion parameters much better match the ground truth data,
than the initial guesses for these motion parameters.
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Figure 6.23: Translation Vector Elements
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Figure 6.24: Rotation Vector Elements

The influence of the motion parameter updating process can be judged from
Figures 6.23 and 6.24, showing the different components of, respectively the nor-
malized translation and rotation vector. It can be seen that the solver often
switches between two solutions. This is to be expected, as ego-motion estima-
tion typically yields multiple solutions and it is hard for a computer algorithm to
choose the correct one. This problem finds its cause in the singular value decom-
position of the essential matrix, which yields 4 possible solutions for the camera
projection matrix, as expressed by equations 2.18. The choice between these 4
transformations is not always obvious, as in some cases, there are multiple valid
solutions.To deal with this issue, Kalman filtering of the translation and rotation
vector estimates was used, and, in case of doubt, the solution which is closest to
the Kalman filter prediction is chosen. However, because it is possible to have
discontinuous motion patterns, the filter still accepts abrupt changes for each of
the motion vectors. Due to this behavior, the estimation of the rotation vector
still switches between different solutions, as shown by Figure 6.24. This could be
remedied by restricting the step change of the rotation vector, but we chose not
to do this in order not to miss discontinuities in the movement pattern. Another
possible improvement of the motion parameter update process would be to use
the LevenbergMarquardt algorithm for solving the least squares problem posed
by equations 5.30 and 5.31, instead of the Gauss-Newton algorithm which was
implemented here. The Gauss-Newton algorithm was chosen for its simplicity,
but it does have problems, most notably when the matrix

(
JTJ

)
is near singular.
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Figures 6.25 and 6.26 show the errors on these parameters, according to metrics
6.3 and 6.4. Notice that the final error on translation as well as on rotation is
substantially lower than the initial value, allowing us to conclude that the motion
parameter update achieves in enhancing the end result of the structure and motion
estimation algorithm.

Figure 6.27 shows the evolution of the diffusion parameter µ during the iter-
ative process and shows a similar behavior as in the previous case of Figure 6.21.
First, the diffusion parameter increases to speed up regularization and later, when
the solver converges to a valid solution, the diffusion parameter also converges set-
tles to a value which is about the same as in the previous case.
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Figure 6.27: Evolution of the Diffusion Factor µ

Figure 6.28 shows the residual of the energy function, decreasing drastically
during the iterative process, which shows that the algorithm converges.

Figure 6.29 shows a 3D view of the difference between the estimated depth
map and the ground truth depth map. It can be noted from this map that the
main errors occur at the horizon line and at the borders of the image, due to the
spatially incoherent gradient estimates at these locations.

As a quantitative analysis, Figure 6.30(a) shows the model accuracy measure,
which is represented as the evolution of the error in function of the percentage of
the reconstruction which is within the given error bound from the ground truth
model. As this is a synthetic data set and an absolute error measure is thus not
that relevant, the reconstructed and ground truth model were normalized and the
error was represented as a percentage. It can be noted from Figure 6.30(a) that
the relative error is very low. Even when considering a 95%, percentage of the
reconstruction, there is only a small percentage (0.3%) of outliers.
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Figure 6.28: Evolution of the Residual

Figure 6.29: Difference Map between the Estimated and Ground Truth Depth
Map
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Figure 6.30: Accuracy and Completeness measures (Definitions: see p. 100) of
the Seaside Sequence.

Figure 6.30(b) shows the model completeness measure, which is represented
as the evolution of the completeness in function of the error. The completeness
is somewhat lower than anticipated, other reconstruction algorithms (e.g. [44])
are able to achieve a higher degree of completeness for lower error values. This is
most likely due to the fact that we use standard ICP to integrate the individual
reconstruction results. More advanced techniques for multi-view integration are
now available, however, this is beyond the scope of this research work.

A qualitative analysis of the results of the structure and motion estimation
algorithm over multiple frames is given by Figures 6.31 and 6.32. Figure 6.31
shows the reconstructed trajectory of the camera with the different frames. Figure
6.31 does not allow a direct comparison with the ground truth camera trajectory,
because the estimated trajectory is too close to the real camera motion path, with
respect to the scale of the figure, which can already be judged from Figures 6.25
and 6.26, showing the small final error on the translation and rotation estimation.

Figure 6.31: Reconstructed Camera Motion Path and Different Camera Views

The individual reconstruction results for all frames were integrated using the
Iterative Closest Point (ICP) method [185] to form one consistent 3D represen-
tation of the imaged environment. Figure 6.32 shows the 3D model which was
reconstructed as such. Comparing this model to the ground truth model of Figure
6.33 shows a strong resemblance between both 3D models.
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Figure 6.32: Reconstructed 3D Model of the environment

Figure 6.33: Original 3D Model of the environment
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6.4.2 “Fountain” Benchmarking Sequence

Figure 6.34 shows the reconstructed depth maps for some frames of the Foun-
tain sequence. It can be noted that the depth maps present a visually excellent
reconstruction of the scene structure.

(a) Image 1 (b) Reconstructed Depth Map 1

(c) Image 8 (d) Reconstructed Depth Map 8

Figure 6.34: Dense Reconstruction Results for the Fountain Sequence: Depth
Maps

As a quantitative measure, the accuracy and completeness measures for the
fountain sequence are measured. These are shown in Figure 6.35. The accuracy
and completeness measures follow a similar general behavior as with the Seaside
sequence. The accuracy measure shows that the error stays low for a larger
number of pixels (higher ratio), and the completeness rises more quickly than for
the Seaside sequence.

The accuracy and completeness results can be compared to the results of other
algorithms on the same sequence, as reported in [143]. Table 6.1 compares the
numerical values of the 90% accuracy and 1.25mm completeness measures of the
presented method with 3 other methods [143]. From this analysis, it is clear
that the proposed algorithm is not the best one for the accuracy, as the Furukawa
algorithm [44] scores better with a lower relative error of 2.04, compared to 2.08 for
our algorithm. Also for the completeness, the presented algorithm is not the best
performer, as the algorithm by Strecha achieves a higher degree of completeness of
87.06%, compared to 85.6% for our algorithm. However, the presented algorithm
presents overall the best compromise between accuracy and completeness, coming
close to the top performers in each category.
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Figure 6.35: Accuracy and Completeness measures of the Fountain Sequence.

Table 6.1: Comparison of Accuracy and Completeness Measures[143]
Accuracy Completeness

Furukawa [44] 2.04 73.02%
Strecha 2004 [144] 2.28 87.06%
Strecha 2006 [140] 4.09 85.57%
Presented Method 2.08 85.6%

The accuracy of the reconstruction Dij
s can also be evaluated by building a

histogram hk over the relative errors, following [143]:

hk ∝
∑

ij

δk

(∣∣∣Dij
l −Dij

s

∣∣∣ , Dij
σ

)
(6.5)

Dij
l is the expected depth value at pixel position i and camera j according to the

ground truth model and Dij
σ its corresponding variance. Furthermore, δk() is an

indicator function which evaluates to 1 if the depth difference
∣∣∣Dij

l −Dij
s

∣∣∣ falls

within the variance range
[
kDij

σ , (k + 1)Dij
σ

]
and evaluates to 0 otherwise.

Figure 6.36 further compares the relative error histogram of the presented
method with a number of state of the art techniques, listed in table 6.2. The last
(11th) bin of these histograms collect the occurrence of relative errors larger than
30σ.

Compared to the other algorithms, the presented method shows relatively few
hits in the first bin, corresponding to errors lower than 3σ. However, it also
shows very few hits in the last bin, corresponding to large errors over 30σ. This
means that the presented method is not the most accurate in absolute terms, but
it achieves at estimating a dense reconstruction where the errors are well con-
strained. The relative absence of very large errors means that the reconstruction
results are robust and trustable.

Of course, these results are also partly dependent on the parameter settings
of the algorithm. Most notably, the diffusion parameter plays an important role
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Figure 6.36: Comparison of the Histogram of the Relative Error

in balancing the amount of diffusion in the depth reconstruction. As explained
in section 5.3.2, we applied an automated method for iteratively updating the
diffusion factor µ. Judging from Figure 6.36, it can now be observed that the
automated estimate for the diffusion factor µ is probably a bit too high, meaning
that there is a bit too much diffusion. This over-relaxation smooths out large
errors, but as a downside, it also results in fewer pixels which are estimated
within the 3σ error range.

Figure 6.37 accumulates the histogram values of Figure 6.36 to build up a
histogram of the cumulative relative error. In the figure, the desired behavior is a
curve which rises very rapidly to 100%, meaning that the reconstructed model is
close to the ground truth within a very small error range. From this comparison,

Table 6.2: References for State of the Art Dense Reconstruction Techniques
Abbreviation Reference

FUR [44]
ST4 [144]
ST6 [140]
ZAH [182]
VU [165]
JAN [66]
TYL [158]
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it can be noted that only the recent algorithm of [165] shows a better (higher
situated) cumulative occupancy behavior.
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Figure 6.37: Comparison of the Histogram of the Cumulative Relative Error

Finally, Figure 6.38 shows some views of the reconstructed 3D model of the
water fountain, textured with the original color information. It can be observed
that the original 3D structure is visually well represented, as indicated above by
the quantitative measures.
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(a) View 1 (b) View 2

(c) View 3 (d) View 4

(e) View 5 (f) View 6

(g) View 7 (h) View 8

Figure 6.38: Dense Reconstruction Results for the Fountain Sequence: 3D Model



120 Chapter 6. Results & Analysis for Monocular Reconstruction

6.4.3 “Hands” Natural Sequence

The Hands natural sequence presents a particularly difficult case for dense 3D
reconstruction, as it consists of a large series of frames (400 frames in total),
filmed with a low-quality commercial camera in challenging outside illumination
conditions. Due to the nature of this sequence, no ground truth data is present,
so only qualitative data is presented in this section to evaluate the presented
reconstruction algorithm on this sequence.

Figure 6.39 shows the depth reconstruction result for some frames of the Hands
natural sequence. It is apparent that the dense reconstruction technique succeeds
in obtaining a correct depth estimate for this quite complex natural sequence. Rel-
ative depths have been well estimated, continuous areas have continuous depths
and discontinuities are well preserved.

Figure 6.40 shows some views of the reconstructed 3D model of the hands
statue. Due to the large amount of frames, the limited computer memory, and
the fact that the ICP integration over multiple frames was not possible for this
sequence, and only a textured model based on one frame is shown. It can be
observed that the hands statue is clearly distinguishable from the background
and that the reconstructed 3D structure of the statue corresponds to the real
statue. However, the presented reconstruction result in Figure 6.40 also shows
a weakness of the proposed algorithm, already indicated in the previous section:
the amount of detail on the statue is not as high as achievable with some other
reconstruction algorithms. This behavior is consistent with the reconstruction
results of the Seaside and Fountain sequence, where it was shown to be due to
a slight over-relaxation, smoothing out the reconstruction results. The result of
this is that some fine details are lost, which was shown on Figure 6.36 by the fact
that there are relatively few data points within the first bin, corresponding to
the 3σ error range. The advantage of our approach, however, is that the overall
reconstruction result has a high quality, without disturbing outliers.



6.4. Dense Reconstruction 121

(a) Frame 25 (b) Frame 75 (c) Frame 125 (d) Frame 175

(e) Frame 25 (f) Frame 75 (g) Frame 125 (h) Frame 175

(i) Frame 225 (j) Frame 275 (k) Frame 320 (l) Frame 375

(m) Frame 225 (n) Frame 275 (o) Frame 320 (p) Frame 375

Figure 6.39: Dense Reconstruction Results for the Natural Sequence: Some frames
and their corresponding Depth Maps as estimated by the reconstruction algorithm
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(a) View 1 (b) View 2

(c) View 3 (d) View 4

Figure 6.40: Dense Reconstruction Results for the Natural Sequence: Novel Views
based on the Reconstructed 3D Model of the Statue
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6.4.4 “Street” Architectural Sequence

To validate the presented dense structure from motion methodology on larger scale
man-made structures than in the Fountain sequence, an additional sequence was
processed. This Street sequence consists of a video, filmed with a low-quality
commercial camera from within a vehicle, while driving around in town. Due to
the nature of this sequence, no ground truth data is present, so only qualitative
data in the form of reconstructed depth maps is presented in this section to
evaluate the presented reconstruction algorithm.

Figure 6.41 shows the depth reconstruction result for some frames of the Street
sequence. It can be noted that, also for this case, the dense reconstruction tech-
nique succeeds in obtaining a good depth estimate, as the different planar regions
(walls) have consistent depth values. The main problem for the reconstruction
of this sequence is the quality of the input material. As indicated above, this
sequence was shot with a low-cost commercial camera, which saved the image
sequence as a compressed MPEG-2 movie file. The compression artefacts which
were thus induced, cause the sparse feature matching and the dense reconstruction
to fail in some areas.

6.5 Conclusions

In this chapter, the dense reconstruction technique presented in chapter 5 was
tested on a synthetic and three natural sequences. The depth reconstruction
results of Figures 6.22(a), 6.34, 6.39 and 6.41 show a very good overall depth
representation. These results can be used to build a high-quality 3D model of
the scene, as shown on Figures 6.32, 6.38 and 6.40. These models show detailed
information about the imaged scene. As such, a simple in-hand commercial video-
camera can be turned from a 2D into a 3D imaging device.

As proven by the quantitative analysis and comparison with multiple state of
the art methods [44, 144, 140, 182, 165, 66, 158] on the Fountain sequence, the
presented algorithm performs very well in comparison with other state of the art
methods. Without being the actual top performer for one specific quality measure,
it achieves at estimating a globally optimal reconstruction, which balances the
accuracy and completeness measures. One of the disadvantages of the proposed
algorithm is that it suffers from a slight over-relaxation, due to the automated
process of estimating the diffusion parameter µ. Other state of the art methods
which estimate the relaxation parameter manually (which is a long and tedious
process of trial and error) can reduce the number of relative errors within the 3σ
range and, as such, achieve a higher degree of fine detail. However, globally, our
method delivers robust and reliable 3D reconstruction results, due to the relative
absence of very large errors. As such, it proves to be a valuable candidate for the
dense reconstruction of natural sequences.

One of the main disadvantages of the proposed approach, compared to more
traditional reconstruction techniques, is without doubt the computation time.
The presented method contains some processing steps which are time-consuming.
The main problem is the optical flow estimation, which requires about 45 minutes
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(a) Frame 0 (b) Frame 5 (c) Frame 10 (d) Frame 15

(e) Frame 0 (f) Frame 5 (g) Frame 10 (h) Frame 15

(i) Frame 20 (j) Frame 25 (k) Frame 30 (l) Frame 35

(m) Frame 20 (n) Frame 25 (o) Frame 30 (p) Frame 35

Figure 6.41: Dense Reconstruction Results for the Street Sequence: Some frames
and their corresponding Depth Maps as estimated by the reconstruction algorithm

per frame for 640×480 pixel images. It was not the focus of this work to improve
the optical flow estimation algorithm, so we did not really attack this problem.
However, the optical flow estimation process is highly parallelizable, meaning that
major speed gains could be obtained from using hyperthreading or a multi-core
computer, or by switching to a GPU implementation. Recently, other researchers
[4] have presented great results in the area of fast dense optical flow estimation.

The iterative estimator on itself is also quite slow. An initial implementation
using the Gauss-Seidel algorithm for numerical calculation of the system equation
5.44 required 2 hours per iteration step. As a minimum of 20 iterations are neces-
sary to achieve a steady solution, this would mean that it would take at least two
days to process a single frame. As a result, some effort was spent to speed up the
iterative solver by applying an optimized least-squares approach to the system
equation 5.44. This led to a considerable speedup, as now only approximately 9
seconds are required for 1 iteration, when processing input images with a reso-
lution of 256 by 256 pixels. However, for a standard 640 × 480 pixel image, this
means that still about 1 minute is needed per iteration a PC with a 3GHz CPU
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and with 1GB of RAM. As the number of iterations required is generally about
20, this means a total execution time of about 65 minutes per frame. In fact
when including all other processes into the account (feature detection, feature
matching, RANSAC estimation of the fundamental matrix, motion estimation,
bundle adjustment, initialization, ...) the total execution time per frame is about
75 minutes. This is obviously far away from real-time reconstruction techniques.

The main reason for this slowness is that the algorithms were not developed
with execution speed in mind. As an example, most algorithms are written in
Matlab to facilitate the development process, but this does have its repercussions
on processing speed. As a result most of the presented algorithms could be vastly
improved for speed by switching to a C++ implementation.

Another factor to be taken into account is the required RAM memory. As
dense reconstruction algorithms need to reason with huge chunks of data which
all need to be loaded into memory at the same time to be interrelated, the RAM
memory is stressed. In order for the presented algorithms to run, it was already
necessary to change some of the base functions of Matlab to more efficiently deal
with the addition and multiplication of huge sparse matrices. Still, the programs
will not run on a PC with less than 1GB of RAM memory, but will take advantage
of the greater amount of memory of current PC’s. The algorithms also benefit
from switching to a 64-bit operating system, due to the larger amount of memory
accessible to applications.

To clarify the source of the calculation cost better, table 6.3 identifies the cal-
culation time of some of the sub-algorithms of the dense reconstruction approach.
This data was recorded using the Fountain benchmarking sequence. Table 6.3
splits up the algorithm in a number of subtasks which can be related to Algo-
rithm 2:

• Sparse Reconstruction refers to the whole sparse reconstruction approach
described by Algorithm 1.

