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Abstract: In this paper, we present a control architecture for an intelligent outdoor mobile robot. This enables the 
robot to navigate in a complex, natural outdoor environment, relying on only a single on-board camera as sensory 
input. This is achieved through a twofold analysis of the visual data stream: a dense structure from motion 
algorithm calculates a depth map of the environment and a visual simultaneous localization and mapping 
algorithm builds a map of the surroundings using image features. This information enables a behavior-based robot 
motion and path planner to navigate the robot through the environment. In this paper, we show the theoretical 
aspects of setting up this architecture.  
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1. Introduction 

1.1. Goal and Problem Statement 
Modern intelligent robots are generally equipped with an 
abundance of sensors like for example GPS, laser, 
ultrasound sensors, etc to be able to navigate in an 
environment. However, this stands in contrast to the 
ultimate biological example for these robots: us humans. 
Indeed, humans seem perfectly capable to navigate in a 
complex, dynamic environment using only vision as a 
sensing modality. This constatation inspired us to 
develop a visually guided intelligent mobile robot. 
As the goal of this research project is to develop an 
intelligent autonomous mobile robot, one should first 
pose the question: "What is an intelligent autonomous 
mobile robot or what does it do?" This is of course largely 
task-dependent, yet there are some capabilities which 
should necessarily be present. 
First, to navigate autonomously in an unknown 
environment, the robot needs to dispose of a means to 
detect and avoid obstacles. Numerous sensors exist which 
can detect obstacles in the path of the robot. These 
include ultrasound sensors, laser range finders, infrared 
sensors, etc. When using visual input, obstacles can be 
detected through 3D reconstruction. In this paper, a 
technique to perform dense 3D reconstruction using 
input data from only one camera is presented. 
Next, the robot needs some degree of self-consciousness, 
meaning that it needs to be able to infer its current status 
in relation to the outside world from its sensor readings. 
This problem is also referred to as the Simultaneous 

Localization and Mapping (SLAM) problem. Classical 
SLAM solving techniques use input data from laser range 
scanners or ultrasound sensors. In this paper, a technique 
to perform SLAM using only visual input data is presented. 
Third, the robot must dispose of some sort of 
"intelligence" to execute the tasks or objectives it has been 
given. These objectives can be multiple and may be in 
contradiction with one another. In this paper, a technique 
to solve the multi-objective decision making problem is 
presented. 
We will now introduce a solution to solve these three 
issues and relate this to classical approaches.  

1.2. The proposed approach towards 3D reconstruction and its 
relation to previous work 
Recovering 3D-information has been in the focus of 
attention of the computer vision community for a few 
decades now, yet no all-satisfying method has been found 
so far. Most attention in this area has been on stereo-
vision based methods, which use the displacement of 
objects in two (or more) images. The problem with these 
vision algorithms is that they require the matching of 
feature points, which is not easy for untextured surfaces. 
Where stereo vision must be seen as a spatial integration 
of multiple viewpoints to recover depth, it is also possible 
to perform a temporal integration. The problem arising in 
this situation is known as the "Structure from Motion" 
(SfM) problem and deals with extracting 3-dimensional 
information about the environment from the motion of its 
projection onto a two-dimensional surface (Chiuso, A.; 
Favaro, P.; Jin, H. & Soatto, S., 2002). 
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In general, there are two approaches to SfM. The first, 
feature based method is closely related to stereo vision. It 
uses corresponding features in multiple images of the 
same scene, taken from different viewpoints. The basis 
for feature-based approaches lies in the early work of 
Longuet-Higgins (Longuet-Higgins, H.C., 1981), 
describing how to use the epipolar geometry for the 
estimation of relative motion. These techniques have 
matured a lot over the past two decades, but a remaining 
problem is that they deliver only sparse 3D information. 
The second approach for SfM uses the optical flow field 
as an input instead of feature correspondences. The 
applicability of the optical flow field for SfM calculation 
originates from the epipolar constraint equation which 
relates the optical flow u(u,v) to the relative camera 
motion (translation t and rotation ω) and 3D structure, 
represented by the depth parameter d=1/Z, in a non-linear 
fashion, as indicated by equation 1:  
 

 u = Qωω + dQtt  (1) 

with the matrices Qω and Qt, defined as:  
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with f the focal length of the camera. 
In (Hanna, K.J., 1991), Hanna proposed a method to solve 
the motion and structure reconstruction problem by 
parameterizing the optical flow and inserting it in the 
image brightness constancy equation. More popular 
methods try to eliminate the depth information first from 
the epipolar constraint and regard the problem as an 
egomotion estimation problem. Bruss and Horn already 
showed this technique in the early eighties using 
substitution of the depth equation (Bruss, A.R. & Horn, 
B.K.P., 1983), while Jepson and Heeger later used 
algebraic manipulation to come to a similar formulation 
(Heeger, D.J. & Jepson, A.D., 1992). Optical flow based 
SfM approaches are more suited to address dense 
reconstruction problem, as they can go out from the 
optical flow over the whole image field. 
 

 
Fig. 1. The general approach of the proposed dense 3D 
reconstruction algorithm: merging sparse information 
(epipolar geometry represented by the fundamental 
matrix F) with dense information (the optical flow u). 

In order to bring together the advantages of both sparse 
and dense SfM theorems, we aim to fuse both methods 
into an integrated structure recovery algorithm. This 
leads to an approach as sketched by Fig. 1, showing two 
main input paths to the dense reconstruction: sparse 
epipolar reconstruction and dense optical flow 
estimation. 

