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ABSTRACT 
Autonomous robotic systems can help for risky interventions to reduce the risk to human lives. 

An example of such a risky intervention is a camp surveillance scenario, where an environment 

needs to be patrolled and intruders need to be detected and intercepted. This paper describes the 

development of a mobile outdoor robot which is capable of performing such a camp surveillance 

task. The key research issues tackled are the robot design, geo-referenced localization and path 

planning, traversability estimation, the optimization of the terrain coverage strategy and the 

development of an intuitive human-robot interface. 

1 Introduction 

In military operations, it is often the case that large areas need to be patrolled in order to prevent 

the illicit entry of people / enemies. This task is a dull and cumbersome process, as it takes up 

valuable amounts of time and manpower which cannot be attributed to more “interesting” 

activities. Moreover, it is also a dangerous task as confrontation with enemy forces can bring the 

patrolling humans at risk. Autonomous robotic agents can therefore be a valuable alternative, 

provided that they can offer the same level of reliability as human patrol agents.  

However, the design of a robotic agent able to operate in such difficult and varying conditions 

requires the careful consideration of multiple research aspects: 

 The robot requires a geo-referenced localization and path planning capability. In this 

paper, we propose a methodology which fuses data from an on-board differential GPS 

system with an inertial measurement unit in an extended Kalman filter. 

 The robot needs to estimate the degree of traversability of the terrain, which isn’t an easy 

problem as the terrain may be very rough. In this paper, we propose a novel approach 

based on 3D-interpretation of the depth as seen by an on-board time-of flight camera. 

 The robot needs to negotiate an optimal terrain coverage strategy to maximize the 

possibility of finding and intercepting intruders. In this paper, we propose a novel 

approach based on coverage maximization and intervention time minimization. 

 For remote human operators, the robot must be easy to use. Therefore, an intuitive human-

robot interface was developed which allows high-level communication with the robot 

without violating the real-time constraints of the robot controller. 

 

 



2 Vehicle Description 

The base vehicle used as a platform in the context of this paper is a Robucar TT model, produced 

by RoboSoft. A particularity with this kind of platform, called ROBUDEM, is that – as the front 

and rear axle can be steered independently – it is possible to adopt different movement modes 

(e.g. crab-like motion). However, in this setup, this possibility was not used in order not to over-

complicate the design of the kinematic controllers. There were two main reasons for choosing 

this platform. First, as a 4-wheel-drive all terrain mobile platform it is well adapted to a rough 

outdoor environment. Second, its payload of 300 kilograms makes it possible to pack multiple 

sensors and on-board processing equipment. 

 

Figure 1: The ROBUDEM vehicle used throughout this paper 

 

 

3 Autonomous Operations 

3.1 Processing 

3.1.1 Computing Systems 

The ROBUDEM vehicle features 3 embedded PCs, interconnected over an on-board LAN: a 

LINUX system for low-level motor control, a WINDOWS XP system (Intel Core) for visual and 

depth perception and a WINDOWS XP system (Intel Core) for mapping and navigation. 

Conceptually, the computing architecture considers two levels of control: a low-level motor 

control layer which is monitored by the Real-Time Linux system provided by RoboSoft and a 

high level control layer featuring two embedded PCs. The high-level control was split over two 

computing systems to spread the computational burden and achieve (near) real-time functionality.  

 



3.1.2 Processing Architecture & Development Process 

Distributing the control architecture over the different computing systems was possible through 

the use of a distributed control architecture, entitled CoRoBa [1]. CoRoBa is a robot control 

architecture based upon the CORBA [2] architecture, but specially adapted to the needs of mobile 

robotics. Following this architecture, different components / modules were developed (in C++), 

each realizing part of the robot task. Following the CoRoBa development process, the 

development process started by drawing a UML diagram of the architecture, defining interfaces 

for all modules. A functional block diagram of the processing architecture is shown on Figure 2. 