• Optical Flow Estimation refers to the image motion estimation process dis-
cussed in Appendix B.

• Other Initialization refers to the estimation of an initial value of the depth
field and computation of spatio-temporal gradients and the regularization
matrix.

• Structure Matrix Calculation refers to the computation of all elements of
the sparse structure matrix

• Iterative Optimization refers to all iterative steps of the algorithm: updat-
ing the depth estimate, solving the system equation, updating motion and
diffusion parameters, ...

When interpreting the end result of 72 minutes as a total calculation time one
must not forget that this considers only 2 images. The full sequence consists of
10 images, meaning that processing the whole sequence takes 12 hours, and this
is without any subsequent 3D modeling steps. Application of standard ICP on
the end results will easily add another hour to the total calculation time.
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Table 6.3: Computational Cost of Sub-Algorithms
Task Execution Time for 1 Total Time

(See Algorithm 2) Count execution (min) (min)
Sparse Reconstruction 1 1 1

Optical Flow Estimation 1 45 45
Other Initialization 1 1 1

Structure Matrix Calculation 1 5 5
Iterative Optimization 100 0.2 20

Total Time 72

The analysis of table 6.3 shows clearly that the optical flow estimation is the
main contributing factor to the total calculation time. In a way, this is good
news, because recent research has made it possible to speed up the optical flow
estimation process by a factor of 100, by porting it to a GPU implementation.
This shows the immense effect that the use of a scale-conscious and parallelized
implementation can have on the calculation time. Indeed, conceptually, the 3D
reconstruction algorithm is related to the optical flow estimation algorithm, such
that it can be hoped that a similar speed-up could be gained by porting also the
iterative optimization code of table 6.3 to a GPU implementation. Combined
with the new optical flow estimator, this would bring the calculation time down
to a few minutes per frame.
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Chapter 7

Integration of Depth Cues:

Overview of Methodologies

7.1 Problem Statement

Neuro-psychological experiments on humans have shown that there exist multiple
visual cues that humans use for three-dimensional perception.

The most important cue for depth perception is probably stereopsis. Stereopsis
results from the small distance between the two pupils, which causes humans
to see two slightly different images of the world. This displacement between
the horizontal positions of corresponding images is called the binocular disparity.
The amount of the displacement depends directly on the relative distance of the
objects from the eye. Recent studies [109], [156], [22] have examined the neural
mechanisms that mediate the processing of the disparity depth cue. It turns
out that our brain possesses neurons which are tuned for 3-D surface orientation
estimation from disparity gradients. From this information, high-level signals
about the 3-D surface structure are inferred. In computer vision, the depth-from-
stereopsis reconstruction is based on the evaluation of the two-view geometry, as
described in section 2.3.1.

A second depth cue results from the movement of the observer. For a moving
observer, the relative distances of objects determine the amount and the direction
of their relative movement in the retina image. This so-called motion parallax
effect is the basis for all structure from motion algorithms, as the ones presented
in part 2. The cortical processing of this monocular depth cue has been less
studied when compared with the processing of binocular cues such as disparity.

The remaining visual depth cues are called pictorial depth cues [29], are based
on the analysis of a single 2D image and were introduced in section 1.1.

To accomplish efficient three-dimensional perception in complex environments,
the human brain combines all these different types of visual information about
the depth structure. The neural mechanisms explaining precisely how the brain
computes and fuses this information remains at present largely unknown, although
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some work [170] has been presented considering multiple correlated cues, providing
insights into sites where information about individual depth cues may converge.
Like in the human visual system, also in the computer vision community, a number
of studies have been done addressing the depth cue combination problem.

The dense structure from motion 3D reconstruction technique presented in
part 2 only uses one of these visual depth cues: depth from motion. As such, it is
to be expected to fail in a number of situations, such as scenarios containing too
much or not enough motion, degenerate motion (e.g., rotation-only) or degenerate
structure (e.g., a coplanar scene). Moreover, applying structure from motion
to non-static scenes with moving or deformable objects is still a difficult task.
The experimental results of the dense structure from motion algorithm for large,
uncontrolled sequences, reflect this statement: dense structure from motion is -
in certain conditions - able to yield a very good 3D reconstruction result, but the
accuracy of this solution cannot be guaranteed over a longer time sequence, when
the camera movement and the scene geometry are totally unconstrained. In these
situations, only a fusion of multiple cues could lead to a robust solution.

As multiple depth cues exist, an ideal 3D reconstruction architecture would
integrate all these depth cues to form an integrated 3D model. The following
section discusses some generic theories for depth cue fusion in the human visual
system and derives some generic approaches for depth cue combination in com-
puter vision. In order not to over-complicate the data fusion problem, we chose in
this work to integrate the dense structure from motion reconstruction technique
presented in part 2 with a depth from stereopsis approach. Therefore, section
7.3 of this chapter focusses more specifically on traditional methodologies for the
integration of stereo and motion cues.

7.2 Depth Cue Integration in general

All of the cues to depth structure give a certain amount of information to the vi-
sual system regarding depth. The computations and neural mechanisms required
to extract the structural information from the retinal images are still largely un-
known, but they are likely to be radically different for each cue. Despite this,
we perceive coherent 3D structures, which means that somehow, the information
provided by different depth cues is combined by the brain in a coherent struc-
ture [76]. Individually, each cue gives some indicative information for determining
depth, and some cues appear to give stronger, or more convincing, information
than other cues. Additional cues increase ones ability to accurately determine
depth information, even when the additional cue is not nearly as strong as the
original cue [69]. No one cue is necessary for an accurate portrayal of depth nor
does any one cue dominate our depth perception in all scenarios [30]. While this
information amounts to a clearer understanding of how depth perception detec-
tion works, it does not create a convincing argument for how they are integrated
in the visual system.

Four theories are commonly presented as possible explanations for understand-
ing how the diverse cues interact with one another in the human visual system
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[69], [20].

• Accumulation or Weighted Linear Combination or Weak Fusion. Each cue
strengthens the estimate integrated by the visual system after each cue is
processed separately. The following research indicated some form of linear
combination as the explanation for various cue combinations:

– stereo, perspective, and proximity luminance [34]

– motion parallax, occlusion, height in the picture plane and size [18]

– motion parallax and stereo [120]

• Cooperation or Strong Fusion. Cues cooperate with each other prior to
obtaining depth estimates. The relative importance of each cue varies de-
pending on the reliability of the cue in a given situation. Reliability can
be altered when visual information is noisy or when there is incomplete
information for that cue [89].

• Disambiguation. One cue is used to locally disambiguate a representation
derived by another, all of which provide inherently ambiguous information
(i.e., stereo can disambiguate shading). Information from separate depth
cues indicates which of two explanations is more accurate based on weighting
of each module [34], [14].

• Veto. Cues veto one another when there is conflicting information, but
because of weighting, there is a prioritization of which cues are ignored when
in conflict. One cue conveys depth information that will not be challenged
by other cues when the information is continuous; when it is not, cues that
are less weighted are ignored. As an example, Blthoff and Mallott report
in [20] that when stereo indicates a flat surface but shading indicates an
ellipsoid, no significant depth is perceived, indicating that stereo can veto
shape from shading.

Various cues have been compared against one another in order to determine
what the relationship between them might be. Evidence is available for all of
the potential explanations, with multiple combinations of cues and in differing
scenarios. Research also indicates that observers are able to learn cue combination
strategies and adapt them depending on the stimuli and the type of training [65].
This raises the question of whether or not disentanglement is possible.

In the computer vision community, recent work on depth cue combination
poses the problem of depth perception as a problem of statistical inference, where
depth information should be inferred by the visual system from noisy measure-
ments and prior information [22]. In this view, the visual systems estimates of
depth implied by various cues are written as depth likelihood functions and prior
depth information is represented by prior probabilities. Both are thus modeled
by probability distributions over a metric space. Bayesian models allow optimal
combination of such information to predict small, graded changes in depth percep-
tion that have been verified experimentally [60], [59], [72]. However, it is unclear
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how information from cues which do not yield a metric depth representation (e.g.
occlusion), can be incorporated within this framework.

Bayesian parameter estimation can be used to generate statistically optimal
solutions to the problem of cue integration. However, the complexity and di-
mensionality of these solutions is frequently prohibitive. Moreover, Schrater and
Kersten showed in [127] that the complexity and performance of these Bayesian
estimators depends strongly on the detailed formulation of the task, including
the choice of representation for the scene variables. As the Bayesian inference
models discussed above at present do not yet succeed at describing the combina-
tion of depth cues for all possible cues, some researchers have focussed on finding
solutions to combine selected depth cues.

In [79], Li et al. propose a framework for creating per-pixel depth maps
from monocular videos using the combination of structure from motion and pic-
torial cues such as focus, occlusion and texture. However, the proposed algorithm
mainly uses structure from motion to create the depth map whenever it is appli-
cable and only uses the pictorial cues as a fall back, so no real depth cue fusion
is performed.

White and Forsyth present in [171] a method for reconstructing the shape of
a deformed surface from a single view. For this, they combine normalized cues
from shading and texture to produce a field of unambiguous normals. Using these
normals, they reconstruct the 3D geometry. Their method yields high quality
reconstructions from single views, but as a disadvantage, it requires a texture
estimate of the surface, which must be obtained as prior knowledge.

7.3 Classical ways of Integrating Stereo and Mo-

tion

Stereopsis and (structure-from-)motion are considered powerful cues in isolation,
meaning that for most observers both sources of information independently pro-
vide compelling sensations of depth. As such, the stereo and motion cues are
likely candidates to be fused together to solve problems arising from the incom-
pleteness of the individual cues. However, combining motion/stereo constraints
from multi-view image sequences requires extra caution. This is because some
points in the reference image may be invisible (occluded) in another view. If the
integration algorithm is not aware of this and still combines the motion and stereo
constraints from the occluded view, the results could be very wrong.

Both stereopsis and motion parallax can yield an absolute measure of depth
at each point in the scene, given some additional information about the observers
position. In the case of motion the additional information required is knowledge
of ego-motion and eye rotation. For stereopsis to provide absolute depth values,
the distance from the observer to the fixation point must be known as well as
the observers inter-ocular separation. This means that stereopsis and structure
from motion essentially yield the same data, and, in principle, combining the in-
formation from stereo and motion allows three-dimensional shape to be extracted
without the need for additional information about viewing distance or egomotion.
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A common approach towards the problem of matching 2 sets of 3D data is
the Iterative Closest Point (ICP) algorithm presented in [185]. This method
optimizes a set of freeform curves represented by a set of chained points to come
to an optimal 3D representation. The data of the space curves are available in
the form of a set of chained 3D points from the stereo or structure from motion
algorithm. The key idea underlying the ICP approach is the following. Given
that the motion between two successive frames is small, a curve in the first frame
is close to the corresponding curve in the second frame. By matching points on
the curves in the first frame to their closest points on the curves in the second, it
is possible to find a motion that brings the curves in the two frames closer (i.e.,
the distance between the two curves becomes smaller). Iteratively applying this
procedure, the algorithm yields successively better motion estimates.

ICP and other approaches which aim to combine depth information from in-
dividual reconstructions assume that each depth processing module is completely
independent, such that their output can be combined at a higher level. These
approaches base themselves on Marr’s model [90] of the visual system. Following
this model, the stereo and motion depth cue follow a different processing path
and 3D information is combined in a 21

2 sketch stage. However, a number of psy-
chophysical observations [68],[118] point to close links between the motion and
stereopsis processing systems. Rogers and Graham documented in [119] extensive
similarities between depth from motion parallax and stereopsis. They discovered
that the shapes of the sensitivity functions for depth modulation as a function
of spatial frequency are highly similar for stereopsis and motion parallax [119].
However, for some of their observers absolute sensitivity to binocular disparity
was greater than that for relative motion. Rogers and Graham proceeded to
demonstrate that not only were the two sources of information very similar but
there were also interactions in their processing. An ambiguous perception of a
surface specified by either stereopsis or motion parallax could be biased by prior
exposure to an unambiguously perceived surface specified by the other source of
information. Nawrot and Blake demonstrated in [106] the same biasing effect of
stereograms upon ambiguous kinetic depth effect stimuli. Fulvio et al. investi-
gated in [33] the integration of three-dimensional information provided over time
by the stereo and motion depth cues and found that the perceptual derivation of
surface orientation from motion was affected by the prior presentation of static
stereo information in the same spatial location. They conclude that interactions
exist among the stereo and motion cues of depth information, even when they are
provided at different moments of time.

Algorithms relying on posteriori fusion of individual depth and motion re-
constructions are therefore not in congruence with the processing of stereo and
motion data in the human visual system, as such an a-posteriori fusion of data
totally ignores the inherent correlations between the stereo and structure from
motion theorems. Indeed, instead of calculating a stereo and structure from mo-
tion depth cue separately, one could obtain an advantage from combining motion
information within the disparity-searching process of stereo vision [95].

Already in 1986, Waxman and Duncan proposed in [168] a stereo-motion fusion
algorithm. They define a binocular difference flow as the difference between the
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left and right optical flow fields, where the right flow field is shifted by the current
disparity field. Waxman and Duncan then show that the difference flow and the
ratio of rate of change of disparity to disparity are equivalent for image regions
containing planar surfaces. Whilst this does not provide a direct solution to
the correspondence problem (disparity must be known in order to calculate the
difference flow), they suggest two ways in which binocular difference flows can
be used in stereo correspondence. Firstly, a vertical motion constraint can be
derived as the y component of the difference flow for two corresponding points
is the same. Therefore, this constraint can be used to supplement conventional
stereo correspondence techniques. Potential matches can be identified by using
the x component values of the difference flow for a rate of change of disparity and
then searching over a range of disparity recording the ratio scores. A local support
metric can then choose matches whose ratios are in agreement. Their method
depends on recovering the full motion field from the optical flow field, but relaxes
the rigid body constraint by segmenting the scene. Three problems still remain.
Firstly, the segmentation process is problematic, being susceptible to noise and
variations in the density of reliable optical flow points. Secondly, the technique
will only work for scenes containing significant motions. Thirdly, independently
moving objects must have significant variations between their motions for robust
segmentation.

In 1993, Li and Duncan presented a method for recovering structure from
stereo and motion [78]. They assume that the cameras undergo translation but
no rotational motion. In the first step of their algorithm, the translational motion
parameters are determined from linear equations. In the second step of the calcu-
lation, with the knowledge of the estimated translational motion parameters, the
binocular flow information is used to find features in one image that correspond
to given features in the other image. Tests on laboratory scenes present good re-
sults, however the constraint of having only translational motion is hard to fulfill
for a natural sequence.

Sudhir et. al. [147] model the visual processes as a sequence of coupled
Markov random fields. The Markov random field formulation allows to define
appropriate interactions between the stereo and motion processes and outlines a
solution in terms of an appropriate energy function. The Markov random field
property allows to model the interactions between stereo and motion in terms of
local probabilities, specified in terms of local energy functions. These local energy
functions express constraints helping the stereo disambiguation by significantly
reducing the search space. The integration algorithm as proposed by Sudhir et.
al. makes the visual processes tightly constrained and reduced the possibility of an
error. Moreover, it is able to detect stereo occlusions and sharp object boundaries
in both the disparity and the motion field. However, as this is a local method,
it has difficulties when there are many regions with homogeneous intensities. In
these regions, any local method of computation of stereo and motion is unreliable.

Strecha and Van Gool present in [142] and [141] a PDE-based approach for
3D reconstruction from multi-view stereo. Their method builds upon the PDE-
based approach for dense optical flow estimation by Proesmans et. al. in [116]
and reasons on the occlusions between stereo and motion to estimate the quality
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or confidence of correspondences. The evolution of the confidence measures is
driven by the difference between the forward and backward flow in the stereo and
motion direction. Based on this estimated per-pixel and per-depth cue quality or
confidence measure, their weighting scheme guides the relative influences of both
depth cues at every iteration and at every pixel during the evolution towards the
solution.

7.4 Conclusions

In this chapter, we presented some findings of neuro-psychological research, indi-
cating how the human brain processes depth information. From this discussion,
it is clear that - unlike the single-cue depth-from-motion technique presented in
part 2 - the human brain combines a variety of depth cues to come to a con-
sistent structural representation. In computer vision, it would therefore also be
beneficial to combine multiple depth cues, in order to avoid the disadvantages
of single-cue reconstruction. Generic methods for fusing multi-cue depth infor-
mation have been presented before and some of these methods were discussed
in this chapter. In this research work, we limit ourselves to the combination of
depth from disparity (stereopsis) and depth from motion (structure from motion).
Previous work regarding the fusion of stereo and motion cues was discussed, to
serve as a basis for the development of a novel method towards stereo-motion
combination, as presented in the following chapter.





Chapter 8

Integration of Dense Stereo

and Dense Structure from

Motion

8.1 Introduction and Problem Formulation

As discussed in the previous chapter, the integration of the stereo and motion
depth cues offers the potential of a superior depth perception, as the combination
of temporal and spatial information makes it possible to reduce the uncertainty
in the depth reconstruction result and to augment the precision. However, this
requires the development of a data fusion methodology which is able to combine
the advantages of each method, without propagating any errors induced by one
of the depth reconstruction cues. Therefore, the mathematical formulation of the
problem of combining stereo and motion information must be carefully considered.