1.2. The proposed approach towards Visual SLAM and its 
relation to previous work 
In case of navigation in an unknown environment 
starting from an unknown location with no a priori 
knowledge, a SLAM system (Davison, A. J.; Reid, I. D.; 
Molton, N. D. & Stasse, O., 2007) simultaneously 
computes an estimate of the robot location and the 
landmark locations. While continuing its motion, the 
robot builds a complete map of landmarks and uses these 
to provide continuous estimates of the vehicle location. 
Techniques for solving the SLAM problem have focused 
in using probabilistic methods, taking account the 
uncertainty in the measurement. Two main groups of 
techniques have been considered depending on the way 
of representing such uncertainty: a) Gaussian filters and 
b) non-parametric filters, which are discussed in the 
following paragraphs. 
The most well-known Gaussian filter for treating the 
SLAM problem is the Extended Kalman Filter (EKF), 
where the belief is represented by a Gaussian 
distribution. The EKF estimates recursively the state of a 
dynamic system using data from sensors. It uses only 
information from previous steps and the actual 
measurements in order to estimate the current state and 
update the system. Whenever a landmark is observed by 
the on-board sensors of the robot, the system determines 
whether it has been already registered and updates the 
filter. In addition, when a part of the scene is revisited, all 
the gathered information from past observations is used 
by the system to reduce uncertainty in the whole 
mapping. This strategy is known as closing-the-loop. 
In EKF-based SLAM approaches (Davison, A. J.; Reid, I. 
D.; Molton, N. D. & Stasse, O., 2007), the environment is 
represented by a stochastic map ˆ= ( , )x PM ,  where x̂ is 
the estimated state vector, containing the location of the 
vehicle Ry  and the features of the environment 

1F Fn
x x" , 

and P is the estimated error covariance matrix, where all 
the correlations between the elements of the state vector 
are defined. All data is represented in the same reference 
system. The map M  is built incrementally, using the set 
of measurements kz  obtained by sensors such as cameras 
or lasers. For each new acquisition, a data association 
process is carried out, searching correspondences 
between the new acquired features and the previously 
perceived ones. 
Simultaneous Localization and Mapping (SLAM) 
problem has also been tackled by using non-parametric 
filters such as the histogram filter or the particle filter (PF) 
(Stachniss, C.; Grisetti, G. & Burgard, W., 2005). The main 
difference compared to Gaussian filters is the possibility 
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of dealing with multimodal data distribution, using 
multiple values (particles) to represent the belief. That is, 
each estate yt of the environment can be represented for 
multiple particles, one for each hypothesis. 
In comparison with EKF-based filters, a PF presents more 
robustness to periods of considerably uncertainty and 
sensor noise, due to its multi-modal data distribution. 
However, Gaussian filters usually have a polynomic 
computational cost, whereas the computational cost of a 
non-parametric filter may be exponential. During last 
years, several interesting approaches based on particle 
filters have been presented as an alternative to EKF-based 
techniques, with the aim of solving the SLAM problem. 
Stachniss et al. propose in (Stachniss, C.; Grisetti, G. & 
Burgard, W., 2005) the use of a Rao-Blackwellized particle 
filter for local map representation, combined with some 
techniques for particle reduction and a "Closing the loop" 
strategy. The strongest point of this approach is the 
possibility of dealing with periods of great uncertainty, 
due to its ability to recover already vanished hypotheses. 
This represents a considerable improvement with respect 
to EKF-based approaches, which do not allow to recover 
hypotheses that have been already vanished in the past. 
Alternatively, Montemerlo et al. propose in (Montemerlo, 
M.; Thrun, S.; Koller, D. & Wegbreit, B. 2002) a new PF-
based approach named FastSlam, which combines the use 
of particles with Kalman filters for map representation. 
That is, each particle [ ]

t
my  (composed by all the 

hypothesis of the robot pose estimation at time state t) 
has, at the same time, K Kalman filters representing each 
landmark pose estimation with respect to the vehicle 
pose. This hybrid method has provided reliable solutions 
to several problems of EKF-based approaches such as the 
high computational cost that requires updating filters 
containing a considerable amount of data. That is, since 
the problem is divided into multiple small Kalman Filters 
containing only Gaussians of two dimensions (for 2D 
feature location), the computational cost can be reduced 
to O(MlogK), where M is the number of particles and K 
the number of landmarks. However, if the complexity of 
the environment requires the use of 3D data, then the 
computational cost increases considerably, forcing the 
reduction of the number of features at each step, which 
has a direct effect on the quality of the results. 
The main open problem of the current state of the art 
SLAM approaches and particularly vision based 
approaches is mapping large-scale areas (Davison, A. J.; 
Reid, I. D.; Molton, N. D. & Stasse, O., 2007). Relevant 
shortcomings of this problem are, on the one hand, the 
computational burden, which limits the applicability of 
the EKF-based SLAM in large-scale real time applications 
and, on the other hand, the use of linearized solutions 
which compromises the consistency of the estimation 
process. Added to this, vision poses an extra challenge 
over lasers for the SLAM problem, due to the very high 
input data rate, the inherent 3D quality of visual data, the 
lack of direct depth measurement and the difficulty in 

extracting long-term features to map (Davison, A. J.; Reid, 
I. D.; Molton, N. D. & Stasse, O., 2007). Due to those 
factors, there have been relatively few successful vision-
only SLAM systems which are able to construct persistent 
and consistent maps while closing loops. 
The computational complexity of the EKF stems from the 
fact that covariance matrix Pt represents every pairwise 
correlation between the state variables. Incorporating an 
observation of a single landmark will necessarily have an 
affect on every other state variable. This makes the EKF 
computationally infeasible for SLAM in large 
environments. Methods like Network Coupled Feature 
Maps (Bailey, I. 2002), Sequential Map Joining (Estrada, 
C.; Neira, J. & Tardos, J. D., 2005), and the Constrained 
Local Submap Filter (CRSF) (Williams, S. B., 2001)  have 
been proposed to solve the problem of SLAM in large 
spaces by breaking the global map into submaps. This 
leads to a more sparse description of the correlations 
between map elements. When the robot moves out of one 
submap, it either creates a new submap or relocates itself 
in a previously defined submap. By limiting the size of 
the local map, this operation requires a constant time per 
step. Local maps are joined periodically into a global 
absolute map in a O(N 2) step. However, these 
computational gains come at the cost of slowing down 
the overall rate of convergence.The Constrained Relative 
Submap Filter (Williams, S. B., 2001) proposes to maintain 
the local map structure. Each map contains links to other 
neighboring maps, forming a tree. The method converges 
by revisiting the local maps and updating the links 
through correlations. This method allows to reduce the 
computation time and memory requirements and to 
obtain accurate maps of large environments in real time. 
In our study, we are interested in the visual navigation of 
a mobile robot in large spaces. We proposed a procedure 
to build a global representation of the environment based 
on several size limited local maps built using a modified 
version of the vision based SLAM approach called 
monoSLAM algorithm of Davdison et al. (Davison, A. J.; 
Reid, I. D.; Molton, N. D. & Stasse, O., 2007). The 
monoSLAM algorithm is a real-time SLAM approach for 
indoors in room-size domains, which uses an Extended 
Kalman Filer (EKF) to recover the 3D trajectory of a 
monocular camera, moving rapidly through an unknown 
scene. The role of the map, in this work, is primarily to 
permit real-time localization rather than to serve as a 
complete scene description. 

