
Optimized distributed scheduling for a fleet of

heterogeneous unmanned maritime systems

Geert De Cubber

Department of Mechanics

Belgian Royal Military Academy

Av. De La Renaissance 30, 1000 Brussels, Belgium

geert.de.cubber@rma.ac.be

Rob Haelterman

Department of Mathematics

Belgian Royal Military Academy

Av. De La Renaissance 30, 1000 Brussels, Belgium

rob.haelterman@mil.be

Abstract— Due to the increase in embedded computing

power, modern robotic systems are capable of running a wide

range of perception and control algorithms simultaneously. This

raises the question where to optimally allocate each robotic

cognition process. In this paper, we present a concept for a novel

load distribution approach. The proposed methodology adopts a

decentralised approach towards the allocation of perception and

control processes to different agents (unmanned vessels, fog or

cloud services) based on an estimation of the communication

parameters (bandwidth, latency, cost), the agent capabilities in

terms of processing hardware (not only focusing on the CPU, but

also taking into consideration the GPU, disk & memory speed

and size) and the requirements in terms of timely delivery of

quality output data. The presented approach is extensively

validated in a simulation environment and shows promising

properties.

Keywords—heterogeneous systems, multi-robot systems, cloud

robotics, load balancing

I. INTRODUCTION

As robotic systems are becoming more and more
intelligent, their perception, modeling, reasoning and actuation
control architecture relies more and more upon a complex
network of tightly interrelated processes. Moreover, these
robotic systems are also more and more being deployed not in
isolation, but as a part of a heterogeneous team, working
towards a common higher-level goal [1]. The robotic agents
thus become “edge” devices in an Internet-Of-Things
framework with supporting computational infrastructure at fog
and cloud level [2]. In such a collaboration scenario, the
robotic agents can not only communicate between them to
share information or to offload processes, but also to fog or
cloud services.

This evolution paves the way for new research questions, as
the question arises for each perception & control process where
to optimally allocate it: on the robot that generates the input
data or requires the output data, on another robot, on a fog
device or on a cloud service? This question of process load
distribution has been studied for decades in computer science
[3], however focusing heavily on optimizing the load
distribution within computing stations in function of the
processing time and the communication time. These kinds of

approaches cannot be easily ported to the domain of mobile
robotics and especially unmanned maritime systems due to the
following reasons:

• The performance of robotic perception and control
algorithms is not only dependent on the CPU, but
more and more also on the GPU, disk & memory
speed and size.

• For robotic perception and control processes both the
update frequency and the latency are important
parameters to ensure the usefulness of the data
produced by a process.

• Mobile robotic systems move, meaning that existing
communication paths will improve or degrade over
time or may even totally disappear.

• Unmanned maritime systems cover great distances,
switching between communication technologies as
satellite, radio, Wi-Fi or even cellular, meaning that
communication parameters vary widely and also that
the cost of communication needs to be considered.

In response to all these challenges, we propose in this paper a
methodology that aims to optimally distribute the load of
different processes over the different agents that are present in
a robotic cloud architecture. The following assumptions are
made:

• The presence of at least one remote cloud architecture
with very high computing capabilities

• The presence of at least one remote fog architecture
with high computing capabilities

• The presence of at least two maritime robotic agents
with moderate computing capabilities

• The user defines for each process a number of
requirements in terms of minimum framerate and
maximum latency.

• Unreliable communication means between the
different assets. We consider six different
communication technologies for data transfer, each
with their own connection parameters with respect to

bandwidth, latency, connection distance, quality of
service, etc.:

1. Satellite communication

2. Radio telecommunication

3. Mobile broadband (cellular)

4. Wi-Fi

5. Ethernet

6. Fiber-optic communication

The methodology proposed in this paper is based on a local
optimization process where each agent communicates to the
agents it is connected with in the network (which is a subset of
all the agents) in order to find the best distribution of processes.
As the agents only transfer data on a local level and no load-
balancing data is transferred across multiple hops, the result is
‘only’ a local optimization of the process load, which may
(very likely) still be sub-optimal in a global sense. With this
regard, the presented approach differs from global load
balancing techniques [4] that distribute the processing charges
across a whole network, based upon an exact knowledge of all
properties of all agents in the network. While capable of
providing a more optimal solution, such a global approach
towards load balancing is not convenient for the case studied in
this research paper, being a fleet of heterogeneous unmanned
systems. Indeed, as the unmanned systems are not all directly
interconnected, it would require a considerable amount of
networking overhead to share the information about all the
agents with each other in some sort of central database, as
performed by [5]. Moreover, in maritime operations one needs
to consider that agents can get totally disconnected from the
network for some time, which means that critical processes
must be executed locally in any case and that on other
occasions, when limited communication is possible, it will
likely not be possible to connect to such a central database
server. For these reasons, it was decided to develop the load
balancing mechanism as presented in this paper as a
decentralized approach, running independently on each agent
in the network and only relying on existing agent-to-agent
communication.