Like in the monocular case, described in chapter 5, the dense depth recon-
struction problem can be casted as an energy minimization problem, as shown
before by a number of researchers [142, 173]. However, in the binocular case, the
problem is that the solving methodology depends on the simultaneous evaluation
of multiple constraints which have to be balanced carefully.

This is sketched on Figure 8.1, which shows the different constraints needing
to be imposed for a sequence shot with a moving binocular camera. Consider a
pair of rectified stereo images (I l

1, I
r
1 ) shot at time t = t0 and a stereo pair (I l

2, I
r
2 )

shot at time t = t0 + tk, with tk being determined by the framerate of the camera.
A point xl

1 in the reference frame I l
1 can now be related to a point xr

1 via the
stereo constraint, as well as to a point xl

2 via the motion constraint. Using the
stereo and motion constraint in combination, the point xl

1 can even be related to
a point xr

2, and this via a stereo + motion or a motion + stereo path. It is evident
that, ideally, all these interrelations should be taken into consideration, and this
for all the pixels in all the frames in the sequence. However, when confronted with
long sequences of high-resolution video, this leads to prohibitively large systems
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of equations, which cannot be solved in an efficient way.

Figure 8.1: Motion and Stereo Constraints on a binocular sequence

In the following, we will present a methodology for addressing the stereo -
motion integration problem for dense reconstruction.

8.2 The Proposed Methodology

The stereo-motion integration problem can be regarded as a high-dimensional
data fusion problem. Like in the monocular case, our approach towards solving
this problem starts by posing the problem as an optimization problem. As such,
the main problem is finding a suitable functional which minimizes the error on
the dense reconstruction.

As discussed in the previous section, it is in principle possible, using the stereo
and motion constraints of a sequence of stereo images, to relate every pixel from
a reference image to a pixel in each of the other images of the sequence and vice
versa. However, when confronted with a long sequence of high-resolution images,
following this approach would lead to a massive amount of constraint equations
to be solved simultaneously, which would make the problem impossible to solve in
practice. Therefore, in order to limit the dimensionality of the problem, we adopt
a different approach, where the sequence of stereo images is processed sequentially.
Following this methodology, a pair of stereo images is related to a successive pair,
as sketched in figure 8.2.
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Figure 8.2: Processing strategy of a binocular sequence: From a left and right
image sequence, proximity maps are calculated through stereo and dense structure
from motion. These maps are iteratively improved by constrained optimization,
using the augmented Lagrangian method.

Figure 8.2 considers a binocular image stream consisting of left and right
images of a stereo camera system. The left and right streams are processed indi-
vidually, using the dense structure from motion algorithm, presented in chapter
5, resulting in, respectively, a left and right proximity map dl and dr. In paral-
lel, the left and right images are combined using the stereo algorithm [43, 103],
embedded in the Bumblebee stereo camera. The stereo camera performs only the
stereo computation and, as a result of this, a new proximity map from stereo dc

can be defined. The reason for calling this proximity map dc lies in the fact that
it is defined in the reference frame of a virtual central camera of the stereo vision
system.

Of course, there exist strong interrelations between the different proximity
maps dl, dc and dr, which need to be expressed to ensure consistency and to
improve the reconstruction result. Therefore, we adopt an approach where, the
left proximity map dl is optimized, subject to two constraints, relating it to dc
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and dr respectively. In parallel, the right proximity map dr is optimized, also
subject to two constraints, relating it to dc and dl.

The dense stereo - motion reconstruction problem can thus be stated as a
constrained optimization problem:

Find min
x∈Ω

E(x) subject to : θi(x) = 0 for i = 1, ..., n (8.1)

where the function E(x) is the objective functional and θi(x) expresses a number
of constraint equations.

A traditional solving technique for constrained optimization problems as the
one posed by equation 8.1 is the Lagrangian multiplier method, which converts
a constrained minimization problem into an unconstrained minimization problem
of a Lagrange function Lo (x, λ):

Lo (x, λ) = E (x) +

n∑

i=1

λiθi (x), (8.2)

where λi are the Lagrange multipliers. Because the optimal Lagrange multipliers
are unknown, they have to be estimated iteratively.

In theory, the Lagrangian methodology expressed by equation 8.2 can be used
to solve the stereo - motion reconstruction problem, however, to improve the
convergence characteristics of the optimization scheme, it is better to use the
augmented Lagrangian L (x, λ). The augmented Lagrangian, which was presented
by Powell and Hestenes in [115] and [57], adds a quadratic penalty term to the
original Lagrangian:

L (x, λ) = E (x) +
n∑

i=1

(λiθi (x)) +
ρ

2

n∑

i=1

θi(x)2, (8.3)

with a penalty parameter ρ > 0.
In the context of dense stereo - motion reconstruction, we seek to simulta-

neously minimize 2 energy functions: El for the left image and Er for the right
image. These objective functions are a function of the proximity maps dl

1 and dr
1

(index “1” indicates the first image), which we seek to optimize. This optimization
problem is subject to 4 constraint equations:

1. θl
lc(d

l
1, d

c
1) = 0 relates dl

1 to the proximity map obtained from stereo dc
1.

2. θl
lr(d

l
1, d

r
1) = 0 relates dl

1 to the proximity map of the right image dr
1.

3. θr
rc(d

r
1, d

c
1) = 0 relates dr

1 to the proximity map obtained from stereo dc
1.

4. θr
rl(d

r
1, d

l
1) = 0 relates dr

1 to the proximity map of the left image dl
1.

According to the Augmented Lagrangian theorem and the definition given by
equation 8.3, we can write the augmented Lagrangian for the left image thus as
follows:

L
l
1(d

l
1, λ

l
lc, λ

l
lr) = El(dl

1) + λl
lc.θ

l
lc(d

l
1, d

c
1) +

ρ

2

[
θl

lc(d
l
1, d

c
1)
]2

+ λl
lr.θ

l
lr(d

l
1, d

r
1) +

ρ

2

[
θl

lr(d
l
1, d

r
1)
]2 (8.4)
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For the right image we have in a similar fashion:

L
r
1(d

r
1, λ

r
rc, λ

r
rl) = Er(dr

1) + λr
rc.θ

r
rc(d

r
1, d

c
1) +

ρ

2
[θr

rc(d
r
1, d

c
1)]

2

+ λr
rl.θ

r
rl(d

r
1, d

l
1) +

ρ

2

[
θr

rl(d
r
1, d

l
1)
]2 (8.5)

The energy function in equations 8.4 and 8.5 expresses the relationship be-
tween structure and motion between successive images and therefore uses a simi-
lar formulation to the one presented in chapter 5, writing the energy function as
a combination of a data and a regularization term:

E = φdata + µφregularization (8.6)

For the monocular case, we presented 2 formulations for expressing the data term,
following equation 5.17 or equation 5.18. As was proven in chapter 6, the latter
formulation, using the image derivatives based optical flow constraint, delivers
superior results, and as a result, it is this formulation which we’ll also use in the
binocular case. However, it is not possible to use exactly the same expression as
in equation 5.18, as the depth parametrization is different in the monocular and
binocular case. Indeed, in the monocular case, a depth parameter ζ =

√
u2 − γ2 is

considered, whereas in the binocular case, the proximity d = 1
Z is used. However,

in a similar fashion to the way equation 5.18 was constructed, it is possible to
integrate the relation between flow and structure, given by equation 2.46 into the
image derivatives based optical flow constraint of equation 5.5, giving:

φdata = (I1,x [a1d+ b1] + I1,y [αd+ β] + I1,t)
2
, (8.7)

with: [
a

α

]
= Qtt =

[
−ftx + xtz
−fty + ytz

]

[
b

β

]
= Qωω =




xy
f ωx −

(
f + x2

f

)
ωy + yωz(

f + y2

f

)
ωx − xy

f ωy − xωz




(8.8)

As expressed by equation 8.6, a regularization is used to filter out erroneous
reconstruction results and to smooth and extrapolate the structural data over
related pixels. A key aspect here is of course to find out which pixels are related
(e.g. belonging to the same object on the same distance), such that proxim-
ity information can be propagated and which pixels aren’t related. Like in the
monocular case, we make use of the Nagel-Enkelmann anisotropic regularization
model, as defined in [105]. This time, however, the regularization is applied on
the proximity map d, such that the regularization term can be written as:

φregularization = (∇d)T
D (∇I1) (∇d) , (8.9)

with D the regularized projection matrix given by equation 5.22.
The energy functions El(dl

1) and Er(dr
1) can then be defined as:

El(dl
1) = φl

data(dl
1) + µφl

regularization(dl
1) (8.10)
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and

Er(dr
1) = φl

data(dr
1) + µφl

regularization(dr
1) (8.11)

with φl
data(dl

1) and φl
data(dl

1) the expression of the data term, as given by equa-
tion 8.7 for, respectively, the left and right image and φl

regularization(dl
1) and

φl
regularization(dl

1) the expression of the regularization term, according to equa-
tion 8.9. The diffusion parameter µ regulates the balance between the data and
regularization term. Like in the monocular case, it is estimated iteratively, as
explained in section 5.3.2.

The first constraint θl
lc(d

l
1, d

c
1) expresses the similarity between the estimated

left proximity map dl
1 and the proximity map from stereo dc

1. In order to calculate
this similarity measure, the proximity map from stereo must be warped to the
left camera. This warping process can be performed using equation 2.46, which
relates the optical flow to the structure and motion parameters, such that we can
write:

u = u (x, d, ω, t) =

[
u (x, y, d, ω, t)
v (x, y, d, ω, t)

]
(8.12)

When considering the 3D motion and structure parameters known, this relation
allows to calculate the optical flow, which is the movement of pixels in image
space.

θl
lc(d

l
1, d

c
1) =

(
dl
1 (x) − dc

1

(
x + u

(
x, dl

1 (x) , ωcl, tcl
)))2

(8.13)

Note that in this case, the relationship between optical flow and structure and
motion, as expressed by equation 2.46, is used to estimate a disparity measure.
However, the “motion” which is considered in this case is in fact the displacement
between the left camera and the virtual central camera, which is known a priori.
Since we consider rectified stereo images, the rotational movement between the
cameras is zero (ωstereo = 0) and the translational movement is according to the
X-axis over a distance of half the stereo baseline b, such that tcl = tstereo, with
tstereo = (b, 0, 0)T . Concerning the structural data, it suffices to fill in the current
estimate of the proximity map dl

1. As such, the warping process is integrated in
the optimization scheme and will gradually improve over time. This allows us to
write the first constraint θl

lc(d
l
1, d

c
1) as:

θl
lc(d

l
1, d

c
1) =

(
dl
1 (x) − dc

1

(
x + u

(
x, dl

1 (x) ,0,
tstereo

2

)))2

(8.14)

For the second constraint on the left proximity map, we can write in a similar
fashion:

θl
lr(d

l
1, d

r
1) =

(
dl
1 (x) − dr

1

(
x + u

(
x, dl

1 (x) ,0, tstereo

)))2
(8.15)

Note that, in this case, we use the translation over the whole baseline tstereo =
(b, 0, 0)T for warping the right proximity map to the left proximity map.

The constraints on the right proximity map can be expressed accordingly:

θr
rc(d

r
1, d

c
1) =

(
dr
1 (x) − dc

1

(
x + u

(
x, dr

1 (x) ,0,
−tstereo

2

)))2

(8.16)
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and

θr
rl(d

r
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l
1) =

(
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)2
(8.17)

By integrating the definitions of the energy functions of equations 8.10 and 8.11,
and the constraint equations 8.14 - 8.17 into the formulation of the augmented
Lagrangian functions, given by equations 8.4 and 8.5, the constrained minimiza-
tion problem stated in equation 8.1 is now completely defined. How this problem
is numerically solved is discussed in the following section.

8.3 Numerical Implementation

To solve the optimization problem, it is necessary to write the augmented La-
grangians of equations 8.4 and 8.5 into a numerical form, which allows iterative
optimization. Here, we use the space indices i and j and iteration index k to de-
nominate the different variables and functions. Using this formulation, equation
8.4 can be discretized to:
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with the energy function:
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The constraints given by equations 8.14 and 8.15 measure the dissimilarity
between the left proximity map and, respectively, the (warped) central and right
proximity map. However, these proximity maps are discrete and possibly highly
discontinuous functions, which makes them impractical to work with in an opti-
mization scheme. Therefore, we define an interpolation function fI (d, x, y) which
interpolates the discrete function d in the real-valued point (x, y). The interpo-
lation function fI which is used here is the bi-cubic spline interpolation function,
defined by equation C.5 and further described in Appendix C. Using this bi-
cubic interpolation function, the constraint φl

lc, given by equation 8.14, can be
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discretized as:
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where u and v are, respectively, the horizontal and vertical functions of the optical
flow, as calculated from known structure and motion, as defined by equation 8.12.
Equation 8.20 can be further simplified by inserting the values for the motion
parameters in the expressions u (x, y, d, ω, t) and v (x, y, d, ω, t), as already shown
in equation 8.28, such that:
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The second constraint on the left proximity map can be discretized similarly as:
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An important aspect of the numerical scheme is the choice of the Lagrangian
multipliers λk

i,j . These are initialized to a certain initial value and then iterated.

The idea behind the updating of the multipliers is that when the solution for xk

converges to a local minimum x∗, then the λk must converge to the corresponding
Lagrange multiplier λ∗. This condition can be expressed by differentiating the
Augmented Lagrangian of equation 8.3 with respect to x:

∇xL (x, λ) = ∇E (x) +

n∑

i=1

(λi∇θi (x)) + ρ

n∑

i=1

(θi (x)∇θi (x)) (8.23)

In the local minimum, ∇E (x∗) = 0 and the optimality conditions on the Aug-
mented Lagrangian require that also ∇xL (x∗, λ∗) = 0, such that we can deduce:

λ∗i = λi + ρθi (x) (8.24)

Based upon the result of equation 8.24, it is immediately possible to derive an
update scheme for the Lagrangian multipliers, such that they converge to λ∗i :
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The expression of the energy function in equation 8.19 and the constraint
equations 8.21 and 8.22 completely defines the formulation of the augmented
Lagrangian of equation 8.18, governing the iterative optimization of the left prox-
imity map dl. As such, the constrained optimization problem of equation 8.1 is
transformed into an unconstrained optimization problem, which can be solved
using a classical method.

As a numerical solving technique, we use the method presented by Brent
in [16]. Brent’s method switches between inverse parabolic interpolation and
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golden section search. Golden section search [41] is a methodology for finding
the minimum of a bounded function by successively narrowing (bracketing) the
range of values inside which the minimum is known to exist. This range is also
updated using inverse parabolic interpolation, but only if the produced result is
acceptable (in the current interval and representing a noticeable improvement over
the previous guess.) If not, then the algorithm falls back to an ordinary golden
section step. Algorithm 3 summarizes the different steps of Brent’s method.

Input: A function f(x) and two points a and c, such that
a < argmin

x
f(x) < c

Output: The minimum of the function f(x)

repeat
Choose a point b, such that a < b < c.
Fit a parabola through a, b and c and calculate the point x
where it reaches a minimum.
if f(b) < f(x) then

The new bracketing triplet of points is a < b < c.
else

The new bracketing triplet of points is b < x < c.
end
if the proposed range interval is acceptable then

Use the interval proposed by inverse parabolic interpolation
else

Choose a new point x = a− b+ c and evaluate f(x).
if f(b) < f(x) then

The new bracketing triplet of points is a < b < c.
else

The new bracketing triplet of points is b < x < c.
end

end

until the distance between the two outer points of the triplet is
sufficiently small ;

Algorithm 3: Overview of Brent’s optimization method using in-
verse parabolic interpolation and golden section search

The optimization method described above converges to a minimum within the
search interval. Therefore, it is crucial that a good initial value is available for all
status variables, such that the local minimum coincides with the global minimum.
In the monocular case, the methodology towards estimating an accurate initial
value for the depth parameter was based on the integration of dense optical flow
data and sparse structure from motion, as described in section 5.3.3. Both types
of data are also present in the binocular case, so in theory we could adopt just
the same mechanism. However, in practice, it is a far better approach to use the
dense disparity map from stereo as an initial value. The reason for this is that
the camera displacement between the left and right stereo frames is much better
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known and is moreover fixed over time, than the displacement between two frames
of the same camera, for which the movement parameters must be estimated using
sparse structure from motion. Therefore, the warping of stereo data towards the
left and the right image can be performed with much higher reliability then in
the monocular case. Indeed, warping the stereo disparities to the left and right
proximity maps is extremely simple when using rectified stereo images, as this
implies that the depth Z = 1

dstereo
calculated from stereo can be integrated in the

optical flow constraint of equation 2.46. However, this optical flow constraint can
be largely simplified in the stereo case, because the rotation between the left and
right stereo cameras is zero (ωstereo = 0) and the stereo translation is for rectified
cameras necessarily along the x-axis with an amount specified by the half baseline
b in the positive or negative direction, depending on wether the left or the right
image is considered:

u =

[
u
v

]
= Qωωstereo +

1

Z
Qttstereo = Qω0 +

1

Z

[
−f 0 x
0 −f y

]


± b

2
0
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As such, equation 2.46 reduces to:

u = ±f 1

Z

b

2
. (8.28)

Using the relationship between the stereo depth and the optical flow u, it is
possible to define the equations providing an initial value for the left and right
proximity maps dl and dr:

{
dl

initial(x, y) = dstereo(x− fdstereo(x, y)
b
2 , y)

dr
initial(x, y) = dstereo(x+ fdstereo(x, y)

b
2 , y)

(8.29)

As can be noted, equation 8.29 contains no real unknown data, next to the stereo
proximity map dstereo, which needs to be estimated of course, this in contrast to
the monocular case, where the translation and rotation between cameras needs to
be taken into account. It is for this reason that in the binocular case, the initial
guess is significantly better than in the monocular case and that, because the
initial value is closer to the final solution, the optimization can also be performed
much faster.