1.3. The proposed approach towards behavior-based navigation 
and its relation to previous work 
In the behavior-based spirit, a complex control problem is 
divided into a set of simpler control problems that 
collectively solve the original complex control problem. 
To do this, it is thus necessary to address the problem of 
coordination of the activities of the behaviors so to satisfy 
the initial complex system's control objectives. 
The behavior fusion problem can be formulated as a 
multiple objective decision making (MODM) problem 
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(Pirjanian, P., 1998). The formalism of MODM can be cast 
to encompass ideas from behavior-based system 
synthesis, where each behavior is cast as an objective 
function estimator. This means that each behavior 
calculates an objective function over a set of permissible 
actions. The action that maximizes the objective function 
corresponds to the action which best satisfies that 
objective. Multiple behaviors are blended into a single 
more complex behavior that seeks to select the action that 
satisfies simultaneously all the objectives as well as 
possible. In this approach action selection is comprised of 
generating and then selecting a (feasible) set of satisfying 
solutions among the set of solutions that are optimal. 
An important characteristic of MODM problems is that 
the multiple objectives can be competitive and conflicting, 
i.e., the improvement in one can be associated with a 
deterioration in another. Thus ranking of the alternatives 
according to a single measure of attainability (criterion) 
becomes more difficult if not impractical. Additionally, 
optimal solutions might not exist and thus the concept of 
optimality should be modified to endow similar and 
useful concepts in MODM problems (Keen, P.G.W., 1977). 
Mathematically, a multi-objective decision problem can 
be represented in the following way:  

 1( ),..., ( ) .arg max n
x

o x o x⎡ ⎤⎣ ⎦   (3) 

Where 1( ),..., ( )no x o x  are a set of system objectives, tasks 

or criteria and where ( )1= ,..., n
nx x x R∈  is a 

n-dimensional decision variable vector. The degree of 
attainment of a particular alternative x, with respect to 
the kth objective is given by ( )ko x . nX R⊆  defines the set 
of feasible alternatives. 
A common method for solving a MODM problem is the 
weighting method. This method is based on scalar vector 
optimization and is formulated in the following way:  

 *

=1
( ) .= arg max

n

i i
x X i

w o xx
∈

∑   (4) 

 where wi are weights normalized so that 
=1

= 1
n

i
i

w∑ . 

This method appears simple, but has some serious 
disadvantages:   
• It is not possible for a human decision maker to input 

subjective knowledge or preferences into the decision 
making process.  

• It is not possible to take into account the inherent 
errors in the sensor measurements used by the 
different behaviors into the decision making process.  

 To address these issues, we present a MODM solving 
technique that:   
• Incorporates a human decision maker's preferences by 

allowing goal programming.  
• Takes into account the inherent errors in the sensor 

measurements when fusing the behaviors.  

  
Fig. 2. The proposed control architecture for a visually 
guided robot. A camera data stream is analyzed by a 
Dense Structure from Motion and a Visual SLAM 
algorithm. This information serves as input for obstacle 
avoidance and goal seeking behaviors which are fused to 
form one consistent and globally optimal robot 
command. 

1.4. The proposed control architecture 
The robot control architecture brings together the 
different capabilities described above in a consistent 
framework. This architecture is sketched in Fig. 2. 
As vision is the only sensing capability regarded, it all 
starts with a camera stream which serves as input for a 
structure from motion and visual SLAM algorithm. The 
structure from motion algorithm calculates a depth map 
corresponding to the current input image. This depth 
map serves as input for an obstacle avoidance behavior 
which aims to steer the robot away from obstacles. On the 
other hand, the Visual SLAM algorithm calculates and 
updates a map of the environment and localizes the robot 
on this map using tracked visual features. A global path 
planner decomposes the trajectory to a set goal position 
into a number of intermediate waypoints. These 
waypoints serve as input for a goal seeking behavior 
which aims to drive the robot into the direction of the 
current waypoint. To conclude the actions proposed by 
the different behaviors are fused together to form one 
consistent command to be sent to the robot. 
The remains of this paper is organized as follows: in 
section 2 the 3D reconstruction technique is discussed 
more in detail, whereas section 3 focusses on the Visual 
SLAM and section 4 describes the development and 
fusion of the different behaviors. 

2. 3D Perception through Structure from Motion 

As described before, the proposed dense structure from 
motion 3d reconstruction technique aims to combine the 
advantages of current state of the art sparse and dense 
structure from motion techniques. We will therefore 
concentrate the discussion here on the integration process 
of sparse and dense reconstructions and not on the 
description of these classical reconstruction techniques 
themselves. The global scheme for the dense SfM 
reconstruction approach is depicted by Fig. 3. 
From Fig. 3, it is clear that the input data (an image 
sequence from an on-board camera) follows 2 separate 
processing tracks: a sparse track and a dense one. 
The sparse track follows the following approach, loosely 
based upon the work of Torr, Zissermann and Hartley 
(Torr, P. & Zisserman, A., 1997), (Hartley, R.I. &  
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Fig. 3. The proposed dense structure from motion 
reconstruction approach. An input sequence is processed 
through a dense and a sparse track. Sparse features are 
matched, allowing epipolar reconstruction and motion 
estimation. Dense optical flow is calculated, allowing the 
backprojection of a dense depth map. Dense and sparse 
information is combined again using PDE-based 
optimization. A volumetric model can be built from the 
resulting depth map. 