 

Figure 2: Functional block diagram of the processing architecture (green: sensors, red: processors, blue: 

actuators; dark colour: on PC1, light colour: on PC2) 

Following Figure 2, it can be seen how information flows from the sensor elements (green), 

towards the different processors. In the end, the command control is effectuated by the 

RobudemProxy component indicated below. 

Inter-component communication happens over TCP/IP. In 

order to reduce delays in this communication process, we 

set up a Gigabit Ethernet Hub on-board of the robot. The 

on-board Ethernet hub doubles as a Wireless Router, 

which enables remote access to the robot. For the 

connection to the remote base station, inbound and 

outbound gateways were foreseen. The reason for this is 

that all data which is sent over the wireless connection is 

sent using the UDP protocol instead of the TCP protocol, 

in order not to have problems with the unreliability of the 

wireless link. This leads to a network architecture as 

depicted on Figure 3. 
Figure 3: Network architecture  

 



3.2 Visual Sensing 

3.2.1 Sensor Setup  

A multi-camera system was 

used for visual sensing. The 

system consists of a Point 

Grey Bumblebee stereo 

vision camera [3] and two 

Logitech HD Webcams, as 

shown by Figure 4. 

To maximize the field of 

view, the webcams are 

placed at an angle of about 

40° with respect to the robot 

axis. This results in a total 

field of view of about 160°. 

 

3.2.2 Intruder Detection 

Visual sensing is primarily intended to detect intruders. As the intruders are wearing a specific 

kind of clothing, the detection strategy is to search for a certain colour pattern in the visual 

images. To maximize the field of view, multiple cameras are used at the same time. Thus, an 

important issue in the development and design of the intruder detection mechanism is to balance 

the computational complexity and the associated processing requirements with the number of 

cameras that can be processed at once. 

The intruder detection algorithm is implemented in OpenCV [4] and follows a 3-step approach: 

1. In order to remove image noise, the images are pre-filtered and smoothed 

2. Colour thresholding is applied in the HSV colour space to detect the clothing of the 

intruders independent of the illumination conditions 

3. Standard morphology filtering operations like multiple image erosions and dilations are 

applied to increase the reliability of the detection result 

At the end of this processing pipeline, the position (x,y) of the intruder (if detected) in the image 

plane is returned. This intruder detection is performed in 3 cameras (stereo camera + 2 webcams) 

at the same time and all detection results are fused. Following this fusion, it is possible to deduce 

the estimated position (distance, ) of the intruder. The angle   towards the intruder is 

straightforward to estimate from the known position in the image plane and the orientation of the 

camera. The distance of the intruder to the camera is (roughly) estimated by depth scaling: the 

detected size in pixels of the intruder is compared to the (known) size of the intruders. Using this 

approach, it is possible to detect intruders up to a distance of about 10m. 

Figure 4: Visual Sensing System  

 



3.3 Depth Sensing 

3.3.1 Sensor Setup 

A PMDTec Camcube [5] Time-Of-Flight (TOF) camera was used for real-time depth sensing. 

The reason for using this sensor is that it is the first depth camera in the world which is able to 

operate outdoors under difficult illumination conditions. To optimize the field of view the sensor 

was mounted on top of the robot with an angle tilted towards the ground plane. The sensor has a 

modulation distance of 7.5m, so the tilting angle was specifically calculated in order for the 

sensor not to surpass that distance. This resulted in a field of view between 1m and 7.5m in front 

of the robot, as shown on Figure 5. 

  

Figure 5: PMDTec Camcube 3D Camera and Optimization of its field of view 

3.3.2 Traversability Estimation 

Depth sensing is used for traversability estimation. Autonomous robotic systems operating in 

unstructured outdoor environments need to estimate the traversability of the terrain in order to 

navigate safely. Traversability estimation is a challenging problem, as the traversability is a 

complex function of both the terrain characteristics, such as slopes, vegetation, rocks, etc and the 

robot mobility characteristics, i.e. locomotion method, wheels, etc. It is thus required to analyse 

in real-time the 3D characteristics of the terrain and pair this data to the robot capabilities. 