Next to the estimation of a good initial value, the application of Brent’s opti-
mization method also requires that the minimum and maximum boundaries where
the solution is to be found be known. In our case, it means that a minimum and
maximum proximity value must be available for each pixel of the left and right
images. These minimum and maximum proximity maps are calculated based on
the 3σ error interval of the initial value of the proximity maps:

dl
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initial − 3σ
(
dl

initial

)

dl
max = dl

initial + 3σ
(
dl

initial

)

dr
min = dr

initial − 3σ (dr
initial)

dr
max = dr

initial + 3σ (dr
initial)

(8.30)
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where dl
initial and dl

initial are calculated according to equation 8.29
Following Brent’s method of the golden section search with parabolic interpo-

lation, it is possible to solve the unconstrained optimization problem for the left
proximity map, as posed by equation 8.18. For the right proximity map, a set of
similar expressions can be found, starting from the Augmented Lagrangian:
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with the energy function:
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and with the constraints:
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The Lagrangian multipliers λr are updated at each iteration, following:
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As shown above, there are, in fact, two functions which are optimized at the

same time: one using
(
Ll

1

)k
i,j

which optimizes the left proximity map dl and

one using (Lr
1)

k
i,j which optimizes the right proximity map dr. In the proposed

algorithm, these functions are optimized alternatively, hereby always using the
latest result for both proximity maps. This methodology is explained more clearly
in Algorithm 4, which summarizes the Augmented Lagrangian - based stereo -
motion reconstruction algorithm.

The Augmented Lagrangian - based stereo - motion reconstruction methodol-
ogy, presented in Algorithm 4, differentiates itself from the current state of the
art in stereo - motion reconstruction by a number of key factors:
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Input: A sequence of Stereo Images I l, Ir

Output: A dense proximity map dl(x, y) and dr(x, y) for each image i

1. Initialization:
1.1 Perform sparse reconstruction on the left and right images, using

Algorithm 1.
1.2 Compute the stereo disparity between I l and Ir, using a stereo

algorithm. Here, we use the embedded algorithm of the
Bumblebee stereo vision camera, used for this research,
as described in [43, 103].

1.3 Warp the stereo disparity image to obtain an initial value of the
left and right proximity map dl and dr, using equation 8.29.

1.4 Compute elements of the (left and right) regularization matrix,
following equation B.6.

1.5 Set an initial value for the Lagrange multipliers
(
λl

lc

)0
i,j

,
(
λl

lr

)0
i,j

,

(λr
rc)

0
i,j and (λr

rl)
0
i,j .

1.6 Set an initial value for the penalty parameter ρ > 0
1.7 Set an initial value for the proximity maps according to

equations 8.30

2. Iterative optimization of the proximity fields for each pixel:

2.1 Minimize
(
Ll

1

)k
i,j

, as expressed by equation 8.18, with the

unconstrained method of Algorithm 3 from a starting point(
dl
1

)k
i,j

. Let
(
dl
1

)k+1

i,j
denote the approximation to the solution.

2.2 Minimize (Lr
1)

k
i,j , as expressed by equation 8.31, with the

unconstrained method of Algorithm 3 from a starting point
(dr

1)
k
i,j . Let (dr

1)
k+1
i,j denote the approximation to the solution.

2.3 Update the Lagrange multipliers for the left proximity map,
using equations 8.25 and 8.26.

2.4 Update the Lagrange multipliers for the right proximity map,
using equations 8.35 and 8.36.

2.5 Update the estimate of the diffusion parameter µ, according to
equation 5.46.

2.6 Increase the penalty parameter ρ, if the constraint violations at
iteration step k + 1 are not sufficiently smaller than at
iteration step k.

2.7 Set k = k + 1 and go to step 2.1 if no convergence is
reached and k < kmax

3. Repeat the above for all images i.

Algorithm 4: Overview of the Augmented Lagrangian - based Stereo -
Motion Reconstruction Algorithm



8.3. Numerical Implementation 149

1. The processing strategy, presented in Figure 8.2, considers 3 sources of infor-
mation for the structure estimation process: a left and a right proximity map
from motion, and a proximity map from stereo. During optimization, infor-
mation from the (central) proximity map from stereo is transferred to the
left and right proximity maps, which are the ones actually being optimized
simultaneously. During the optimization process, data is constantly being
interchanged between both optimizers, as they are highly dependent. The
advantage of this concurrent optimization methodology is that it provides a
symmetric processing cue. This makes it easer to handle the uncertainties
induced by the unknown displacements between the different cameras, in
comparison to other approaches [147] who consider only 1 reference image
and warp all other images to this reference image for matching and depth
estimation. Other researchers have noted this too and have for this reason
used even more depth or proximity maps. In [142], Strecha and Van Gool
combine 4 proximity maps dl

i, d
l
i+1, d

r
i and dr

i+1, as displayed in Figure
8.1. The problem with using so many proximity maps, however, is that the
problem size is increased drastically, and with it, also the computation time.

2. The expression of the energy functions, using equations 8.19 and 8.32, fol-
lows the methodology for dense structure estimation from monocular data,
as set up in chapter 5. This means for example that the image derivatives
- based optical flow constraint of equation 5.5 is used. Most other dense
stereo - motion reconstruction algorithms, like the ones presented by Worby
in [173] and Strecha and Van Gool in [142], use the constant image bright-
ness - based optical flow constraint of equation 5.4. However, our analysis in
chapter 6 learned that the image derivatives - based optical flow constraint
delivers better results than the constant image brightness - based optical
flow constraint. Another aspect of the expression of the energy functions
is that it includes a methodology for automatically re-estimating at each
iteration step the value of the diffusion parameter µ, as described in section
5.3.2.

3. The proposed methodology poses the dense stereo - motion reconstruction
problem as a constrained optimization problem and uses the Augmented
Lagrangian to turn this into an unconstrained optimization problem which
can be solved with a classical method. Whereas other researchers go to
great lengths to express the stereo - motion reconstruction problem as a
Markov Random Field [147] or a Graph Cut [173] optimization problem, the
approach we followed is very natural, as the stereo - motion reconstruction
problem is by nature a highly constrained and tightly coupled optimization
problem and the Augmented Lagrangian has been proven before [110] to be
an excellent method for these kind of problems.
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8.4 Conclusions

In this chapter, we have presented a method for dense stereo - motion based
reconstruction. This approach casts the stereo - motion reconstruction problem
as an optimization problem, where the left and right proximity map are estimated
concurrently by combining information from the stereo and motion depth cues.

The proposed stereo - motion dense reconstruction methodology extends the
monocular dense structure from motion approach, described in chapter 5, and uses
the technique of the Augmented Lagrangian to integrate different constraints in a
coherent framework. For this, we adopted an integrated processing strategy using
dense structure from motion data and dense stereo data.

In the following chapter, we will evaluate the presented approach and compare
its performance to a more classical method.



Chapter 9

Results & Analysis for

Binocular Reconstruction

9.1 Description of the Test Procedure

The validation and evaluation of a dense stereo - motion reconstruction algorithm
requires the use of an image sequence shot with a moving stereo camera. Un-
fortunately, for this case of dense stereo - motion reconstruction, there is no real
set of standard sequences used for benchmarking, unlike in the monocular case,
where such sequences do exist [143].

For this reason, we recorded a new sequence, using a Bumblebee stereo vision
camera. This sequence, shown in Figure 9.1, was shot in an indoor office envi-
ronment. Due to the nature of this sequence, it is impossible to retrieve ground
truth data about the depth field. The translation of the camera is mainly along
its optical axis (Z-axis) and along the positive X-axis. The rotation of the camera
is almost only along the positive Y -axis.

It can be noted from Figure 9.1, that the used sequence consists of a cluttered
environment, presenting serious challenges for any reconstruction algorithm:

• Cluttered environment with many objects at different scales of depth.

• Relatively large totally untextured areas (e.g. the wall in the upper left)
making correspondence matching very difficult.

• Areas with specular reflection (e.g. on the poster in the upper right of the
image), violating the Lambertian assumption, traditionally made for stereo
matching.

• Variable lighting and heavy reflections in the window on the upper right,
causing saturation effects and incoherent pixel colors across different frames.

In the following sections, we will focus our evaluation on how the iterative
optimization methodology presented in chapter 8 deals with these issues and how

151
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(a) Frame 1, Left Image (b) Frame 1, Right Image

(c) Frame 5, Left Image (d) Frame 5, Right Image

(e) Frame 10, Left Image (f) Frame 10, Right Image

Figure 9.1: Some frames of the binocular Desk sequence
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well it is able to reconstruct the structure of this scene. However, it must not
be forgotten that this iterative optimizer is also dependent on an initialization
procedure, which can influence the reconstruction result significantly. The initial-
ization step of Algorithm 4 estimates an initial value for the left and right depth
field. This method consists of warping a stereo proximity image to the left and
right camera reference frame. The result of this process is shown in Figure 9.2.
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(a) Left Initial Proximity Map
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(b) Right Initial Proximity Map

Figure 9.2: Left and Right Initial Proximity Maps

It is clear from Figure 9.2 that the initial values for the left and right proximity
map still contains a lot of “blind spots”, or areas where no (reliable) proximity
data is available. These areas are caused by a failing correspondence search in
the stereo vision algorithm. The applied stereo algorithm performs an area based
correlation with SAD (Sum of Absolute Differences) on band passed images [43,
103]. This algorithm is fairly robust and it has a number of validation steps that
reduce the level of noise. However, the method requires texture and contrast to
work correctly. Things like occlusions, repetitive features and specular reflections
can cause problems and can lead to gaps in the proximity maps, as shown on
Figure 9.2. In the following sections, we will also evaluate how well the presented
dense stereo - motion algorithm is able to cope with these blind spots and see
whether it is capable of filling in the areas where structural data is missing.

To compare our method to the state of the art, we implemented a more clas-
sical dense stereo - motion reconstruction approach, which is explained in the
following section. This approach defines classical stereo and motion constraints,
alongside the Nagel-Enkelmann regularization constraint. These constraints are
integrated into one objective function, which is solved using a traditional trust-
region method. As such, this approach presents a relatively simple and straightfor-
ward solution. This methodology is used to serve as a base benchmarking method
for the Augmented Lagrangian based stereo - motion reconstruction technique,
presented in chapter 8.
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9.2 Global Optimization - based Integration Ap-

proach

9.2.1 The Proposed Methodology

The processing technique for the global optimization based reconstruction ap-
proach is slightly different from the method presented in chapter 8. Stereo pairs
are processed 2-by-2, meaning that in every processing step, 4 images are consid-
ered, as presented in Figure 9.3.

The constraints acting on this image quadruplet express the stereo relation-
ship between the left and the right image and the motion relationship between
successive images. Moreover, regularization is also here required to propagate the
solution in areas where insufficient data is present.

A crucial aspect of the design of the energy functionals φ is the choice of the
status variables which are iteratively estimated during the optimization process.
In the case of the global optimization approach, we have chosen for the motion
parameters (translation vector t and rotation vector ω) and the left and right
proximity map, dl and dr, with d = 1

Z . The reason for using both the proximity
map for the left and the right image is that, using this approach, the formulation
of the functional φmotion can be written in a symmetric way. Obviously, both
proximity maps are not independent, which is expressed by imposing a (stereo)
constraint φstereo between them.

The optimization problem can thus be generally defined as:

[
t, ω, dl, dr

]
= arg min

t,ω,dl,dr

∫
F (ω, t, dl, dr)dxdy (9.1)

with:

F →






φmotion = 0
φstereo = 0

φregularization = 0
(9.2)

In the following paragraphs, the expression of the different constraint equa-
tions, forming equation 9.2, is discussed.

The motion constraint φmotion can be formulated by expressing equation 2.46,
which relates the dense optical flow u = (u, v) to the structure and motion pa-
rameters. Like in the monocular case, we make use of a previously calculated
dense optical flow field for the dense depth estimation. However, in this case we
do not use the dense optical flow for the initialization, but as a parameter in the
motion constraint. Structural data is present in equation 2.46 in the form of a
proximity parameter d, whereas the camera motion is parameterized through a
translation vector t = (tx, ty, tz) and a rotation vector ω = (ωx, ωy, ωz). Equation
2.46 provides two equations for each pixel x = (x, y) of each image, one for the
horizontal flow u(x) and one for the vertical flow v(x). As there are two images
(left and right) to be considered, this means that, the expression of the motion
constraint adds 4 constraint equations to the objective functional for each pixel,
corresponding to the first 4 equations of equation 9.3.
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Figure 9.3: Sequential processing of a binocular sequence: Stereo pairs are pro-
cessed 2-by-2, expressing 1 stereo and 2 motion constraints for each reconstruction
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The stereo constraint φstereo expresses the consistency between the left and
right proximity field. Therefore, the left and right proximity maps are compared
and the stereo constraint is formulated as the dissimilarity between both fields,
as expressed by the fifth equation of equation 9.3

As a third aspect of the optimization functional defined by equation 9.2 is
the regularization. Following the Nagel-Enkelmann regularization model, two
regularization constraints (one for the left proximity map and one for the right
proximity map) are expressed. These form the last two equations of equation 9.3.

The objective functional formulation can thus be written as:
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dl (x) − dr

(
x + u

(
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(9.3)

As can be noted, the objective functional of equation 9.3 consists of 7 equations
per pixel. This means that for an image with N pixels, a system of equations
with 7N equations in 2N + 6 unknowns must be solved. It is obvious that for
high resolution images, this poses an immense optimization problem, which is not
easy to solve on commodity hardware and requires a carefully chosen numerical
implementation.

The numerical implementation of the global-optimization - based stereo-motion
reconstruction approach makes use of a large-scale trust-region method [26, 25].
Trust region methods are iterative optimization techniques which seek to op-
timize a function by building a model that approximates the objective function
[28]. These kind of approaches are particularly useful for large-scale problems, like
the one posed by dense stereo - motion reconstruction, as formulated by equation
9.1, because they limit drastically the required number of function evaluations,
thereby reducing the calculation time, and because of their strong convergence
properties. Despite these advantages, it must be noted that trust region methods
are local minimizers. There is no guarantee that the local minimum where the
optimizer converges to is also a global minimum. This stresses the need for a good
initial guess of the status variables.

The basic idea behind the trust region method, presented in [26, 25] is very
simple and is clarified by Algorithm 5, which summarizes the global optimization
- based reconstruction method:
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Input: A sequence of Stereo Images I l
i , I

r
i

Output: A dense proximity map dl(x, y) and dr(x, y) for each image i
1. Initialization:
1.1 Perform sparse reconstruction on I l

i & I l
i+1, using Algorithm 1.

1.2 Perform sparse reconstruction on Ir
i & Ir

i+1, using Algorithm 1.
1.3 Compute the optical flow between I l

i & I l
i+1 and Ir

i & Ir
i+1,

as described in Appendix B.
1.4 Compute the stereo disparity between I l

i and Ir
i , using a stereo

algorithm. Here, we use the embedded algorithm of the
Bumblebee stereo vision camera, as described in [43, 103].

1.5 Warp the stereo disparity image to obtain an initial value of the
left and right proximity maps dl & dr, using equation 2.46.

1.6 Compute elements of the (left and right) regularization matrix,
following equation B.6.

2. Iterative optimization of the depth field for each pixel:
2.1 At each iteration xk, build a model ψ approximating the objective

function F . Following the methodology described in [26],
this model can be written as:

ψk = gT
k sk +

1

2
sT

k (Hk + Ck) sk (9.4)

with sk = xk+1 − xk, gk = ∇F (xk) and Hk = ∇2F (xk).
Ck = Dkdiag (gk) JkDk, with Dk a scaling matrix and
Jk the Jacobian

2.2 Calculate a step sk to a trial point within the trust region
at which point a sufficient model decrease is obtained, by solving
the following subproblem:

min
s

(ψk (s) : ‖Dks‖ ≤ ∆k) (9.5)

The condition ‖Dks‖ ≤ ∆k assures that the solution leads to a
new trial point within the current trust region ∆k.

2.3 Calculate the ratio of achieved reduction of the objective function
to the predicted reduction according to the model:

ρk =
F (xk + sk) − F (xk) + 1

2s
T
kC (xk) sk

ψk (sk)
(9.6)

2.4 If the ratio ρk is sufficiently positive, then define the next guess as
the trial point: xk+1 = xk + sk. Otherwise, xk+1 = xk.

2.5 Update the trust region size ∆k and the scaling matrix Dk to
reflect the evolution of the convergence (e.g. when the ratio ρk is
sufficiently large, ∆k is increased, otherwise it is decreased).