Zisserman, A., 2004) and estimates sparse 3D feature 
reconstructions and the motion (and hence position) of 
the camera: 
1. SIFT features (Lowe, D.G., 2004) are detected and 

matched.  
2. Three-view geometry reconstruction is performed by 

estimating the trifocal tensors across image triplets.  
3. After the trifocal tensors are estimated, the 

fundamental matrices F and camera matrices P can be 
calculated by decomposing the trifocal tensor.  

4. From this information, sparse 3D structure and 
motion can be calculated  

5. Self calibration is performed  
6. Bundle adjustment is used to produce globally 

optimal 3D structure and camera motion estimates.  
The dense track employs the dense optical flow 
estimation method presented by Yang and Sahli in (Yang, 
L. & Sahli, H., 2005). Using this dense optical flow u and 
knowing the camera motion parameters (translation t and 
rotation ω) from the sparse analysis, equation 1 can be 
solved for the depth parameter d. The result of this is a 
first estimate of a dense depth map. 
The problem with this depth map is that it is generally 
very noisy as the backprojection process of solving 
equation 1 is very sensitive to errors in the estimation of 
the motion parameters. It is thus necessary to optimize 
this result and to maximize the information which can be 
retrieved out of the given data. To tackle the various data 
inputs and constraints imposed on the depth 
reconstruction, energy based methods are very well 
suited. Here, we follow the approach proposed by 
Alvarez in (Alvarez, L. ; Deriche, R.; Sanchez, J. & 
Weickert, J., 2002). Alvarez proposes an energy based 
approach to estimate a dense disparity map between two 
(stereo) images. Each of the two input paths to the dense 
reconstruction process, as sketched by Fig. 1, needs to be 
present in the constraint equations. However, only using 

this information would lead to problems at spatial 
(image) and temporal (movement) discontinuities. 
Therefore, an anisotropic smoothing term was added to 
preserve the depth discontinuities at image 
discontinuities. Here, we'll elaborate more on the 
different constraint equations which can be used for this 
purpose. 
The image brightness constraint is based upon the 
Lambertian assumption that corresponding pixels have 
equal grey values. To express this, Alvarez first derived a 
simplified expression for the disparity which is based 
upon the knowledge of the epipolar geometry, calculated 
before by the sparse structure and motion estimation 
algorithms. This formulation can be expressed as:  

 φ1 = (I1(x,y) − I2(x + u(λ(x,y)),y + v(λ(x,y))))2. (5) 

 where I1 and I2 represent two image frames, λ is a depth 
parameter to be estimated and u and v represent 
respectively the horizontal and vertical part of the optical 
flow u(u,v). The constraint above does not contain any 
diffusion terms in feature space. To increase the 
numerical stability, we add a regularization term. This 
term has to ensure that discontinuities and smooth areas 
are well preserved by the reconstruction process. We 
chose to use the Nagel and Enkelmann regularization 
model, as this method has already been proven successful 
in a range of independent experiments. The 
regularization term has the following form:  

 ( ) ( )( )2 = .
T

D Iφ λ λ∇ ∇ ∇   (6) 

 Where D is a regularized projection matrix, leaving the 
energy functional to be minimized as:  

 1 2= .E dφ μφ
Ω

+ Ω∫                     (7) 

where the integration domain is the image field and μ is a 
regularization parameter. This formulation can be 
introduced into the Euler-Langrange equation. 
Eventually, we retrieve:  

( ) ( )( ) ( )( )( )( ) ( )( ) ( )( )( )
( )( )2

1 2

, , ,
, , , , = 0 .I

I x u x y y v x y
x y I x u x y y v x y div D I

λ λ
λ λ μ λ

λ

∂ + +
− + + − ∇ ∇

∂

 (8) 

The Euler-Lagrange equation can be solved, provided 
that an initial condition is given, by calculating the 
asymptotic state. The initial condition is a backprojected 
depth map, which was the output of the dense 
preprocessing track. 
In order to preserve stability, we chose to use a semi-
implicit numerical scheme to calculate the depth field 
iteratively. Fig. 4 compares the obtained result from 
dense reconstruction to the ground truth depth map. It is 
clear that some artifacts are still visible, but the relative 
depths can be discerned very well. 
Calculation time for this estimation is about 5 minutes on 
a 3.0GHz CPU using a Matlab implementation. This  
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Fig. 4. The ground truth depth map and the depth map 
retrieved after dense reconstruction. 

immediately shows the current limitation of this 
approach for real-time robot control. It is our aim to 
reduce the processing time by switching to a C++ 
implementation and by porting some aspects of the 
algorithm to the GPU instead of the CPU. 

3. Visual Simultaneous Localization and Mapping 

3.1. Dynamic Model and Observation Model 
 In our application, a camera is fixed on the top of the 
mobile car-like robot. The vehicle travels through the 
environment using the camera to observe features around 
it. A world coordinate frame W is defined such that its X 
and Z axes lie in the ground plane, and its Y axis point 
vertically upwards. The system state vector 

1 2= ( , , )T
R y y γy  in this case is defined as the 2D position 

vector 1 2( , )y y  of the head center in the world frame 
coordinates and the robot's orientation γ relative to the Z 
axis. The system dynamic model in this case, considering 
the control u as identity, is given by:  

 

1 1 1
1 1

1 1 1 1
2 2

1 1

( )cos( )
= = ( ) = ( )sin( ) ,

( )

t t t t

t t t t t t
R R

t t t

y y t
y f y t

t

υ γ
υ γ

γ γ ω

− − −

− − − −

− −

⎡ ⎤ ⎡ ⎤+ + Δ
⎢ ⎥ ⎢ ⎥

+ + Δ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ + Ω Δ⎣ ⎦ ⎣ ⎦

V
y y V  (9) 

where γ and ω are the linear and the angular velocities, 
respectively. 
A feature Li is represented in the state vector by its 
location in the world coordinate system W:  