Compared to other decentralized multi-agent collaboration
frameworks [6], the presented approach differs in terms of
objectives. Whereas classical decentralized multi-agent
collaboration frameworks generally aim to optimize the
successful completion of some higher or lower-level task
(while generally ignoring how these tasks are decomposed into
processes that need to run on the different agents), the
presented approach aims to optimize the successful ‘outcome’
of each process (providing quality data on time with minimal
strain on computing infrastructure), while it ignores the higher
or lower-level tasks these processes belong to. As a result, it is
perfectly possible to combine the approach presented in this
paper with a classical decentralized multi-agent collaboration
framework in order to combine both optimization objectives
simultaneously.

II. METHODOLOGY

A. Overview of the approach

The global strategy of the presented load balancing
methodology is summarized by the pseudo-code of Algorithm
1.

The main idea is to interrogate each of the connected agents
(other systems of the maritime fleet where the agent in subject
is in contact with) whether they have computing resources
available that would be better suited to offload one or more
processes to. Performing such an interrogation and a transfer of
processes is a procedure that consumes valuable computing
resources and communication bandwidth by itself. Therefore, a
primordial check is made whether it is at all necessary to apply
any changes.

The presented algorithm seeks to optimize 9 different
parameters simultaneously for each agent in the network:

• The relative load on the incoming communication
channel, expressed as the current bandwidth
usage compared to the maximum bandwidth
capacity of the incoming communication channel.
[%]

• The relative load on the outgoing communication
channel, expressed as the current bandwidth
usage compared to the maximum bandwidth
capacity of the outgoing communication channel.
[%]

• The framerate, expressed as the current framerate
of the process compared to the required minimal
framerate, as defined by the user. [%]

• The latency expressed as the current latency (in
seconds) of the process compared to the required
maximal latency, as defined by the user. [%]

• The communication cost in euro or dollar.

• The relative load on the Central Processing Unit
(CPU), expressed as the current CPU usage
compared to the total CPU capacity. [%]

• The relative load on the Graphics Processing Unit
(GPU), expressed as the current GPU usage
compared to the total GPU capacity. [%]

• The relative disk usage, expressed as the current
disk usage compared to the total disk capacity.
[%]

• The relative memory usage, expressed as the
current RAM memory usage compared to the total
RAM memory capacity. [%]

Note that all of the above-mentioned parameters need to be
minimized, except for the framerate, that needs to be
maximized.

In the following paragraphs, we will further discuss how
these parameters are calculated and how they fit into the
framework of Algorithm 1.

The research presented in this paper has been funded by the Belgian

Royal High Institute for Defence (RHID) under contract number DAP19/08.

01 FOR each Agent

02 IF CheckProblems(Agent) = TRUE

03 FOR each Process

04 FOR each ConnectedAgent

05 L_Comm = Calculate_Relative_Load_On_Communication

06 L_FPS = 1 / Calculate_Projected_Framerate

07 L_LAT = Calculate_Projected_Latency

08 L_Cost = Calculate_Projected_Communication_Cost

09 L_CPU = Calculate_ Projected_Relative_Load_On_CPU

10 L_GPU = Calculate_ Projected_Relative_Load_On_GPU

11 L_DISK = Calculate_ Projected_Relative_Load_On_Disk

12 L_RAM = Calculate_ Projected_Relative_Load_On_RAM

13 STORE ConnectedAgent with lowest L_Comm, L_FPS, L_LAT,

 L_Cost, L_CPU, L_GPU, L_DISK, L_RAM

14 ENDFOR

15 TRANSFER Process to optimal ConnectedAgent

16 ENDFOR

17 ENDIF

18 ENDFOR

Algorithm 1. Pseudo-code for the multi-agent load-balancing algorithm

B. Detailed discussion

Lines 01-02:

For each agent in the fleet, a check is made whether there
are any problems that would necessitate a transfer of a process
running on that agent. Identified problems can be:

• The combined processes running on the agent
demand more bandwidth from the incoming or
outgoing communication channel than is
available.