The methodology towards time-of-flight-based terrain traversability analysis extends our 

previous work on TOF-based [6] and stereo-based [7] terrain classification approaches. 

Following this strategy, the RGB data stream is segmen  ted to group pixels belonging to the 

same physical objects. From the Depth data stream, the v-disparity [8] is calculated to estimate 

the ground plane, which leads to a first estimation of the terrain traversability. From this 

estimation, a number of pixels are selected which have a high probability of belonging to the 

ground plane (low distance to the estimated ground plane). The mean a and b colour values in the 

Lab colour space of these pixels are recorded as c. 

The presented methodology then classifies all image pixels as traversable or not by estimating for 

each pixel a traversability score which is based upon the analysis of the segmented colour image 

and the v-disparity depth image. For each pixel i in the image, the colour difference and the 

obstacle density in the region where the pixel belongs to are calculated. The obstacle density is 

here defined as: /i i io A A , where o denotes the pixels marked as obstacles (high distance 

to the estimated ground plane) and Ai denotes the segment where pixel i belongs to. This allows 

us to define a traversability score as i i ic c , which is used for classification. This is done 

by setting up a dynamic threshold, as a function of the distance measured. 



An important issue when dealing with data from a 

TOF sensor is the correct assessment of erroneous 

input data and noise. Therefore, the algorithm 

automatically detects regions with low intensities 

and large variances in distance measurements and 

marks these as "suspicious". 

Figure 6 shows an example of the terrain 

classification result. Obstacles are red, well 

traversable terrain is green and "suspicious" areas 

(not enough data) are blue. It can be noticed that the 

classification is correct, as the obstacle (the tree) is 

well-detected. In the upper left corner, there are 

some problems with foliage giving erroneous 

reflections (blue area), which is due to the sensor. 

As the TOF camera orientation is fixed, the 

traversability estimation of Figure 6 can be projected on 

the ground plane to retrieve a local traversability model, 

which is used for navigation. 

 

3.4 Localization 

To be able to operate and act successfully, the robot needs to know at any time where it is. This 

means the robot has to find out its location relative to the environment. In this application, we 

used an approach based Extended Kalman Filter (EKF) to improve the Global Positioning System 

(GPS) localization based on data from an Inertial Navigation System (INS) and wheels’ encoders. 

In the following we will describe the used sensors and the proposed integration approach (for 

more details see [11-12]). 

3.4.1 Global Positioning System 

For outdoor applications, a GPS system could be used for robot localization in a geo-referenced 

map of the environment. However, GPS systems are subject to several sources of errors, among 

them, ionosphere and troposphere delays, signal multi-path, number of visible satellites, etc… A 

typical GPS receiver for civil applications provides 6-12 meters accuracy, depending on the 

number of available satellites.  Another limitation for the use of GPS systems, is the necessity to 

operate in open aeria where the GPS receiver has permanently access to satellites. This is not 

always possible, especially in urban environments. 

The positioning equations for ns satellites in sight at time instant t can be defined as [13]: 
 

 (1) 
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error and [y1,y2] is the vehicle position to be estimated (the vehicle altitude is y3=0). 

Figure 6: Traversability Estimation  

 



3.4.2 Inertial Navigation System (INS) 

The inertial navigation system (INS) is a self-contained navigation technique in which 

measurements provided by accelerometers and gyroscopes are used to track the position and 

orientation of a robot on which the INS device is mounted. 

Inertial navigation systems usually can only provide an accurate solution for a short period of 

time. As the acceleration is integrated twice to obtain the position, any error in the acceleration 

measurement will also be integrated and causes a bias on the estimated velocity and a continuous 

drift on the position estimate by the INS. Additionally, the INS software must use an estimate of 

the angular position of the accelerometers when conducting this integration. Typically, the 

angular position is tracked through an integration of the angular rate from the gyro sensors. These 

also produce unknown biases that affect the integration to get the position of the unit. 