 1, 2, 3,= ( , , )T
i i i ix x xx   (10) 

Making a measurement of a feature i consists of 
determining its position in the camera image. Using a 
perspective projection, the observation model in the robot 
coordinate system is obtained as follows:  
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where x0 and y0 are the image center coordinates and f is 
the focal length of the camera. 1, 2, 3,= ( , , )R R R R T

i i i ix x xx  are 

the coordinates of the feature i in the robot coordinate 
frame R. They are related to xi by: 
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where h is the height of the camera. The measurement 
model is then: 
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( ) ( ) ( ) ( )

t t t t t t
i i

t t t t t t
i it t

i i t
i

t t t t t t
i i

x y cos x y sin
x f

x y sin x y cos

x h
y f

x y sin x y cos

γ γ
γ γ

γ γ

⎡ ⎤− − −
+⎢ ⎥

− + −⎢ ⎥
⎢ ⎥−⎢ ⎥+⎢ ⎥− + −⎣ ⎦

z h x  (13) 

3.2. Feature Selection 
 Working with visual features in an outdoor environment 
requires great care in order not to run into problems due 
to changing illumination conditions and changing scales 
and viewpoints. Usually the features used in vision-based 
SLAM algorithms are salient and distinctive objects 
detected from images. Typical features might include 
regions, edges, object contours, corners etc. In our work, 
the map features are obtained using the SIFT feature 
detector (Lowe, D.G., 2004), which maps an image data 
into scale-invariant coordinates relative to local features. 
These features were contemplated to be highly distinctive 
and invariant to image scale and rotation. The work of 
Mikolajczyk and Schmid (Mikolajczyk, K. & Schmid, C., 
2003) proved that SIFT features remain stable to affine 
distortions, change of viewpoint, noise and change in 
illumination, which is crucial when working in outdoor 
environments. The same procedure for feature depth 
estimation as in (Davison, A. J.; Reid, I. D.; Molton, N. D. 
& Stasse, O., 2007) is used in our implementation. 
Heuristic map management criteria are used to decide 
when to initialize new features: essentially, the 
requirement is to keep a predefined number of features 
visible from all camera locations. A typical number used 
is 10; whenever fewer than 10 features are visible new 
ones are detected and initialized. Features are not deleted 
from the map when they leave the field of view, but 
remain in the map and can be re-observed when the 
camera moves back and they become visible again. In 
some cases it is necessary to delete features which are not 
being reliably matched on a regular basis: some features 
detected will be frequently occluded or may contain parts 
of objects at very different depths. These features will 
lead to failed correlation attempts and can be removed 
from the map automatically. 
A major problem for SLAM methods are changes in the 
environment over time. Some changes may be relatively 
slow, such as the change of appearance of a tree across 
different seasons, or the structural changes that most 
office buildings are subjected to over time. Others are 
faster, such as the change of door status or the location of 
furniture items, such as chairs. Even faster may be the 
change of location of other agents in the environment, 
such as cars or people. To see, imagine a robot facing a 
closed door that previously was modelled as open. Such 
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Fig.  5. Features detected in a scene with moving objects 

an observation may be explained by two hypotheses, 
namely that the door status changed, or that the robot is 
not where it believes to be. Unfortunately, there are 
almost no mapping algorithms that can learn meaningful 
maps of dynamic environments. 
To deal with the problem of SLAM in dynamic scenes 
with moving object we use our algorithm for motion 
segmentation (Berrabah, S.A.; De Cubber, G.; Enescu, V. 
& Sahli, H., 2006) to remove the outliers features which 
are associated with moving objects. In other words, the 
detected features which correspond to the moving parts 
in the scene are not considered in the built map. For more 
security we use a bounding box around the moving 
objects (as in Fig. 5). Another security measure sees to it 
that newly detected features are not added directly to the 
map but they should be detected and matched in at least 
n consecutive frames (in our application, n = 5).  
Some stationary objects in the scene can suddenly start 
moving. In this case, their corresponding features should 
be deleted from the built map. Deleting a feature Li from 
the map consists in extracting its parameters from the 
system state vector and the covariance matrix. 

3.3. Feature Initialization 
When a feature is first detected, the measurement from a 
single camera position provides good information on its 
direction relative to the camera, but its depth is initially 
unknown. Since depth information is not provided, EKF 
can not be directly initialized, leading to a new challenge 
known as Bearing-Only SLAM. An early approach was 
proposed by Deans (Deans, M. & Hebert, M., 2000), who 
combined Kalman filter and bundle adjustment in filter 
initialization, obtaining accurate results at the expense of 
increasing filter complexity. In (Davison, A. J.; Reid, I. D.; 
Molton, N. D. & Stasse, O., 2007), Davison uses for 
initialization an A4 piece of paper as a landmark to 
recover metric information of the scene. Then, whenever 
a scene feature is observed a set of depth hypotheses are 
made along its direction.  
In subsequent steps, the same feature is seen from 
different positions reducing the number of hypotheses 
and leading to an accurate landmark pose estimation. 
Besides, Ortega et al. proposed in (Ortega, J. S.; Lemaire, 

T.; Devy, M.; Lacroix, S. &  Monin, A., 2005) a 3D Bearing-
Only SLAM algorithm based on EKF filters, in which 
each feature is represented by a sum of Gaussians. In our 
application, to estimate the 3D position of the detected 
features, we use an approach based on epipolar geometry. 
This geometry represents the geometric relationship 
between multiple viewpoints of a rigid body and it 
depends on the internal parameters and relative positions 
of the camera. The two-view geometry has been used in 
our case. 

3.4. Feature Matching 
At step t, an onboard sensor obtains a set of 
measurements t

iz  (i = 1,…,m) of m environment features. 
Feature matching corresponds to data association, also 
known as the correspondence problem, which consists in 
determining the origin of each measurement, in terms of 
the map features Lj, j = 1,…,n.  
The result is a hypothesis 1= [ ,..., ]t t t

mH h h  associating each 

measurement t
iz  with its corresponding map feature. 