3. Repeat the above for all images i.

Algorithm 5: Overview of the Global Optimization - based Stereo - Motion
Reconstruction Algorithm
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The global optimization methodology presents a stereo motion reconstruction
technique which follows the traditional approach of defining stereo and motion
constraints and optimizing them all together, using an optimization technique
like a trust region method. One differentiating factor of this stereo - motion
reconstruction approach, with respect to classical methods, lies in the combined
use of both the left and the right proximity map for optimization. Most traditional
methods, e.g. the one presented by Sudhir et al. in [147], consider a reference
image (e.g. the first left image) and warp all other images to this reference image
for matching and depth estimation. The problem with this approach is that
it creates an asymmetric processing cue for left and right images, causing the
model errors due to uncertainties in the motion parameters to spread unevenly,
which makes it harder to solve the optimization problem. The global optimization
methodology avoids this by incorporating both the left and right proximity map in
the status variable. However, as we’ll see later on when comparing its performance
to the Augmented Lagrangian based method presented in chapter 8, its simple
design will give rise to some reconstruction problems.

9.2.2 Results & Analysis

A disadvantage of working with natural sequences is that it is impossible to com-
pare the calculated reconstruction data to ground truth information. Therefore,
we have to validate our approach by analyzing the convergence parameters of the
different algorithms.

For the global optimization - based stereo - motion reconstruction approach, a
first optimization parameter which can be evaluated is the value of the objective
function, given by equation 9.3 at the current estimate of the optimization vari-
ables (motion parameters, left and right proximity map) at each iteration step.
As the objective function, defined by equation 9.3, consists of 7 equations per
pixel, this means that 7N functions could be evaluated, with N the number of
pixels. It is clear that, in practice, this is undesirable and also nearly impossible
to visualize. Therefore, the function values are summed over all pixels:

F l
motion,h =

∑
∀x,y

∣∣∣xy
f ωx −

(
f + x2

f

)
ωy + yωz − dl (x) ftx + dl (x) xtz − ul (x)

∣∣∣
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∑
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(
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f

)
ωx − xy

f ωy − xωz − dl (x) fty + dl (x) ytz − ul (x)
∣∣∣
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∣∣∣xy
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Fstereo =
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(
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(
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(
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)))2

F l
regularization =
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(
∇dl
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D
(
∇I l

) (
∇dl

)∣∣∣

F l
regularization =

∑
∀x,y

∣∣∣(∇dr)
T
D (∇Ir) (∇dr)

∣∣∣

(9.7)
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To further reduce the number of functions to be shown, the horizontal and vertical
component of the left and right optical flow constraints are also summed:

F l
motion = F l

motion,h + F l
motion,v

F r
motion = F r

motion,h + F r
motion,v

(9.8)

In this way, it is possible to obtain a clearer overview of how the motion and
stereo constraints are balanced. Figure 9.4 shows the evolution of the different
constituents of the objective function F function value, as defined above.
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Figure 9.4: Evolution of the Objective Function using the Global Optimization
Algorithm

Figure 9.4 shows that all constituents of the objective function show a mono-
tonically decreasing behavior, indicating that the method converges. As a result,
also the total objective function value Ftotal = F l

motion + F r
motion + Fstereo +

F l
regularization + F r

regularization converges.
It may be noted from Figure 9.4 that the largest contributions to the total

objective function value Ftotal are the left and right motion constraints F l
motion

and F l
motion. The reason for this lies in the fact that the motion constraint relies

on the estimation of the camera motion parameters. This estimation process is
inherently less robust than in the stereo case, where the camera displacement is
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fixed and known a priori. As such, the motion constraints will feature a larger
residual error on their objective function, compared to the stereo constraint.

It may also be noted that the left motion constraint F l
motion starts at a higher

function value than F r
motion. This is due to the nature of the movement in the

sequence. As discussed in section 9.1 and as shown on Figure 9.1, the Desk
sequence features next to the translation along the optical axis also a rotation
around the positive Y -axis. This 3D motion causes a relatively larger displacement
between two successive left images than between two successive right images. Due
to this larger displacement, the error on the camera motion estimation between I l

k

and I l
k+1 will also be larger, leading to a higher initial function value for F l

motion.
However, by updating the estimate for the motion parameters, the optimization
algorithm succeeds after some iterations at minimizing the difference between the
two motion constraints. Despite this, Figure 9.4 shows that the function value for
the motion constraints remains relatively high, indicating that the optimization
performs not very well for this constraint.

Figure 9.4 also shows that the stereo constraint and regularization constraints,
are well optimized, as indicated by the evolution of their function values, which de-
creasing drastically after some iterations. From Figure 9.4 can thus be concluded
that the stereo and regularization constraints, as defined by equation 9.3 are well
optimized and show a converging behavior, but also that the motion constraints
are not optimized very well. In fact, Figure 9.4 shows us that the optimization
is geared too much into the direction of the stereo and regularization constraints
(because there is no adequate constraint balancing system in place), whereas the
motion constraint is ignored. We will see further in the text how this affects the
performance of the global optimization based integration approach with respect
to the presented Augmented Lagrangian based approach.

As discussed in section 9.2.2, the global optimization method relies on a large-
scale trust-region method [26, 25]. The evolution of this optimization process
can be evaluated by considering the step size sk, as shown on Figure 9.5. This
optimization parameter decreases monotonically, showing the convergence of the
optimization method.

Figure 9.6 and 9.7 show the evolution of the different components of, respec-
tively, the translation vector and the rotation vector. In order to allow for a better
comparison, all graphs were produced with the same limits for the y-axis.

In general, it can be concluded from Figures 9.6 that the reconstruction al-
gorithms succeeds at retrieving the correct camera translational motion pattern.
Indeed, the translation of the camera for the Desk sequence is mainly along the
Z-axis, and with a small component in the X-direction, as estimated correctly
by the reconstruction algorithm. As the translation features no translation in the
Y -direction, we can have an estimate of the error on the translation estimation,
by looking at the estimated value for ty. Figure 9.6(b) shows that this error is
really small in comparison to the values of tz and tx. It can also be noted that
this error is further reduced over the course of the iterative process, leading us to
conclude that the optimization works well for estimating the translation vector.

The imposed camera rotation was mainly around the positive Y -axis, which
is also estimated correctly, as shown on Figure 9.7. However, in this case, it
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Figure 9.6: Evolution of the Translation Vector t using the Global Optimization
Algorithm

is obvious that the values of ωx and ωz cannot be ignored next to the value
of ωy. In reality, a small rotation around the Z-axis was also present in the
camera motion, but the estimated rotation around the X-axis must certainly be
considered erroneous. It must be noted that in this case, the initial estimate of
the rotation vector, as given by the sparse reconstruction algorithm (Algorithm
1), is a better approximation of the physical reality than the final estimate after
optimization.

This leads us to conclude that the motion update process succeeds in improv-
ing the estimate for the translation vector, but fails when the rotation vector is
concerned. The reason for this lies in the different scales of both problems. As
rotational values are much smaller than translational values, they are more sus-
ceptible to noise. In order to solve this problem, it would be required to define
different optimizers for translation, rotation and depth, which is not done in this
global optimization methodology.
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Figure 9.7: Evolution of the Rotation Vector ω using the Global Optimization
Algorithm

Figure 9.8 shows the reconstructed left and right proximity maps using the
global optimization based stereo - motion algorithm.

Left Proximity Map, Iteration 22

(a) Left proximity map, (dl
1
)

Right Proximity Map, Iteration 22

(b) Right proximity map, (dr
1
)

Figure 9.8: Left and Right Proximity Maps using the Global Optimization Algo-
rithm

Overall, the reconstruction of the proximity field correlates with the physical
reality, as imaged on Figures 9.1(a) and 9.1(b). The foreground items on the desk
appear closer (red) than the background (blue) walls and the depth gradient of
the walls can also be found back, most notably on the right proximity field. There
are, however, some serious errors in the reconstructed proximity fields:

• In both images, the edges are wrongly estimated at a very high depth (prox-
imity near zero). This is a normal effect at the borders of the image, because
at these locations, there is less information to reason with (e.g. it is impos-
sible to interpolate data points). This is a common problem and is generally
solved by extending the image canvas before the calculations or by cutting
the image canvas after the calculations. We chose not to do this, in order
not to falsify the evaluation of the base reconstruction methodology with
pre- or postprocessing techniques.

• In both images, there are some dots visible, corresponding to areas where
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Left Proximity Map, Iteration 22

(a) Frame 1, Left proximity map dl
1

Right Proximity Map, Iteration 22

(b) Frame 1, Right proximity map dr
1

Left Proximity Map, Iteration 22

(c) Frame 5, Left proximity map dl
5

Right Proximity Map, Iteration 22

(d) Frame 5, Right proximity map dr
5

Left Proximity Map, Iteration 22

(e) Frame 10, Left proximity map d
l
10

Right Proximity Map, Iteration 22

(f) Frame 10, Right proximity map d
r
10

Figure 9.9: Proximity Maps for different frames of the Desk sequence using the
Global Optimization Algorithm
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the regularization has not fully succeeded and where the holes in the initial
proximity fields, displayed in Figure 9.2, have not been filled in.

• In the left image, the depth gradient on the left wall is not represented well
by the proximity map.

• In the left image, the board in the center is not well reconstructed. The
problem here lies in a combination of a lack of stereo and motion corre-
spondences and failing regularization. For the right image, this board is
reconstructed much better, there is only a problem at its lower left, which
is estimated much to far.

• In the lower left quadrant of the right image, a rectangular smooth proximity
gradient can be observed, which does not correspond to any physical object
and is only cause by an exaggerated regularization.

The reconstruction problems indicated above lead us to conclude that the
global optimization based stereo - motion reconstruction technique is capable of
outputting a global estimate of the proximity field, but fails at delivering a high-
quality structural reconstruction, which can be used for 3D modeling.

The same problems occur for all frames of the image sequence, as shown on
Figure 9.9, which displays the reconstructed proximity maps for different frames of
the Desk sequence. The reconstructed proximity maps for the fifth and the tenth
image of the sequence suffer heavily from over-relaxation, making the proximity
field to be smeared out over large areas. The reason for this lies in the fact
that in the global optimization method, there is no way of balancing the different
constraints of the objective functional, making it possible for the regularization
constraint to become much more apparent than the data-based constraints.

9.3 Augmented Lagrangian - based Integration

Approach

In order to compare the performance of the Augmented Lagrangian based stereo
- motion reconstruction technique, this algorithm was subjected to the same tests
as the global optimization based approach.

Figure 9.10 shows the evolution of the objective function for the left and
right proximity field, according to equations 8.18 and 8.31. Both functions show
a monotonically decreasing behavior, indicating that the method converges. It
is, however, evident that the function value for the left camera is always higher
than for the right camera. As discussed in the previous section, this behavior
is due to the fact that the left camera undergoes a larger inter-frame trajectory,
which induces larger errors on the motion estimation. In contrary to the global
optimization approach, the Augmented Lagrangian method does not feature an
automated update procedure for the motion vectors. As a result, the difference
between both function values does not diminish during the iterative process like
it did for the global optimization approach, as shown in Figure 9.4. As the
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Figure 9.10: Evolution of the Objective Function using the Augmented La-
grangian Algorithm

objective function definitions are quite different, a direct comparison of function
values to the ones featured for the global optimization approach has no use, but
it can be noted that the Augmented Lagrangian method converges faster to a
stable solution than the global optimization method. This indicates that fewer
iterations will be required to converge to a solution very near the optimal value.

To evaluate the convergence properties further, a second convergence param-
eter which can be considered is the function gradient, here defined as the sum of

squared differences between successive depth fields: Gl =
∑
i,j

[(
dl
)k+1

i,j
−
(
dl
)k
i,j

]2
.

Figure 9.11 shows the evolution of this parameter during the iterative process.
The monotonically decreasing nature of Gl and Gr indicates convergence. Also
in Figure 9.11, we can note the recurring behavior that Gl lies higher than Gr,
for the reasons discussed above.

For the Augmented Lagrangian method, it is also useful to evaluate the evo-
lution of the Lagrangian multipliers during the iterative optimization process. To
this end, Figure 9.12 shows the magnitude of the 4 Lagrangian Multiplier maps(
λl

lc, λ
l
lr , λ

r
rc, λ

r
rl

)
at 3 different time steps of the iterative optimizer.

For the first iteration step state, all multipliers are initialized to a fixed value
(in this case: 1). The left column of Figure 9.12 conveys with the state of the
multipliers at the second time step, when all constraints have been evaluated once
and the Lagrangian multipliers were updated, according to equations 8.25,8.26,
8.35 and 8.36. These Lagrangian multiplier maps show relatively large values
for the Lagrangian multipliers, notably in the lower right corner. The reason for
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Figure 9.11: Evolution of the Gradient using the Augmented Lagrangian Algo-
rithm

this behavior can be found by comparing the Lagrangian multiplier maps to the
initial proximity maps, shown in image 9.2. The areas where high values for the
Lagrangian multipliers are registered correspond to areas where depth information
is missing. As such, the different constraints are violated in these regions, and the
value for the Lagrangian multipliers increases drastically. The second and third
column of Figure 9.12 show the state of the Lagrangian multipliers at respectively,
the tenth and the final time step. As can be seen, the intensity of the Lagrangian
multipliers has been reduced, because the constraints are no longer violated as
much as in the initial stage of the optimization process.

To better assess the effect of the combination of the different lagrangian mul-
tipliers during the iterative process, Figure 9.13 shows the mean value over all
pixels for λl

lc, λ
r
rc, λ

l
lr and λr

rl for each iteration step. As can be noted from Figure
9.13, the mean value of the lagrangian multipliers first rises dramatically. The
reason for this behavior lies in the fact that in this phase of optimization, the
constraints are still heavily violated and the multipliers induce large step sizes,
such that the algorithm can converge to a solution fast. It can also be seen that
the different constraints give rise to significantly different maxima for the λk, with
maxλr

rc being for example 3 times as high as maxλl
lr, due to the different expres-

sion of the constraint equations. After reaching a maximum, already quite soon
in the iterative procedure, the mean value of the lagrangian multipliers decreases
monotonically. This behavior is to be expected. Indeed, λk can be regarded as
the rate of change of the quantity being optimized as a function of the constraint
variable. As such, it should ideally converge to zero. The mean value of the la-
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Figure 9.12: Evolution of the Lagrange Multipliers using the Augmented La-
grangian Algorithm
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grangian multipliers associated to both of the “central” constraints, maxλr
rc and

maxλl
lc, decreases quite dramatically compared to the other two curves, associ-

ated to “left-to-right” constraints. Again, this is to be expected, as it is easier to
relate the left image to a central image then to the right image, which requires
a larger translation and rotation and with it, in general also a larger error. As
a result of this behavior, max (λr

rc) and max
(
maxλl

lc

)
are able to decrease to a

value very near zero, indicating good convergence, whereas maxλl
lr and maxλr

rl

suffer from a small residual error. This situation can be compared to the evolution
of the different constituents of the objective function for the global optimization
method, as shown by Figure 9.4. When comparing Figures 9.4 and 9.13, it is clear
that the augmented lagrangian based approach achieves a much better balance
in the convergence behavior of the different constraints, whereas there is a large
discrepancy between stereo and motion constraints in the case of the global opti-
mization based approach. This optimized balancing of constraints is an important
benefit of the augmented lagrangian based approach, as it effects directly the end
result.
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Figure 9.14: Evolution of the processing time per iteration using the Global Op-
timization and the Augmented Lagrangian Algorithm

Figure 9.14 compares the processing time per iteration step for the Global Op-
timization and the Augmented Lagrangian Algorithm. The purpose of this graph
is not to evaluate the algorithmic processing speed, as none of the algorithms are
optimized for speed or intended to be used in real-time applications. However,
its purpose is to compare the speed of both algorithms, evaluated on the same
computer under the same conditions.

As can be noted from Figure 9.14, the processing time per iteration step is
about constant for both algorithms. However, the Augmented Lagrangian based
method is considerably faster per iteration than the Global Optimization based
technique. Furthermore, the analysis of the convergence of both algorithms, as
presented above, taught that the Augmented Lagrangian method converges in
fewer iterations to a stable solutions. Taking these 2 factors into account, it can
be concluded that the Augmented Lagrangian - based reconstruction method is
significantly faster than the Global Optimization based approach.

As a final result of the iterative optimizer, Figure 9.15 shows the reconstructed
left and right proximity maps using the Augmented Lagrangian based stereo -
motion algorithm. The reconstructed proximity field correlates extremely well
with the physical nature of the scene. Foreground and background objects are
clearly distinguishable. The depth gradients on the left and back walls can be
clearly identified, despite the fact that there is very little texture on these walls.
The occurrence of specular reflection on the poster does not cause erroneous
reconstruction results. The only remaining errors on the proximity field are in
fact due to border effects. Indeed, at the lower left of Figure 9.15(a) and the
lower right of Figure 9.15(b), one can notice some areas where the regularization
has smoothed out the proximity field not entirely correctly. The reason for this
lies in the complete lack of initial proximity data in these areas (see Figure 9.2).
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Due to the total absence of proximity information in these areas, the algorithm
has smoothed out the solution from the neighboring regions. In general, this was
performed correctly, but due to the lack of information, the algorithm estimated
the direction of regularization wrongly at these 2 locations. As indicated before,
this is quite a normal side-effect when using area-based optimization techniques,
which is in general solved by extending the image canvas before the calculations
or by cutting the image canvas after the calculations.

(a) Left proximity map, (dl
1
) (b) Right proximity map, (dr

1
)

Figure 9.15: Left and Right Proximity Maps using the Augmented Lagrangian
Algorithm

The result of Figure 9.15 can be compared to Figure 9.8, which shows the same
output, but using the global optimization approach. From this comparison, it is
evident that the result of the Augmented Lagrangian - based reconstruction tech-
nique is far superior to the one using global optimization. The global optimization
result features numerous problems: erroneous proximity values, under-regularized
areas, over-regularized areas, erroneous estimation of discontinuities, ... None of
those problems are present in the result of the Augmented Lagrangian, as shown
on Figure 9.15.