The differential equations relating the measured quantities to the dynamics are defined by [13]: 

nieeieennppnen pvgfRv 2)2(=  (2) 

Where pf  is the non gravitational acceleration, abR is the rotation matrix from frame a to frame b, 

np is the location of the vehicle in the frame b, ab is the rotation rate from frame a to frame b, 

av is the velocity relative to frame a, and ng is the gravitational acceleration. The subscripts refer 

to the different coordinate frames, i.e., i: inertial frame, e: earth centred earth fixed frame, n: local 

geographic frame, p: platform frame.  
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Where λ and  are the latitude and longitude of the vehicle, R is the earth radius of curvature in 

the meridian, and R is the transverse radius. These equations are integrated to obtain the vehicle 

position and velocity. This integration will entail a drift in stand-alone INS estimates due to a bias 

affecting the INS measurements. 

3.4.3 Sensor Fusion 

Kalman Filter is a statistical tool for the analysis of time-varying physical systems in the presence 

of noise. Its main goal is the estimation of the current state of a dynamic system by using data 

provided by the sensor measurements. 

The state vector for GPS/INS/Encoders EKF integration filter is composed of the vehicle 

position, angle of direction, linear and angular velocities, and the GPS bias term. 

The prediction in the EKF filter is based on the equation (2). The mean speed V  and the yaw rate 

(angular velocity)
.

of the vehicle at time t are computed based on the wheels encoders as 

follows: 
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Where t
r and t

l  are the angular velocities of the right and left rear wheels, respectively, and 

rR and lR their corresponding radius. L is the distance between rear wheels. 

The update step is based on the measurement given by equation (1). 



3.5 Coverage and Terrain Mapping 

The robot builds two kinds of models of the environment: a coverage map and a terrain 

traversability map. Both maps are global geo-referenced maps, with a metric representation of the 

environment. The resolution of the maps is 20cm. 

The coverage map is updated with each scan of the 

intruder detection sensing system. The robot stores the 

returned sensor data in a local coverage model, by storing 

the value ”1” in all cells which have been “viewed” by the 

robot sensors and where no intruder was detected.  The 

visibility model employed here also takes into 

consideration possible occlusions due to obstacles. At 

each iteration, the information in the coverage model is 

“aged” by multiplying all entries of the local coverage 

map with a value between 0 and 1 (in practice: 0.99). The 

purpose of this approach is to represent the unreliability of 

“old” data. After some time, this leads to a coverage map 

as indicated by Figure 7. 

The traversability map is updated with each scan of the 

traversability (depth) sensing system, by incorporating the 

local traversability data (the traversability model of Figure 6 projected on the 3D ground plane) in 

the global reference frame. 

 

3.6 Vehicle Control  

3.6.1 Information Maximization Approach  

The approach towards vehicle control builds upon earlier work in [9] and [10]. An important 

aspect of the vehicle control behavior is that enemy forces should not be entirely able to predict 

the movements made by the robot, so there must be a certain randomization in the robot control. 

This randomization is achieved by selecting a number of discrete positions where the robot could 

go next. These random discrete points are extracted from a Gaussian distribution, taking into 

account the current robot position and orientation. 

The candidate points are subjected to an optimization strategy. The objective of this optimization 

scheme is to maximize the global coverage and the ease of traversability. This means that for 

each of the candidate points, the trajectory towards the point is estimated. Then, for each point 

along that trajectory, the traversability and the coverage is assessed from the respective maps. 

Trajectories which pass untraversable areas are directly discarded. For selecting the best one of 

the remaining trajectories, an optimization strategy is followed, following the information 

maximization approach described in [10]. This means that trajectories which pass by difficultly 

traversable areas are penalized and that trajectories which pass by areas which were previously 

not visible are favoured. This is done by analysing the traversability and coverage map and 

calculating for each of the candidate points, representing a move to be made and leading to a new 

position x, the degree of optimality of the trajectory, taken into account the visibility model at 

location x. The point x which maximizes the information gain wins the optimization process and 

is thus selected as the place to go to detect intruders. 