= 0t
ih  indicates that t

iz  does not come from any feature 
in the map. For data association a measure of the 
discrepancy between a predicted measurement that each 
feature would generate and an actual sensor 
measurement is measured by the innovation ε. 
In order to establish the consistency of a hypothesis tH  , 
measurements can be jointly predicted using the function 

| 1 | 1 | 1

1
( ) = ( ) ( )

T
t t t t t t

t t t
m

− − −⎡ ⎤
⎢ ⎥⎣ ⎦

h x h x h x…
H h h

, which can also be 

linearized around the current estimate to yield:  

 | 1 | 1 | 1 | 1ˆ ˆ( ) ( ) ( ),t t t t t t t t
t t t

− − − −+ −h x h x H x x
H H H

  (14) 

with 
1

=
T

t t t
m

⎡ ⎤
⎢ ⎥⎣ ⎦

H H H…
H h h

, the joint innovation 

| 1ˆ= ( )t t t t
t tε −−z h x

H H
 and its covariance 

= t T
t t t t+S H P H R

H H H H
. 

Measurements zt can be considered compatible with their 
corresponding features according to tH  if the 
Mahalanobis distance satisfies 2 1= <T

t t t tD thε ε−S
H H H H

.  

In our application, as we are using SIFT features, the 
matching between feature is checked using a product of 
the Mahalanobis distance between measurements and 
their predictions and the Euclidean distance between the 
descriptor vectors of the features 2

1 2=descD desc desc− . 
This will allow using the advantage of looking for feature 
matching based on the prediction of their position based 
on the system model and the advantage of the space-scale 
invariance parameters. 
In order to enhance the performance of the feature 
matching process in the outdoor case, an additional 
constraint was set up. Corresponding features should 
also satisfy the epipolar constraint, hence an image point 
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t
ix  that corresponds to 1t

i
−x  is located on or near the 

epipolar line that is induced by 1t
i
−x . The distance of the 

image point t
ix  from that epipolar line is computed as 

follows:  

 
1 2

2

1 2 1 2
1 1

( )
( ) ( )

tT t
i i

epi t t
i i

D
−

− −
=

+

x x
x x

F
F F

  (15) 

where 1t
i j
−xF  is the j component of the vector 1t

i
−xF . F  is 

the fundamental matrix which is computed based on the 
estimations from the Extended Kalman Filter. Knowing 
the camera position at instants t, the estimated camera 
position at instant t - 1, and the camera calibration matrix 
K, the fundamental matrix F  is computed as follows:  

 1[ ]T− −
×= K R t KF  (16) 

where R is the rotation matrix and [t]× is the skew matrix 
corresponding to the translation vector t. The notation K-T 
denotes the transpose of the inverse K. 
As a result, the cost function for feature matching is 
defined as D2 and 2

epiD   

 2 2 2 2
match t dect epiD D D D= + +

H
          (17) 

 Measurements for which correspondences in the map 
cannot be found by data association can be directly added 
to the current stochastic state vector as new features. 

3.5. Local and Global Mapping 
In our study, we are interested in robot navigation in 
large spaces. For that, we propose a procedure to build a 
global representation of the environment based on 
several size limited local maps built using the previously 
described approach. Two methods for local map joining 
are proposed. The first method consists in transforming 
each local map into a global frame before to start building 
a new local map. In the second method, the global map 
consists only of a set of robot positions where new local 
maps started (i.e. the base references of the local maps). In 
both methods, the base frame for the global map is the 
robot position at instant t0. 
Each local map is built as follows: at a given instant tk, a 
new map is initialized using the current vehicle location, 

tk
Ry , as base reference = tk

k RB y , k = 1,2,… being the local 
map order. Then, the vehicle performs a limited motion 
acquiring sensor information about the Li neighboring 
environment features. An EKF-based technique is used to 
model the local maps. The kth local map is defined by 

= ( , )k k kX PM , where Xk is the state vector in the base 
reference Bk of the Lk  detected features and Pk is their 
covariance matrix. 
The decision to start building a new local map at an 
instant tk is based on two criteria: the number of features 
in the current local map and the scene cut detection 

result. The instant tk is called a key-instant. In our 
application we defined two thresholds for the number of 
features in the local maps: a lower Th− and a higher Th+ 
threshold. A key-instant is selected if the number of 
features k

ln  in the current local map k is bigger then the 
lower threshold and a scene cut has been detected or the 
number of features has reached the higher threshold. This 
allows kipping reasonable dimensions of the local maps 
and avoids building too small maps. At the key-instants tk  
some frames are selected to be used for features 
initialization in the new local map. These frames are 
called key-frames. The motion between two frames must 
be sufficiently large to accurately compute the 3D 
positions of matched points. For that we select frames 
relatively far from each other but that have enough 
common points. 
In the first method for global map building, the first local 
map is used as global map. Each finalized local map is 
transferred to the global map before starting a new one, 
by computing the state vectors and the covariance matrix. 
The goal of map joining is to obtain one full stochastic 
map 0 0

(0 1 2 ...) (0 1 2 ...)= ( , )⊕ ⊕ ⊕ ⊕ ⊕ ⊕X PM , where 0
(0 1 2 ...)⊕ ⊕ ⊕X  is a 

concatenation in the frame B0 of all sets of features from 
local maps 0M , 1M , 2M , ... As each camera position, 

tk
Ry  corresponding to the frame reference Bk is given in 

the previous frame reference Bk-1, the transformation of 
feature i coordinates vector from frame Bk to B0  is 
obtained by successive transformations:  

 
0

( 1) ( 1) ( 2) 1 2...
1 1

k
i i

k k k k→ − − → − →

⎛ ⎞ ⎛ ⎞
= ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

x x
T T T  (18) 

 ( 1) = ( | )k k→ − tT R  is the space transformation matrix 
corresponding to rotation R  and t from frame Bk to Bk-1 

and is given by:  
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( 1)
2
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0 1 0 0

sin( ) 0 cos( )
0 0 0 1
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k k k
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k k t t t

y

y

γ γ

γ γ→ −

⎛ ⎞−
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
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T  (19) 