The reconstruction results for different frames of the Desk sequence are shown
on Figure 9.16. As the camera translates along its optical axis, it approaches the
different items in the environment, leading to a proximity field with higher values.

This results in some saturation in the proximity field, most notable on the left
side of Figure 9.16(e). This is in fact not an error of the optimization scheme, but
due to the limited dynamical range of the visualization.

As already discussed for Figure 9.15, a number of border effects can be noted
for the fifth and the tenth frame as well. However, the general structure of the
dense proximity field corresponds well to the physical reality, portrayed in Figure
9.1.

To show the applicability of the presented technique towards 3D modeling,
the individual reconstruction results for all frames were integrated to form one
consistent 3D representation of the imaged environment. Figure 9.17 shows 4
novel views of the 3D model which was reconstructed as such.
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(a) Frame 1, Left proximity map dl
1

(b) Frame 1, Right proximity map dr
1

(c) Frame 5, Left proximity map d
l
5

(d) Frame 5, Right proximity map d
r
5

(e) Frame 10, Left proximity map dl
10

(f) Frame 10, Right proximity map dr
10

Figure 9.16: Proximity Maps for different frames of the Desk sequence using the
Augmented Lagrangian Algorithm

Figure 9.17 shows that a qualitative 3D model can be reconstructed using the
Augmented Lagrangian - based stereo-motion reconstruction technique. Indeed,
from the different novel viewpoints, the 3D structure of the office environment can
be clearly deduced. There are no visible outliers and all items in the scene have
been reconstructed, even those with very texture, as such fulfilling the requirement
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of dense reconstruction.

(a) Novel View 1 (b) Novel View 2

(c) Novel View 3 (d) Novel View 4

Figure 9.17: Reconstructed 3D Model of the Desk sequence using the Augmented
Lagrangian Algorithm

9.4 Conclusions

In this chapter, we have evaluated the Augmented Lagrangian based stereo -
motion reconstruction algorithm, presented in chapter 8. Therefore, we compared
the performance of this approach on a validation sequence with a classical global
optimization based approach. The global optimization - based approach defines
the classical stereo, motion and regularization constraints, combining them all
together in one single objective functional and then using a brute force approach
to minimize this objective functional. This classical optimization methodology
can hardly be called an “intelligent” approach, as it treats all constraints equally
and thus does not discriminate between the different constraints, which is in
contradiction with the physical reality that some constraints are more important
than others. For example: the objective functional, as given by equation 9.3
considers 1 equation for the expressing the stereo constraint and no less than
4 equations for expressing the motion constraint. This will cause the motion
constraint to be applied much harder than the stereo constraint, whereas the
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stereo constraint is in fact more reliable than the motion constraint, as it is not
based upon the error-prone estimation of camera motion parameters.

Another problem of the global optimization based approach is that its formu-
lation of the motion constraint depends heavily on the reliable estimation of a
dense optical flow field for both left and right images, which is hardly evident.
This expression of the motion constraint disregards the observations of chapter
6, where it was proven that the use of the image-derivatives based optical flow
constraint, in conjunction with a proper depth parametrization, can lead to good
reconstruction results in the monocular case. As such, it seems more appropriate
to build on this experience and to use a similar formulation in the binocular case.

The result of this lack of a proper balancing mechanism between different
constraints and the use of an impropriately defined motion constraint becomes
evident when evaluating the end result of the proximity field optimization, as pre-
sented by Figure 9.9, showing numerous problems of over- and under-relaxation
and structural inconsistencies. In contrast, the Augmented Lagrangian method
does provide an extended framework of balancing the data and regularization
terms, by updating the regularization parameter µ, and by updating the La-
grangian multipliers for each constraint at each iteration. Furthermore, it builds
upon the experience accumulated in the monocular reconstruction case for defin-
ing a robust motion constraint. This leads to a much better reconstruction result,
as shown in Figure 9.15. Not only does the Augmented Lagrangian based stereo -
motion reconstruction technique converge to a reconstruction result with a much
smaller overall error, the evaluation presented in this chapter also showed that it
also converges faster than the classical global optimization based technique.

The only advantage which is offered by the global optimization technique,
is that the motion parameters are also iteratively updated using this method.
For the Augmented Lagrangian based approach, we have chosen not to do this,
because this can lead to optimization problems. Indeed, due to the totally different
scale and nature of a proximity field and a motion vector, it is dangerous to
incorporate them both in a single optimization scheme. As the main goal of the
stereo - motion reconstruction algorithm is structural reconstruction, it is in this
case therefore better to focus on the structural aspect, as done by the Augmented
Lagrangian based approach.





Chapter 10

Final conclusions and future

work

10.1 Conclusions and discussion

The main contribution of this work lies in the development of a novel algorithm for
dense 3D reconstruction from monocular image sequences, as presented in chapter
5. The general concept behind this algorithm is that it combines the robustness of
traditional sparse structure from motion methods, as discussed in chapters 2 and
3 with the completeness of optical flow based dense reconstruction approaches
which were discussed in section 2.5. This was achieved by defining an integrated
framework, formulating the problem of fusing dense image data as an optimization
problem. The variational approach which was set up in chapter 5 to solve the
optimization problem considers two formulations. In chapter 6, the performance of
each of these formulations was compared to one another, which led us to conclude
that it is better to use the image derivatives based optical flow constraint, than
to use the constant image brightness - based flow constraint, as is done by most
classical approaches. A comparison to other state-of-the-art dense reconstruction
techniques learned that the proposed dense reconstruction approach performs
excellent. Without being the actual top performer for one specific quality measure,
it succeeds at estimating a globally optimal reconstruction, which balances the
accuracy and completeness measures. One of the disadvantages of the proposed
algorithm is that it suffers from a slight over-relaxation, due to the automated
process of estimating the diffusion parameter µ and therefore, the level of fine
detail can sometimes be a bit lower. However, globally, our method delivers robust
and reliable 3D reconstruction results, due to the relative absence of very large
errors. As such, it proves to be a valuable candidate for the dense reconstruction
of natural sequences.

As advocated in chapter 7, optimal depth perception requires the fusion of
different depth cues. Therefore, we extended the monocular dense reconstruction
algorithm to the binocular case, by integrating it in a dense stereo - motion re-
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construction framework. The combination of temporal and spatial information
makes it possible to reduce the uncertainty in the depth reconstruction result and
to augment the precision, but this comes at the cost of an increased computational
complexity, due to the large number of constraints to be considered. In chapter
8, we presented a novel solution to this problem, by simultaneously optimizing
the left and right proximity field, using the methodology of the Augmented La-
grangian. Chapter 9 evaluates the performance of the proposed algorithm and
compares the presented methodology to a more traditional global optimization
based approach. The experiments presented in chapter 9 show that the quality
of the results using the proposed methodology far exceeds the quality of the re-
sults of the traditional method. This allows us to conclude, that, also for the
binocular case, the proposed 3D reconstruction algorithm presents an excellent
reconstruction tool.

10.2 Future Work

Although this work showed the potential of the presented monocular and binoc-
ular 3D reconstruction techniques, the processing time required by each of those
algorithms is still too high for application in practice. Therefore, further inves-
tigations should be carried out to decrease the required calculation time. This
can be done in the first place by applying more intelligent scale-conscious nu-
merical schemes. Indeed, the presented methodology does not apply any form of
scale-based reasoning, meaning that all calculations are performed for all pixels
at maximum resolution, leading to an excessive processing time. Multi-resolution
methods like Multigrid could drastically speed up this computing process by intro-
ducing a hierarchy of scales and solving these from the coarsest scale to the finest
scale. Furthermore, most of the algorithms described in this dissertation lend
themselves very well to parallelization, which opens the door for more intelligent
programming schemes targeted at multi-core CPUs, or even for GPUs.

The main focus of the 3D reconstruction in this work has been on the produc-
tion of dense depth or proximity maps. The 3D modeling aspect, where multiple
individual reconstructions are integrated into one consistent 3D model, has re-
ceived considerably less attention. In this dissertation, we used the well-known
Iterative Closest Point algorithm for this purpose, but this method is quite old
and extremely slow. A natural extension of the presented research work, would be
to use the results obtained by the monocular and binocular reconstruction tech-
niques as input for a more modern 3D modeling algorithm. In combination with
the aforementioned decrease in processing time, this would mean that real-time
3D modeling becomes possible, even with a simple household camera.
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Appendix A

Feature Detection,

Description and Matching

A.1 Feature Detection

Since the early work of Moravec [98] for stereo matching, many point extractors
have been proposed in the literature of Computer Vision. Few comparison studies
has been done for these approaches. See for example the ones of 2000 for grey
value images [126] and color images [45]. The most popular feature detector is
probably the Harris and Stephens detector [48], which has been used first for
stereo purposes and then for image retrieval. The Harris corner detector is such
a popular interest point detector due to its strong invariance to [126]: rotation,
scale, illumination variation and image noise. The Harris corner detector is based
on the local auto-correlation function of a signal; where the local auto-correlation
function measures the local changes of the signal with patches shifted by a small
amount in different directions.
Given a shift (∆x,∆y) and a point (x, y), the distance function is defined as,

c (x, y) =
∑

W

[I(xi, yi) − I(xi + ∆x, yi + ∆y)]
2

(A.1)

where I denotes the image function and (xi, yi) are the points in the window
W centered on (xi, yi). The shifted image is approximated by a Taylor expansion
truncated to the first order terms,

I(xi + ∆x, yi + ∆y) ≈ I(xi, yi) +
[
Ix(xi, yi) Iy(xi, yi)

] [ ∆x
∆y

]
(A.2)

where Ix(xi, yi) and Iy(xi, yi) denote the partial derivatives in x and y, re-
spectively.
Substituting approximation A.2 into A.1 yields:
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c (x, y) =
[

∆x ∆y
]




∑
W

Ix(xi, yi)
2

∑
W

Ix(xi, yi)Iy(xi, yi)
∑
W

Ix(xi, yi)Iy(xi, yi)
∑
W

Iy(xi, yi)
2




[

∆x
∆y

]

(A.3)

or shorter:

c (x, y) =
[

∆x ∆y
]
HC (x, y)

[
∆x
∆y

]
(A.4)

where matrix HC (x, y) captures the intensity structure of the local neighbor-
hood. A set of features can then be obtained by computing the local maxima
of the function Det(HC(x, y)) − k.T race(HC(x, y))2 then . A modified version
of this detector has been proposed in [125] by improving the computation of the
spatial derivatives with precise gaussian derivatives. This precise version allows to
gain in repeatability, as demonstrated in [126]. The precise version of the Harris
detector has been also extended to deal with color images in [97], where it gets a
better repeatability [45].

Despite all these improvements, the Harris corner detector also suffers from
some limitations: the Harris detector (and its precise or color version) is invariant
to rotation but is very sensitive to changes in image scale. Recent works proposed
derived or new detectors to achieve scale invariance. The problem of identifying
an appropriate scale for feature detection has been studied by Lindeberg who has
described it as a problem of selection of a characteristic scale [81]. From these
considerations, several works on scale invariance have been proposed for local
features. In [80], Lindeberg has found a stable keypoint location in scale space by
searching for 3D maxima of a function based on the Laplacian normalized with
the scale. On the other hand, Lowe considered the local extrema in scale-space
of Differences of Gaussian (DoG) images [84]. Such points of interest are often
called DoG points. As demonstrated by Lowe and evaluated later in [93], the
DoG approach represents a close approximation of the Laplacian one, which is
successfully compared to other functions (the Gradient and the standard Harris
functions). Based on the DoG detector [84], Lowe has proposed the Scale Invariant
Feature Transform approach (SIFT) [85] for describing the local neighborhood of
such points. In the following, the SIFT methodology, developed by Lowe, is
introduced in order to give the reader some background information about the
feature detection, description and matching processes which are used in the sparse
reconstruction algorithm, as described in chapter 3.

SIFT features are located at scale-space maxima/ minima of a difference of
Gaussian function. The scale space of an image is defined as a function, L(x, y, σ),
that is produced from the convolution of a variable-scale Gaussian, G(x, y, σ), with
an input image, I(x, y):

L(x, y, σ) = G(x, y, σ) ⊗ I(x, y) (A.5)

where G(x, y, σ) is defined by equation C.2.
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To efficiently detect stable keypoint locations in scale space, Lowe proposes in
[85] to use scale-space extrema in the difference-of-Gaussian function convolved
with the image, D(x, y, σ), which can be computed from the difference of two
nearby scales separated by a constant multiplicative factor k:

D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ⊗ I(x, y)

= L(x, y, kσ) − L(x, y, σ)
(A.6)

In order to detect the local maxima and minima of D(x, y, σ), each sample
point is compared to its eight neighbors in the current image and nine neighbors
in the scale above and below. It is selected only if it is larger than all of these
neighbors or smaller than all of them.

An important issue is to determine the frequency of sampling in the image
and scale domains that is needed to reliably detect the extrema. The scale-space
difference-of-Gaussian function has a large number of extrema and that it would
be very expensive to detect them all. Fortunately, it is possible to detect the most
stable and useful subset even with a coarse sampling of scales.
Once a keypoint candidate has been found by comparing a pixel to its neighbors,
the next step is to perform a detailed fit to the nearby data for location, scale,
and ratio of principal curvatures. This information allows points to be rejected
that have low contrast (and are therefore sensitive to noise) or are poorly localized
along an edge. Lowe uses the Taylor expansion (up to the quadratic terms) of the
scale-space function, D(x, y, σ), shifted so that the origin is at the sample point:

D(x) = D +
∂DT

∂x
x +

1

2
xT ∂

2DT

∂x2
x (A.7)

where D and its derivatives are evaluated at the sample point and x =
(x, y, σ)T is the offset from this point. The location of the extremum, x̂, is deter-
mined by taking the derivative of this function with respect to x and setting it to
zero, giving:

x̂ = −∂
2D

∂x2

−1
∂D

∂x
(A.8)

If the offset x̂ is larger than 0.5 in any dimension, then it means that the
extremum lies closer to a different sample point. In this case, the sample point
is changed and the interpolation performed instead about that point. The final
offset x̂ is added to the location of its sample point to get the interpolated estimate
for the location of the extremum. The function value at the extremum, D(x̂), is
useful for rejecting unstable extrema with low contrast. This can be obtained by
substituting equation A.8 into A.7, giving:

D(x̂) = D +
1

2

∂DT

∂x
x̂ (A.9)

All extrema with a value of |D(x̂)| less than a certain threshold are discarded.
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For stability, it is not sufficient to reject keypoints with low contrast. The
difference-of- Gaussian function will have a strong response along edges, even if
the location along the edge is poorly determined and therefore unstable to small
amounts of noise. A poorly defined peak in the difference-of-Gaussian function
will have a large principal curvature across the edge but a small one in the per-
pendicular direction. The principal curvatures can be computed from a 2 × 2
Hessian matrix, H, computed at the location and scale of the keypoint:

H =

[
Dxx Dxy

Dxy Dyy

]
(A.10)

In order to discard edge responses, it suffices to check that the ratio of principal
curvatures is below some threshold, r:

Trace(H)2

Det(H)2
<

(r + 1)2

r
(A.11)

Since the vector of gradients consists of differences of intensity values, it is
invariant to affine changes in intensity. Due to these advantageous properties, the
SIFT feature detector was selected for use throughout this work.

A.2 Feature Description

Several feature descriptors [85],[70][11] have been proposed in the literature. The
simplest descriptor is a vector of image pixels. As an alternative, the local in-
tensity variation matrix HC can be used as a feature descriptor. Distribution
based descriptors [157] use histograms to represent different characteristics of ap-
pearance or shape, which typically results in very robust descriptors. A simple
descriptor is the distribution of the pixel intensities represented by a histogram.
The SIFT descriptor, as introduced by Lowe in [85] is a distribution based de-
scriptor.

The SIFT descriptor assigns to each feature an image location, a scale, an
orientation and a description vector, based on local image properties, as discussed
in the following paragraphs. The keypoint descriptor is represented relative to the
scale and orientation and is therefore invariant to image scale and rotation.

The scale of the keypoint is used to select the Gaussian smoothed image, L,
with the closest scale, so that all computations are performed in a scale-invariant
manner. For each image sample, L(x, y), at this scale, the gradient magnitude,
m(x, y), and orientation, θ(x, y), are computed using pixel differences:

mg(x, y) =

√
(L(x+ 1, y) − L(x− 1, y))

2
+ (L(x, y + 1) − L(x, y − 1))

2

θg(x, y) = tan−1

(
L(x, y + 1) − L(x, y − 1)

L(x+ 1, y) − L(x− 1, y)

) (A.12)

An orientation histogram is formed from the gradient orientations of sample
points within a region around the keypoint. The orientation histogram has 36
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bins covering the 360 degree range of orientations. Each sample added to the
histogram is weighted by its gradient magnitude and by a Gaussian-weighted
circular window with a scale σ that is 1.5 times that of the scale of the keypoint.
Peaks in the orientation histogram correspond to dominant directions of local
gradients. The highest peak in the histogram is detected, and then any other
local peak that is within 80% of the highest peak is used to also create a keypoint
with that orientation. Therefore, for locations with multiple peaks of similar
magnitude, there will be multiple keypoints created at the same location and
scale but different orientations.