Figure 7: Coverage Map 

 



3.6.2 Path Planning  

The used navigation strategy consists in robot tracking of a list of local goals defining the 

requested global path. For local goals tracking the robot uses a fuzzy logic controller to compute 

the change of orientation. The Controller is of a “Sugeno” type implementing a simple reasoning: 

If the goal is on the right and the distance is big then make a small turn to the right with big 

velocity. If the goal is on the right and the distance is small then make a big turn to the right with 

small velocity. More details on the implemented navigation strategy are given in [14]. 

3.6.3 Human-Machine Interface   

To monitor mission progress and robot status a HMI was developed, which also provides the 

possibility for human intervention when deemed necessary. Figure 8 shows a screenshot of the 

HMI consisting of 4 main parts: camera output, map, info and dashboard. 

 

Figure 8: Screenshot of the HMI. Mission progress can be monitored by means of camera output, current 

robot position on the map, intruder position, communication status... The robot can optionally be controlled 

by a joystick. 

The camera output is shown in the upper left corner. The user can select to see the images from 

one of the cameras mounted on the robot. 

A map of the terrain is shown in the upper right corner. During the mission the robot must remain 

within certain boundaries of the terrain. A series of UTM coordinates are given at the beginning 

of the mission that delimit the permitted area for the robot to navigate in, the resulting region is 

visualized on the map (a). This region is also communicated with the robot. Other entities 

depicted on the map are the position of the base station (b) and the reference point (c) for the 

locally defined ENU coordinate frame used by the robot. The current robot position is shown as a 

triangle indicating its current position and orientation (d). The traversed path can be visualized as 

a trail if desired (e). Detected intruders are shown in the map with respect to the current robot 

position as a line indicating direction and approximate distance from the robot (f). As different 



coordinates representations are used in the region boundary coordinates (UTM), the map 

(Lambert72), the GPS (WGS84) and the robot (local ENU), all the necessary conversions are 

applied for correct information processing. 

An information window is located in the bottom left corner for communicating miscellaneous 

information with the user relating to software, hardware, robot etc. 

The dashboard is located in the bottom right corner. The robot can be controlled by the use of 

either a joystick or by dragging the cross on the circular joystick with a mouse. A communication 

indicator displays the time of last communication with the robot. When this time exceeds a 

predefined time, it will start blinking indicating communication has likely been lost. A battery 

indicator shows current battery level. Stop/Play/Pause buttons can be used to control the robot 

accordingly. 

The HMI and the robot continuously exchange information via a wireless network; this 

communication is implemented using the open-source framework ACE (Adaptive 

Communication Environment) [15]. 

 

4 System Tests 

4.1.1 Testing Strategy 

System testing was performed at the RMA campus in the centre of Brussels. In order to conduct 

these experiments, a map of the campus was generated and an area to be patrolled was indicated 

on the human-machine interface.  

4.1.2 Results 

Major problems discovered during testing were: 

 Lack of good GPS reception in the urban area surrounded by high buildings 

 Traversability estimation testing is problematic as the area is mainly asphalted 

 Reliability of the intruder detection under varying illumination conditions 

 Reliability of the Traversability estimation under heavy sunlight conditions 

5 Conclusions  

In this paper, we have described the development process of an outdoor mobile robot, which is 

prepared for a camp surveillance mission. The robot is capable of detecting intruders using a 

visual sensing system. The robot is also able to navigate fully autonomously thanks to a novel 

traversability estimation methodology using a depth-sensing Time-Of-Flight camera and a 

navigational controller which incorporates a traversability and coverage model of the 

environment to select the optimal terrain covering strategy. Next to this autonomous 

functionality, a human-friendly user interface was developed to give also to non-experts the 

possibility to control the robot. A robotic system as presented here could be a valuable asset, e.g. 

in military operations where a large area needs to be patrolled autonomously by a robot or a team 

of robots. 
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