The covariance 0
(0 1 2 ...)⊕ ⊕ ⊕P  of the joint map is obtained 

from the linearization of the state transition function f. As 
the local maps are independents, the Jacobian (from 
linearization) is then applied separately to the local map 
covariance: 

0
(0 1 2 ...) 0 1

0 0 1 1

= ... ...
T T T

i
R R R R R Ri i

P P P⊕ ⊕ ⊕

∂ ∂ ∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂ ∂ ∂
f f f f f fP
y y y y y y

(20) 

 where 
R k

∂
∂

f
y

 is the Jacobian of the state transition 

function f with respect to yR in the reference frame k. 
In the second method for global map building, the global 
map is limited to the set of the coordinates of the local 
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maps frame origins 0 1 2= ( , , ,...)B
G R R Ry y yM , where k

Ry  are 
the robot coordinates in B0, where it decides to build the 
local map kM  at instant tk. These robot coordinates are 
updated via  

 ( 1) ,
1 1

ktk
R R

k k→ −

⎛ ⎞⎛ ⎞
= ⋅ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

y y
T  (21) 

with t0 = 0 and 0 0= = (0,0,0)t
R Ry y  and the transformation 

matrix 0k→T  is obtained by successive transformations:  

 0 1 0 2 1 ( 1) ( 2)... ,k k k→ → → − → −= ⋅T T T T                (22) 

where 1 = ( | )k k→ − tT R  is the transformation matrix given 
by equation 19. 
In this case, for feature matching at instant t, the robot 
uses the local map with the closest base frame to its 
current location, by evaluating the function:  

 ( )arg min ,k t
R Ri
−y y                    (23) 

where t
Ry  is the robot position at instant t in B0. 

4. Behavior-based Robot Control 

The robot control mechanism integrates the proposed 3D 
reconstruction and visual SLAM techniques. The 3D 
reconstruction results are used for the detection of 
objects. This information is used by an obstacle avoidance 
behavior to steer the robot away from these obstacles. On 
the other hand, the robot position and map calculated by 
visual SLAM are used as base information for a goal 
seeking behavior, which directs the robot into the 
direction of a goal point. 
As explained in the introduction, each behavior needs to 
be cast as an objective function estimator. This means that 
each behavior calculates an objective function over a set 
of permissible actions. In the case of our mobile robot, the 
action space consists of a velocity command v and a 
heading direction θrobot. Each behavior thus needs to 
calculate an objective function o,(v, θrobot).  

4.1. Development of the Obstacle Avoidance behavior 
 The obstacle avoidance has two main responsibilities:   
• It points the robot away from obstacles. Thus, it must 

assign low values to actions that cause the robot to face 
obstacles and high values to actions that do the 
opposite.  

• It varies the velocity respective to obstacle distance. 
High velocities are preferred when the distance to 
obstacles is large and and low velocities when this 
distance is small.  

 The objective function ( , )OA roboto v θ  can now be composed 

by making the product of a factor ( )OA robotoθ θ  taking into 

account the first, heading constraint and a factor ( )v
OAo v  

taking into account the second constraint. 
In order to calculate these objective functions, the dense 
depth map as estimated by the structure from motion  
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Fig. 6. The different steps of the depth map analysis: 
Upper Left: A dense depth map is calculated through 
structure from motion; Upper Right: This depth map is 
thresholded in order to not take into account far away 
objects; Lower Left: The ground plane is removed from 
the depth map; Lower Right: The remaining part of the 
depth map is downprojected onto the ground plane, such 
that a one-dimensional function of relative depth over the 
image plane is obtained. 

algorithm is analyzed. This analysis process is illustrated 
in Fig. 6. 
This process, involves the following steps:   
• A dense depth map is estimated by the structure from 

motion algorithm, as described in section 2.  
• Far away objects which are not important for the local 

obstacle avoidance behavior are removed from this 
depth map by setting a threshold for the depth 

• The majority of the remaining depth map still consists 
of perfectly traversable terrain. In order not to perceive 
this terrain as an obstacle itself, the ground plane is 
removed from the depth map. This is achieved by 
searching for edges in the depth map. The foreground 
is supposed to be quite uniform, whereas obstacles 
will give rise to strong edges. Only depth information 
in the region of edges is retained. 

• Finally, the remaining part of the depth map is 
downprojected onto the ground plane, such that a one-
dimensional function f of relative depth over the image 
plane is obtained.  

 The relative depth function f is a direct indicator of the 
presence of obstacles and is a function in the interval 
[0,1]. It can thus be directly related to the objective 
function controlling the robot heading: ( ) =OA roboto fθ θ . 
The velocity of the robot should in general be as high as 
possible. Only when obstacles are near, the velocity 
should be decreased. This can be expressed as:  
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  (24) 
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 with dobstacle = min(f), dthreshold a set threshold distance and 
vmax the maximum robot velocity.  

4.2. Development of the Goal seeking behavior 
The goal seeking behavior is assigned two tasks as well:   
• It points the robot to the goal position and must thus 

assign high values to actions that cause the robot to 
face the target and low values to actions that do the 
opposite.  

• It varies the velocity respective to the distance to the 
goal. High velocities are preferred when the distance 
to the goal is large and and lower velocities when the 
distance is small.  

 Again, this means the development of the objective 
function can be split up as ( , ) = ( ). ( )v

GS robot GS robot GSo v o o vθθ θ . 
To calculate these objective functions, the (Euclidian) 
distance to the goal dgoal and heading to this goal θgoal  are 
calculated from the current robot position given by the 
Visual SLAM algorithm, described in section 3, and the 
current waypoint given by the global path planner. 
It is now obvious that the goal seeking behavior needs to 
minimize the difference between the robot heading θrobot  
and the goal heading θgoal, which we can formulate as:  

 2

robot goal

1( ) = .