The previous operations have assigned an image location, scale, and orienta-
tion to each keypoint. These parameters impose a repeatable local 2D coordinate
system in which to describe the local image region, and therefore provide invari-
ance to these parameters. The next step is to compute a descriptor for the local
image region that is highly distinctive yet is as invariant as possible to remaining
variations, such as change in illumination or 3D viewpoint.

To achieve this, first the image gradient magnitudes and orientations are sam-
pled around the keypoint location, using the scale of the keypoint to select the
level of Gaussian blur for the image. In order to achieve orientation invariance,
the coordinates of the descriptor and the gradient orientations are rotated relative
to the keypoint orientation.

A Gaussian weighting function with scale σ equal to one half the width of the
descriptor window is used to assign a weight to the magnitude of each sample
point. The purpose of this Gaussian window is to avoid sudden changes in the
descriptor with small changes in the position of the window, and to give less
emphasis to gradients that are far from the center of the descriptor, as these are
most affected by misregistration errors.

The keypoint descriptor allows for significant shift in gradient positions by
creating orientation histograms over 4×4 sample regions. It is important to avoid
all boundary affects in which the descriptor abruptly changes as a sample shifts
smoothly from being within one histogram to another or from one orientation to
another. Therefore, trilinear interpolation is used to distribute the value of each
gradient sample into adjacent histogram bins. The descriptor is formed from a
vector containing the values of all the orientation histogram entries. A 4×4 array
of histograms with 8 orientation bins each is used in general, which means that
the feature vector constructed for each keypoint has 4 × 4 × 8 = 128 elements.

Finally, the feature vector is modified to reduce the effects of illumination
change. First, the vector is normalized to unit length. A change in image con-
trast in which each pixel value is multiplied by a constant will multiply gradients
by the same constant, so this contrast change will be canceled by vector normal-
ization. A brightness change in which a constant is added to each image pixel
will not affect the gradient values, as they are computed from pixel differences.
Therefore, the descriptor is invariant to affine changes in illumination. However,
non-linear illumination changes can also occur due to camera saturation or due
to illumination changes that affect 3D surfaces with differing orientations by dif-
ferent amounts. These effects can cause a large change in relative magnitudes for
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some gradients, but are less likely to affect the gradient orientations. Therefore,
the influence of large gradient magnitudes is reduced by thresholding the values
in the unit feature vector to be each no larger than a threshold value of 0.2, and
then renormalizing to unit length. This means that matching the magnitudes for
large gradients is no longer as important, and that the distribution of orientations
has greater emphasis.

A.3 Feature Matching

Matching is the third step in the feature correlation finding process: a given
feature is associated with one or more features in other images. Important aspects
of matching are metrics and criteria to decide whether two features should be
associated, and data structures and algorithms for matching efficiently.

The main problem is that point descriptors are subject to different kinds of
noises: in practice, they are sensitive to image acquisition (sensors and sampling
errors), to numerical errors, to points of interest delocalization, etc. These consid-
erations show the importance of the similarity measure which must be carefully
chosen for the considered descriptor to achieve best performances.

A standard metric for computing a similarity score between two descriptors
consisting of image intensity samples, is cross-correlation. For this technique, all
features within a certain disparity limit are compared over the two images. In the
course of the matching process, there are often several candidate matches for each
feature. Initially, the one that is most correlated in image intensities at the corner
positions is selected. The strength of the match is obtained by cross-correlation
of image intensity over two pixel patches centered on each feature:

C =
∑

i,j∈patch

(I2 (i, j) − I1 (i, j))
2
, (A.13)

where In (i, j) is the image intensity at coordinate (i, j) in the nth image.
The match with the maximum strength is stored for each corner from the first
to the second image. The same process is then reversed from the second to
the first image. Matches are only accepted into the initial set if they exhibit a
maximum in both comparisons. This has the effect of removing matches which are
ambiguous because they have multiple candidate matches. Correlation matching
can work quite well when there is only a small change in illumination. However,
for significant changes in perspective and lighting, the intensities of corresponding
points can undergo large changes, resulting in the failure of correlation matching.

Therefore, SIFT features are a better candidate for matching purposes. Multi-
ple feature matchers [85][125][24] have been proposed in the literature for vector-
based descriptors as used in SIFT. These approaches usually compute the simi-
larity between descriptors by calculating the Euclidian or Mahalanobis distance
dM .

dM (v1,v2) =

√
(v1 − v2)

T
Σ−1 (v1 − v2), (A.14)
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with v1 and v2 two (SIFT-) descriptor vectors. The involved covariance ma-
trix Σ takes the different magnitudes, possible correlations and variability of the
feature components into account. The best candidate match for each feature is
then found by finding its nearest neighbor in the other image using the descriptor
vector and image location, scale and orientation information. As the SIFT key-
point descriptor has a 128-dimensional feature vector, this process would require
a lot of processing time when using an exhaustive search algorithm. Therefore,
solutions have been proposed to speed up this process.

Matching can be performed using a k-D tree, which is a balanced binary tree.
It can be thought of as a coarse grained density map of the distribution of data
points. To build the k-D tree, the database is split on the dimension with the
largest variance. This continues until each node on the tree is categorized. Each
search through the tree is first performed on the k-d tree and search times grow
logarithmically with the number of data points. The used k-D tree has a very
large dimension (128) corresponding to the dimensionality of the SIFT descriptor.
The nearest neighbor is defined as the keypoint with minimum Euclidean distance
for the invariant descriptor vector. Even with the k-D tree approach, matching
can take a long time, due to the search through a high-dimensional vector space
as offered by the descriptor vector of the SIFT-features. To address this problem,
Lowe used in [85] the Best-Bin-First (BBF) algorithm introduced by Beis in [10].
This is approximate in the sense that it returns the closest neighbor with high
probability. The BBF algorithm uses a modified search ordering for the k-D tree
algorithm so that bins in feature space are searched in the order of their closest
distance from the query location. This priority search order requires the use of
a heap-based priority queue for efficient determination of the search order. An
approximate answer can be returned with low cost by cutting off further search
after a specific number of the nearest bins have been explored. However, if the
cutoff threshold is chosen too low, the k-D tree based feature matching process
tends to loose points quite quickly. Therefore, re-initialization with new keypoints
is required to keep the number of features high enough when processing long image
sequences.
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Methods for estimating the

Optical Flow

The main goal of the optical flow estimation is to obtain smooth flow fields on
uniform regions, while maintaining the motion information on the boundaries
and on the edges of the moving objects. The main problem in obtaining a precise
optical flow field is to maintain the discontinuities [108].

In the literature, there exist numerous computational approaches for estimat-
ing optical flow, they are mainly classified into the following approaches: fre-
quency based methods, correlation based methods, model based methods, differ-
ential methods and others. The boundaries between each class of methods are
not always clear. In general, differential methods have been proved to be among
the best optical flow estimation techniques [8], which is why this section focusses
on the differential methods.

Differential methods estimate optical flow from spatio-temporal derivatives of
image intensity or filtered versions of the image. This gives a dense flow field whose
values are available throughout the image plane, the optical flow is recovered
based on local spatial-temporal changes in image intensity. The fast emerging
use of PDE-based image processing methods such as nonlinear diffusion filtering
for image enhancement and restoration [169], has motivated many researchers to
apply similar ideas to estimate optical flow.

Many differential methods can be expressed in terms of a variational problem
where the optical flow minimizes some energy. These energy functionals normally
consist of two terms: a data term, which comes from image data, e.g., inten-
sity constancy assumption; and a regularization term that contains the certain
constraints on the flow field. The functional to be minimized is expressed as

E(u, v) =

∫

Ω

(αEdata(u, v) + Eregularization(u, v))dΩ =

∫

Ω

FdΩ (B.1)

where Edata(u, v) is the optical flow constraint which belongs to the data term ,
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usually chosen as
Edata(u, v) = (∇I · u + It)

2 (B.2)

For the regularization term Eregularization(u, v), the smoothness constraint is
most considered. The most used and simple candidate is the Tikhonov quadratic
regularization. The pioneering work by Horn and Schunck [62] introduced the
Tikhonov regularization term to constrain the optical flow solution. This regu-
larization assumes that the optical flow field is smooth. Smoothing takes place
isotropically ignoring the discontinuities. It has the effect of propagating the
velocity information into the areas of uniform image intensity. It uses a global
smoothness term in order to compute an optical flow field from sparse local motion
information.

Eregularization(u, v) = ‖∇u‖2 + ‖∇v‖2 = u2
x + u2

y + v2
x + v2

y (B.3)

where ∇u,∇v measure how rapidly the velocity is changing across the image.
ux, uy, vx, vy are partial derivatives of u and v along x and y directions respectively.

It smoothes the flow field isotropically without taking into account the dis-
continuities of the flow field. It tends to blur the flow field at genuine motion
boundaries. This explains the reason why the Horn and Schunck approach cre-
ates a rather blurred optical flow field. However, in practice, the motion field is not
always smooth, discontinuities are inevitable due to boundaries, occlusions, etc.
Therefore, many researchers work on improving the Horn and Schunck approach.

Following Lucas and Kanade [87], Barron et al [9] implemented a weighted
least squares fit of a local optical flow constraint for u in each small spatial
neighborhood Ω by minimizing

min
∑

x∈Ω

W 2(x)[∇I(x, t)u + It(x, t))]
2 (B.4)

where W (x) denotes a window function introduced in order to give stronger con-
straints at the center of the neighborhood than those at the periphery.

As an alternative to the global quadratic smoothness constraint by Horn and
Schunck, Nagel and Enkelmann proposed in [105] an orientation smoothness con-
straint in which the smoothness requirement is only imposed orthogonal to the
intensity gradient in order to handle motion discontinuities. The problem is for-
mulated as the minimization of the following functional:

E(v) =

∫

Ω

(I1(x−u, y−v)−I2(x, y))2dxdy+µ

∫

Ω

trace((∇u)TD(∇I1)(∇u))dxdy

(B.5)

where µ is a positive constant, ∇u =

(
ux vx

uy vy

)
, and D(∇I1) is a regularized

projection matrix in the direction perpendicular of ∇I1 :

D (∇I1) =

(
p q
q r

)
=

1

|∇I1|2 + 2υ2




(

∂I1
∂y

)2

+ υ2 −∂I1
∂x

∂I1
∂y

−∂I1
∂x

∂I1
∂y

(
∂I1
∂x

)2
+ υ2



 , (B.6)

with υ a regularization parameter.
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Image De-Noising and

Interpolation

A raw camera image can be regarded as a 2-dimensional function. Image pro-
cessing algorithms as the ones discussed further in this text operate on these
2-dimensional functions to extract useful information. However, when working
with raw camera images, two problems often occur:

1. The image function is a highly discontinuous function. This is partly due to
discontinuities in the imaged scene, but often also due to noise superposed
on the image data.

2. The image function is a discrete function, only defined at the pixel coordi-
nate points. In general, it is desirable to work with continuous functions.

Input Image
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140

160

Intensity Pattern

Figure C.1: The Camera Image as a Discrete Discontinuous function of Space:
the left figure shows the raw camera image; the right figure shows a cross section
of the intensity pattern along the blue line in the left figure

Figure C.1 illustrates both problems by showing a cross section along a horizontal
line in the image. It can be noted that the 1-dimensional function of image
intensities is highly discontinuous in some regions.

189
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Both problems present serious problems for a dense reconstruction algorithm.
Image discontinuities due to noise are propagated in the processing pipeline and
often lead to even larger errors in the reconstructed depth field. Therefore, the
image needs to be smoothed before any further processing. Due to the fact that
the image is a discrete function, it is only possible to apply integer arithmetics
on the image coordinates, which limits the computational possibilities drastically.
As such, all images first need to be turned into continuous functions, which are
more easy to work with. To be clear, the reason for doing this is not that we
aspire to achieve an improved sub-pixel precision on the end result. By making
the image function continuous, no real new data is added, so we cannot hope to
improve the basic algorithm accuracy.

To address the first issue, the image is convolved with a Gaussian function G:

Iblurred(x, y) = I(x, y) ⊗G(x, y, σ) =

height∑

j=1

width∑

k=1

I(j, k)G(x − j, y − k), (C.1)

with the 2-dimensional Gaussian function defined as:

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 , (C.2)

For image smoothing, the standard deviation σ of the Gaussian distribution is
a fixed parameter, such that G(x, y, σ) = G(x, y). The result is a smoothed ,
more continuous image, as shown on Figure C.2d and e, when compared to the
non-blurred versions of Figure C.2b and c. Note that to obtain Figure C.2d and
e, the amount of Gaussian smoothing was exaggerated to show the effect more
clearly.

To turn the image function into a continuous function, the image is interpo-
lated. The interpolation problem can be stated as follows: Given a set of discrete
data fk, build a continuous function f(x), which optimally fits the model described
by the discrete data. Many image interpolation algorithms have been proposed
[172, 160, 71, 64]. The most simple ones are linear algorithms of the form:

Iinterpolated(x) =
∑

k∈Z2

I(k)φint(x − k), (C.3)

where an interpolated value Iinterpolated(x) at some (perhaps non-integer) coor-
dinate x(x, y) is expressed as a linear combination of the samples I(k) evaluated
at integer coordinates k = (k1, k2) ∈ Z

2, the weights being given by the values of
the synthesis function φint(x − k).

Several synthesis functions have been proposed. The synthesis function asso-
ciated to nearest-neighbor interpolation is the simplest of all, since it is made of
a square pulse. Its expression is given by:

φnearest−neighbor(x) =






0 x < − 1
2

1 − 1
2 6 x < 1

2
0 1

2 6 x
(C.4)
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Its main problem is that it is discontinuous, thus has no regularity. In fact, for
any coordinate x where it is desired to compute the value of the interpolated
function I there is only one sample I(k) that contributes.

The bilinear interpolant is made of the (continuous-signal) convolution of a
square pulse with itself, which yields a triangle, sometimes also named a hat or
a tent function. This interpolant is continuous, but not differentiable, which is
a problem for some of the algorithms used in this work which require second
order derivatives. Therefore, we use bi-cubic interpolation using cubic splines to
interpolate the image function. Bi-cubic spline interpolation operates by building
a smooth surface between each set of 4 neighboring pixels, which are considered
the corners of a regular grid, through the knowledge of the intensity values I(x)
and the derivatives Ix(x), Iy(x) and Ixy(x) at the corner points. This interpolated
surface can be written as:

Iinterpolated(x, y) =

3∑

i=0

3∑

i=0

aijx
iyj , (C.5)

with aij 16 coefficients which need to be determined by expressing constraints
on I(x) and the derivatives Ix(x), Iy(x) and Ixy(x) for each of the 4 corner
points of the grid. Bi-cubic spline interpolation delivers a smooth interpolated
image function with continuous first and second order derivatives, as required
for some of the algorithms discussed later in this text. Figure C.2 illustrates the
interpolation result by comparing the discrete raw data in Figures C.2b and c with
the continuous function built by bi-cubic spline interpolation in Figures C.2f and
g.

In order not to overload the notations, the notation I is used throughout this
text to denote both the blurred form of the image Iblurred and the continuous
interpolated form of the image function Iinterpolated.
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Figure C.2: The Effect of image blurring and interpolation operation with a) the
original input image with the region of interest indicated by the blue rectangle;
b) a zoomed view of the selected region of interest; c) the intensity function as a
3D function; d and e) the blurred versions of b and c; f and g) the interpolated
versions of b and c.
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Depth from sparse

motion-augmented stereo

D.1 Introduction

Stereo vision is one of the most active fields of research within the computer
vision community. Hence, stereo algorithms have gained great maturity over
the past decades. The focus of this research work is not to develop new stereo
vision algorithms, but rather to investigate if and how the addition of SfM motion
data could improve existing stereo algorithms. Therefore, it is not our goal to
overwhelm the reader with a detailed explication of stereo algorithms. Instead,
a short overview is given of the working principles of different stereo algorithms.
For this, we base ourselves on the excellent taxonomy [124] on dense two-frame
stereo vision algorithms, written by Scharstein and Szeliski.

Scharstein ans Szeliski based their taxonomy on the observation that most
stereo algorithms perform the following four steps [124]:

1. Matching cost computation:
The most popular matching costs are the Absolute intensity Differences
(AD) and the Squared intensity Differences (SD). In [13], Birchfield and
Tomasi proposed a matching cost that is insensitive to image sampling as
an extension to these algorithms. Instead of comparing the value of each
pixel to shifted pixel values, they compare to a linearly interpolated function
of the other image.

2. Cost support aggregation:
Comparison of raw pixel values for disparity calculation is prone to errors.
Therefore, most local methods aggregate the matching cost by summing or
averaging over a support region in the Disparity Space Image C(x, y, d). In
general, aggregation with a fixed support region can be performed using 2D
or 3D convolution. In practice mostly rectangular windows are used which
can be implemented efficiently using box-filters. Shiftable windows can also

193
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be implemented efficiently using a sliding min-filter. Another aggregation
method is iterative diffusion [123] [132]. Using this technique, the weighted
values of neighboring pixels’ costs are repeatedly added to each pixel’s cost
value.