1
GS robotoθ θ

θ θ
β

⎛ ⎞−
+ ⎜ ⎟⎜ ⎟
⎝ ⎠

  (25) 

 with β the window size which is considered. 
For ( )v

GSo v , a similar reasoning as been done before for 

( )v
OAo v  can be performed, as the velocity should always 

be high, with the exception of near the goal positions. 
This can be expressed as:  
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 This methodology allows to compose the objective 
functions ( , )GS roboto v θ  and ( , )OA roboto v θ . The remaining 
problem is how to fuse these objectives to form one 
globally optimal command, leading to intelligent robot 
behavior.  

4.3. Behavior Fusion 
As mentioned above in the introduction, the classical 
weight optimization methods for behavior fusion have 
some serious disadvantages. The first one is that they do 
not allow introducing some a priori knowledge from a 
human decision maker. This issue is addressed by so-
called goal programming methods. Goal programming 
methods define a class of techniques for generating 
satisfying solutions also known as compromise solutions 
in this context. The decision maker gives his/her 
preferences in terms of weights, priorities, goals, and 

ideals. The concept of best alternative is then defined in 
terms of how much the actual achievement of each 
objective deviates from the desired goals or ideals. 
Further, the concept of best compromise alternative is 
defined to have the minimum combined deviation from 
the desired goals or ideals. Goal programming methods 
thus choose an alternative having the minimum 
combined deviation from the decision maker's ideal goals 

* *
1 ,..., no o , given the weights or priorities of the objective 

functions. This can be formulated as (Pirjanian, P., 1998):  

 *

=1
( ) .arg min

n p

i i i
x X i

w o x o
∈

−∑  (27) 

 where 1 ≤ p ≤ ∞, o* is the ideal goal, wi is the weight or 
priority given to the ith objective. 

p
wx  is a solution to this equation for a given p and weight 

vector ( )1= ,..., nw w w  and represents an action to be 

performed. 
A second disadvantage of the weight optimization which 
is still not solved by the goal programming method is that 
it does not take into account errors on the sensor 
measurements which will also make the output of a 
behavior which use this data less reliable. In (Doroftei, 
D. ; Colon, E. & De Cubber, G., 2007), we proposed a 
method to choose the weights based upon a reliability 
measure associated to each behavior. The principle 
behind the calculation of the activity levels is that the 
output of a behavior should be stable over time in order 
to trust it. Therefore, the degree of relevance or activity is 
calculated by observing the history of the output of each 
behavior. This history-analysis is performed by 

comparing the current output ,
bi
j kϖ  to a running average 

of previous outputs, which leads to a standard deviation, 
which is then normalized. For a behavior bi with outputs j 

these standard deviations bi
jσ  are:  
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with cj some normalization constants. 
The bigger this standard deviation, the more unstable the 
output values of the behavior are, so the less they can be 
trusted. The same approach is followed all behaviors. 
This leads to an estimate for the activity levels or weights 
for each behavior:  

 
1

(1 )
i

numberofoutputs
bi

b j
j

w σ
=

= −∑  (29) 

 As such it is now possible to take into account the 
unreliability of the behavior output. On the other hand, 
this architecture again does not offer a human decision 
maker the ability to interact with the decision process. 
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One could thus argue that while reliability analysis-based 
approaches are too robot centric, these second set of 
approaches is too human-centric. In the following, we 
present an approach to integrate the advantages of both 
theorems. This can be achieved by minimizing the goal 
programming and reliability analysis constraints in an 
integrated way, following:  

( ) ( )
numberofoutputs

*

=1 =1 =1
( ) 1 1 ,arg min

p
n np bi

i i i i j
x X i i j

w wi

w o x o wλ λ σ
∈

∈

⎡ ⎤⎛ ⎞⎢ ⎥− + − − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑

 
(30) 

with λ a parameter describing the relative influence of 
both constraints. This parameter indirectly influences the 
control behavior of the robot. Large values of λ will lead 
to a human-centered control strategy, whereas lower 
values will lead to a robot-centered control strategy. The 
value of λ would therefore depend on the expertise or the 
availability of human experts interacting with the robot. 
It is obvious that this method increases the numerical 
complexity of finding a solution to MODM, but this does 
not necessarily leads to increased processing time, as the 
search interval can be further reduced by incorporating 
constraints from both data sources. 

5. Conclusions and Future Work 

In this paper, we presented a navigation solution for an 
outdoor mobile robot, which uses only a single on-board 
camera as sensory input. The development of such a 
control strategy for an outdoor mobile robot which uses 
vision as its only sensing modality, requires the careful 
consideration of multiple design aspects. A main problem 
is caused by the outdoor nature of the application. The 
outdoor changing lighting condition cause problems for 
image processing algorithms which are based on feature 
matching, such as 3D reconstruction and visual SLAM. 
Also the dimensions of the outdoor environments cause 
problems, as it is hard to model such extended 
environments. In this paper, we have presented 3 main 
methodologies which tackle these problems and which 
work together to provide an integrated control 
architecture for an intelligent mobile robot. 
The first constituent of this integrated control architecture 
is a 3D reconstruction approach, operating on monocular 
images. The main novelty of the presented 3D 
reconstruction approach lies in the fact that it fuses dense 
and sparse information in an integrated variational 
framework. This allows to combine the robustness of 
sparse reconstruction techniques with the completeness 
of dense reconstruction approaches. The presented 
approach achieves its goal of reconstructing complex 
outdoor environments, but its practical application is still 
limited due to the required processing time, due to the 
computational complexity. Therefore, future research will 
go out into optimizing the presented approach to (near) 
real-time applications. 

A second technology which was presented is a visual 
simultaneous localization and mapping approach. The 
presented visual SLAM technique differentiates itself 
from the state of the art by its capability to build large 
outdoor maps, without exploding the computational 
complexity. This is achieved by integrating different local 
maps. The presented approach has proven its 
applicatbility from a theoretical point of view and will in 
the future be tested in large outdoor environments. 
Finally, a behavior-based control method was proposed, 
which presents a novel methodology for integrating the 
traditional goal programming approach for action 
selection, with a more recent approach using reliability 
analysis. The advantage of this method is that it combines 
the advantages of both approaches, such that a good 
balance is reached between human centric and robot 
centric robot control.  
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