3. Disparity computation and optimization:
For local methods, this processing step is trivial: they simply choose the
disparity associated with the minimum cost value. This is the so-called
Winner-Take-All (WTA) principle. For global methods on the other hand,
this processing step is the most important one. These methods are often
formulated as an energy minimization problem with a data term Edata(d)
representing how well the disparity function d fits with the input image pair
and a smoothness term Esmoothness(d) enforcing smoothness constraints, to
form an energy function:

E(d) = Edata(d) + λEsmoothness(d) (D.1)

Numerous techniques exist to solve equation D.1. Among the more pop-
ular ones, one can find simulated annealing and - more recently - graph
cut methods. A more efficient approach towards computing time are dy-
namic programming techniques. These approaches work by computing the
minimum-cost path through the matrix of all pairwise matching costs be-
tween two corresponding scanlines. Bobick and Intille presented in [15]
such a dynamic programming approach, which is used as a reference algo-
rithm in this work. Another optimization technique used as a reference is
the scanline optimization approach introduced by Scharstein and Szeliski
in [124]. Unlike regular dynamic programming, this method is asymmetric
and does not utilize visibility or ordering constraints. Instead, a disparity
value is assigned to each point such that the overall cost along the scanline
is minimized.

4. Disparity refinement:
Most stereo algorithms only estimate one (integer) disparity value for each
image pixel. Sub-pixel precision can be achieved by fitting correlation curves
to the integer-sampled matching costs. Other refinement techniques aim to
clean up mismatches, to fill holes, to fit surfaces, ... In the course of this
work, we do not consider these “post-processing” steps, as they are often
application dependent.

D.2 The proposed methodology

Considering the different steps of classical stereo processing algorithms, as dis-
cussed in the former section, it is clear that motion information is mostly useful
in the first step: matching cost computation. In this step, the stereo algorithm
searches a range of disparities and accords a matching cost to each disparity for
each pixel. However, next to the stereo disparity, SfM could also deliver an es-
timate of the new disparity level for each pixel. Figure D.1 explains how this is
possible.
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Figure D.1: Relations between 2 consecutive stereo frames: one 3D point X is
visible in the 4 images with projections x11 and x12 in the first left/right stereo
frame and projections x21 and x22 in the second stereo frame.

Consider 2 left and right stereo images I11 and I12, shot at time t0 by a
calibrated stereo rig such that RStereo and tStereo are known. In both images,
the projections x11 and x12 of the same 3D point X are visible. These points,
together with a lot of other feature points, are matched by a classical dense stereo
algorithm. At time t0 + k, 2 new stereo images, I21 and I22, are shot by the same
stereo vision system. Structure from Motion is applied on the left images and right
images. This leads to an estimation of the inter-frame camera motion, RSfM and
tSfM , and camera projection matrices P11, P12, P21, P22 for the 4 cameras. When
now performing the disparity search for the projection of the same 3D point X in
the new image I21, it is now possible to estimate the position of the projection of
X in image I22, x22, by:

1. Projecting point x21 to image I11: x11

2. Projecting point x11 to image I12: x12

3. Projecting point x12 to image I22: x22
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The projections of points x21 x22 can be written as:

x21 = P21X21 (D.2)

x22 = P22X22 (D.3)

Observing the stereo and SfM transformation equations,

X11 =

(
RSfM tSfM

0 1

)
X21 = TSfMX21 (D.4)

X11 =

(
RStereo tStereo

0 1

)
X12 = TStereoX12 (D.5)

X12 =

(
RSfM tSfM

0 1

)
X22 = TSfMX22 (D.6)

we obtain x22:
x22 = P22T

−1
SfMT−1

StereoTSfMP−1
21 x21 (D.7)

The disparity can then be calculated directly from the pixel positions x21 and
x22:

dSfM =
(
P22T

−1
SfMT−1

StereoTSfMP−1
21 − I

)
x21 (D.8)

The disparity, estimated through SfM as presented above, is then used as an extra
term for the cost function:

CostTotal = CostSAD/SSD +
(
d2

SfM − d2
Stereo

)
(D.9)

It is evident that the computational cost of the matching cost computation is
proportional to ImageWidth × ImageHeight × NumberOfDisparities, which rises
with the requested maximum disparity, which is a measure for the precision.
An obvious advantage would be if we could constrain the disparity search over
a smaller domain. Due to the fact that many stereo algorithms process whole
scanlines at a time, this is however not straightforward to implement.

D.3 Evaluation Methodology

In this work, we used the stereo evaluation code developed by Scharstein and
Szeliski to accompany their taxonomy paper [124]. This evaluation module en-
ables to evaluate many stereo algorithms with a multitude of parameter settings.
As it is not our goal to describe the stereo vision algorithms in detail, we refer the
reader to [124] for a more in-depth explication of the stereo algorithm parameters.

We extended the existing evaluation module, such that SfM results are taken
into account when evaluating the matching cost. Subsequently, we ran tests over
a number of algorithms and parameter settings with and without using the SfM
data to evaluate the effect of introducing SfM data in the matching cost function.

To evaluate the performance of the stereo (+SfM) algorithms, quantitative
measures are needed to estimate the quality of the computed correspondences.
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Two general approaches to this are to compute error statistics with respect to
some ground truth data [8] and to evaluate the synthetic images obtained by
warping the reference or unseen images by the computed disparity map [148].
In the current version of the software, the following two quality measures are
computed based on known ground truth data:

• RMS (Root-Mean-Squared) error (measured in disparity units) between the
computed disparity map dC(x, y) and the ground truth map dT (x, y):

R =

√√√√
1

N

∑

(x,y)

|dC(x, y) − dT (x, y)|2 (D.10)

where N is the total number of pixels.

• Percentage of bad matching pixels:

B =
1

N

∑

(x,y)

(|dC(x, y) − dT (x, y)| > δd) (D.11)

where δd = 1.0 is a disparity error tolerance.

One problem of evaluating the stereo + SfM performance is that most existing
datasets or sequences available on the net focus on one of both applications, so
there are not a lot of standard sequences for moving stereo vision. To remedy
this, a custom motion-stereo sequence was recorded. This sequence is shown in
Figure D.2 and was shot using a BumbleBee2 stereo vision system, developed by
Point Grey. This stereo vision system consists of 2 1/3” progressive scan color
CCD cameras. This stereo vision system is capable of outputting real-time high-
accuracy depth range images, which are used as ground truth input.

In total, 166 different parameter settings for the stereo algorithms were com-
pared. In order to summarize the results, 33 algorithms / parameter settings were
selected from this list. These algorithms are listed in table D.1 and were selected
on the basis that:

1. they give a good representation of all stereo algorithm options.

2. they provide good results using the classic stereo algorithm (without SfM).

The reason for the second constraint is that adding SfM data is no magical method
for making totally erroneous stereo measurements become better again. Tests
have shown that when the stereo algorithm fails (e.g. due to erroneous parameter
settings), adding SfM data yields no improvement to the situation. This is to
be expected, as one should not forget that the proposed method still uses stereo
matching as base information.

Table D.1 explains all chosen algorithms and parameter settings as used by
the evaluation module presented in [124].
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Figure D.2: Some images of a Motion-Stereo sequence.
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D.4 Results

Figure D.13 shows for all frames of the sequence the depth map obtained by
stereo and stereo + SfM. As can be noted, the differences between both depth
maps are in general minor and visually not clearly distinguishable. Therefore, it
is necessary to analyze the results using both methodologies quantitatively.

For this series of tests, 4 quantitative measures are taken into consideration
and evaluated for each of the 166 base stereo algorithms / parameter settings.
These are:

1. The percentage of bad matching pixels according to equation D.11

2. The RMS (Root-Mean-Squared) error (measured in disparity units) between
the computed disparity map dC(x, y) and the ground truth map dT (x, y)
according to equation D.10

3. The Final Energy left in the disparity image according to equation D.1

4. Total Execution Time in seconds

The reference image for this image sequence is frame 12, which corresponds to
the top row image of Figure D.13. Figures D.3 through D.8 show the sorted
quantitative results for different frames of the sequence. These figures do not allow
a per-algorithm evaluation as there are too many considered algorithms, they are
meant to show the general usefulness of the proposed stereo+SfM method. As
it is impossible to describe all these stereo algorithms on the graphs, they were
numbered from 1 to 166, which explains the caption for the x-axis of Figures D.3
to D.8.

When comparing the bad pixel ration (top left graph) on image D.3, it is clear
that the proposed stereo + SfM approach (indicated by a dash-dotted blue line)
consistently delivers significantly better results than using stereo only (continuous
black line). The same holds true for the RMS error (top right graph), although
the difference is less clear due to the scaling. For the final energy present in
the disparity image after optimization (bottom left graph), adding SfM informa-
tion does not seem to yield any significant improvement. Of course, adding an
additional matching cost for taking SfM data into account requires more process-
ing time. As indicated by the bottom right graph of image D.3, incorporating
SfM data adds about 3 seconds to the total stereo+SfM processing time. Note
that the goal of this study was to perform a comparative evaluation and we were
therefore more interested in relative timing than in achieving the fastest possi-
ble implementation. Therefore, all algorithms were run in debug mode without
optimizations. Most stereo algorithms implemented by Scharstein and Szeliski in
their evaluation module run roughly 10 times faster when built in release mode
and the more simple algorithms (e.g. SAD or SSD with a rectangular window)
achieve real-time performance at over 20 frames per second using dedicated hard-
ware (FPGA, GPU, ...). The added time penalty for using SfM data is not that
high, so if the SfM processing scales in the same way towards optimization as
stereo processing, the final framerate should still be reasonable, even using SfM
data.
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Figure D.3: Pure Stereo and Stereo + SfM results compared for 166 different base
stereo algorithms / parameter settings. Results using stereo only are indicated
by a continuous black line; results using stereo + sparse SfM are indicated by a
dash-dotted blue line. Top Left: Bad pixel ratio according to equation D.11; Top
Right: RMS error according to equation D.10; Bottom Left: Final Energy left in
the disparity image according to equation D.1; Bottom Right: Total Execution
Time in seconds for each algorithm. These are the results for frame 11 from the
sequence shown in Figure D.2, where the reference image is image 12.
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Figure D.4: Pure Stereo and Stereo + SfM results compared for 166 different base
stereo algorithms / parameter settings. Results using stereo only are indicated
by a continuous black line; results using stereo + sparse SfM are indicated by a
dash-dotted blue line. Top Left: Bad pixel ratio according to equation D.11; Top
Right: RMS error according to equation D.10; Bottom Left: Final Energy left in
the disparity image according to equation D.1; Bottom Right: Total Execution
Time in seconds for each algorithm. These are the results for frame 9 from the
sequence shown in Figure D.2, where the reference image is image 12.
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Figure D.5: Pure Stereo and Stereo + SfM results compared for 166 different base
stereo algorithms / parameter settings. Results using stereo only are indicated
by a continuous black line; results using stereo + sparse SfM are indicated by a
dash-dotted blue line. Top Left: Bad pixel ratio according to equation D.11; Top
Right: RMS error according to equation D.10; Bottom Left: Final Energy left in
the disparity image according to equation D.1; Bottom Right: Total Execution
Time in seconds for each algorithm. These are the results for frame 7 from the
sequence shown in Figure D.2, where the reference image is image 12.
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Figure D.6: Pure Stereo and Stereo + SfM results compared for 166 different base
stereo algorithms / parameter settings. Results using stereo only are indicated
by a continuous black line; results using stereo + sparse SfM are indicated by a
dash-dotted blue line. Top Left: Bad pixel ratio according to equation D.11; Top
Right: RMS error according to equation D.10; Bottom Left Final Energy left in
the disparity image according to equation D.1; Bottom Right: Total Execution
Time in seconds for each algorithm. These are the results for frame 5 from the
sequence shown in Figure D.2, where the reference image is image 12.
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Figure D.7: Pure Stereo and Stereo + SfM results compared for 166 different base
stereo algorithms / parameter settings. Results using stereo only are indicated
by a continuous black line; results using stereo + sparse SfM are indicated by a
dash-dotted blue line. Top Left: Bad pixel ratio according to equation D.11; Top
Right: RMS error according to equation D.10; Bottom Left: Final Energy left in
the disparity image according to equation D.1; Bottom Right: Total Execution
Time in seconds for each algorithm. These are the results for frame 3 from the
sequence shown in Figure D.2, where the reference image is image 12.
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Figure D.8: Pure Stereo and Stereo + SfM results compared for 166 different base
stereo algorithms / parameter settings. Results using stereo only are indicated
by a continuous black line; results using stereo + sparse SfM are indicated by a
dash-dotted blue line. Top Left: Bad pixel ratio according to equation D.11; Top
Right: RMS error according to equation D.10; Bottom Left: Final Energy left in
the disparity image according to equation D.1; Bottom Right: Total Execution
Time in seconds for each algorithm. These are the results for frame 1 from the
sequence shown in Figure D.2, where the reference image is image 12.
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When comparing figures D.3 through D.8, it becomes clear that the advantage
of using SfM data reduces when the difference between the reference image (image
12) and the observed image becomes large. In this case, SfM is no longer able to
accurately estimate the camera motion and using the resulting SfM data yields
few benefits over normal stereo. This is the situation on Figure D.8, where the
difference between black (stereo) and blue (stereo + SfM) curves is negligible
(except for the timing of course). To the same extent, the advantage of using SfM
data reduces when the difference between the reference image and the observed
image is too small. There thus exists an optimal inter-frame gap or framerate
which can be estimated by calculating the GRIC criterion using equation 3.1.

Figure D.9 shows the sorted bad pixel ratio averaged over the 11 frames of the
sequence shown in Figure D.2, according to equation D.11, for the selection of
33 different base stereo algorithms / parameter settings with and without using
sparse SfM data. From this graph, we can note that optimization methods like
Dynamic Programming and Scanline Optimization are certainly valuable, as their
results can generally be found to the right, which means the bad pixel ratio is low.
However, the benefit of using SfM data in conjunction with an optimization step
like Dynamic Programming or Scanline Optimization is also lower: The blue and
black lines are more separated for “simple” algorithms like SAD window than
for algorithms using Dynamic Programming or Scanline Optimization. It thus
seems that adding SfM data into the stereo matching process is mostly useful for
“simple” stereo algorithms.

Figure D.10 shows the sorted RMS error averaged over the 11 frames of the
sequence shown in Figure D.2, according to equation D.10 for a selection of 33 dif-
ferent base stereo algorithms / parameter settings with and without using sparse
SfM data. Here, the result is a bit more diverse, but still, it can be noted that
optimization-based methods like Dynamic Programming and Scanline Optimiza-
tion can generally be found to the right, which means their RMS error is low and
that simpler methods can be found to the left. Concerning the RMS error, the
benefit of using SfM data is about equal among all algorithms.

Figure D.11 shows the sorted final energy averaged over the 11 frames of
the sequence shown in Figure D.2, according to equation D.1 for a selection of
33 different base stereo algorithms / parameter settings with and without using
sparse SfM data. It is clear that using SfM data yields no better results as
far as the final energy present in the disparity image is concerned. This also
wasn’t expected as adding the SfM information changes nothing to the energy
minimization process itself, only the input differs.

Figure D.12 shows the sorted total execution time averaged over the 11 frames
of the sequence shown in Figure D.2, for a selection of 33 different base stereo
algorithms / parameter settings with and without using sparse SfM data. The
added time penalty for incorporating SfM data is about 3 seconds, regardless of
the algorithm. These time measurements were taken without any optimization
and in debug mode, only to compare the relative processing time of stereo only
versus stereo + SfM. As can be observed, the (sparse) SfM calculation needs
less time than the (dense) stereo calculation, but joined together, the extra SfM
calculation adds a significant time penalty to the total processing time.
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Figure D.9: Bad pixel ratio according to equation D.11 for a selection of 33 dif-
ferent base stereo algorithms / parameter settings with and without using sparse
SfM data. Results obtained using stereo only are indicated by a continuous black
line; results obtained using stereo + sparse SfM are indicated by a dash-dotted
blue line. These are the averaged results over the 11 frames from the sequence
shown in Figure D.2.
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Figure D.10: RMS error according to equation D.10 for a selection of 33 different
base stereo algorithms / parameter settings with and without using sparse SfM
data. Results obtained using stereo only are indicated by a continuous black line;
results obtained using stereo + sparse SfM are indicated by a dash-dotted blue
line. These are the averaged results over the 11 frames from the sequence shown
in Figure D.2.
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Figure D.11: Final energy according to equation D.1 for a selection of 33 different
base stereo algorithms / parameter settings with and without using sparse SfM
data. Results obtained using stereo only are indicated by a continuous black line;
results obtained using stereo + sparse SfM are indicated by a dash-dotted blue
line. These are the averaged results over the 11 frames from the sequence shown
in Figure D.2.
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Figure D.12: Total execution time for a selection of 33 different base stereo al-
gorithms / parameter settings with and without using sparse SfM data. Results
obtained using stereo only are indicated by a continuous black line; results ob-
tained using stereo + sparse SfM are indicated by a dash-dotted blue line. These
are the averaged results over the 11 frames from the sequence shown in Figure
D.2.
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Figure D.13: Evaluation of stereo results over a sequence of 12 images showing
from left to right: the left input image, the right input image, the disparity map
as calculated using stereo alone and finally the disparity map as calculated by the
proposed SfM aided stereo algorithm. Note that for the first (reference) frame,
no SfM data can be obtained, so in this case there is no result. The underlying
stereo algorithm used for this evaluation is the Dynamic Programming approach
with SAD matching (parameters: occlusion cost = 20, smoothness = 20).
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