• The combined processes running on the agent
demand more CPU, GPU, disk or memory
capacity than available on the agent.

• The required minimal framerate, as defined by the
user, is not reached. This can be for example due
to a slow CPU that cannot process the data in real-
time.

• The required maximal latency, as defined by the
user, is not reached. This can be for example due
to a slow CPU that cannot process the data in real-
time, but also due to a communication channel
that is too slow.

Lines 3-4:

For each process pi running on the agent, check whether it
is possible and interesting to transfer that process to one of the
other systems aj the agent is connected to.

For evaluating this, we calculate one by one the 9
optimization parameters defined above for a virtual situation
where pi is running on aj. This calculation is performed in lines
5-12.

Line 5:

The relative load on the communication channels is
calculated (both incoming and outgoing) by comparing the
used bandwidth of the communication channel to the
maximum bandwidth of that channel. Two problems need to be
solved for enabling this calculation: the best communication
channel needs to be chosen and the new bandwidth of this
communication channel needs to be estimated.

The algorithm does this by evaluating for each of the 6
communication methodologies their availability (e.g. wired
communications will not work between mobile agents, WiFi or
cellular will likely not work well far at sea) and choosing the
communication technology with the highest available
bandwidth. As it concerns a virtual situation (process pi is not
yet actually running on aj), these communication parameters
need to be estimated using a model. In order to do this, we use:

• For satellite communications, a constant service
model

• For radio communications (both generic radio and
WiFi), the two-ray propagation model [7]. This
model is known to be well-suited for maritime
applications.

• For mobile broadband communications, we use
the same two-ray propagation model, but then not
between agents, but between the agent and the cell
tower.

• For ethernet and fiber-optic communication, we
use the standard wired communication models [8].

This calculation is made once for the incoming and once
for the outgoing communication channel and the respective
loads on the communication channels are summed to provide a
final ‘cost’ for the transfer with respect to communication.

Line 06:

 The projected framerate of process pi running on agent aj is
estimated, based upon - the computational load of process pi
on the current agent and the relative performance between the
compute capabilities of the current agent and agent aj, as
indicated in [9]. The transfer cost with respect to the framerate
is then defined as the inverse of the estimated framerate
divided by the minimum requested framerate. Taking the
inverse is applied in order to come to a cost function to be
minimized, whereas the framerate needs to be maximized.

Line 07:

The projected latency of process pi running on agent aj is
estimated based upon:

• the estimation of the latency due to the delayed
arrival of the data on the incoming communication
channel (see line 05)

• the estimation of the latency due to the processing
time taken to process the data, which is the inverse
of the framerate (see line 06)

• the estimation of the latency due to the delayed
transfer of the data on the outgoing
communication channel (see line 05)

Line 08:

The projected communication cost is estimated using a
fixed price per Megabyte accorded to each of the 6
communication channels. This may not always be a perfect
representation, due to subscription plans that are somewhat
bandwidth-independent, but in most usage scenarios, it
provides a ‘good enough’ means for estimating the
communication costs. The communication bandwidth is
estimated as explained in line 05.

Line 09:

The projected relative load on the CPU is estimated by
adding the relative CPU load of the process pi to agent aj and
dividing this by the CPU capabilities of agent aj. Obviously,
this approach is only correct in a single-core and non-
hyperthreading scenario. Modern multi-threaded CPU’s do
scale differently, but the differences are not so big that they
make the use of this model impossible for estimating the CPU
load of processes in the context of this load-balancing
approach.

Line 10-12:

A similar approach to the CPU (line 09) is followed for the
GPU load and the load on the disk and the RAM memory.
Whereas this works quite well for the disk and RAM memory
(which follow a linear model of filling up), this doesn’t really
hold true anymore for the GPU. Indeed, due to the highly

parallelized architecture, GPU’s scale very non-linearly under
load. As it is very difficult to model this behavior [10], we have
not developed this any further and have applied the same linear
model, but we will see in the results section that this has some
repercussions.

Line 13:

The connected agent with the lowest total cost is selected.
As we are dealing here with a multi-objective optimization
process, ideally an intelligent multiple criteria decision making
algorithm should be adopted to come to an optimal solution.
However, this is not the focus of this research paper. With this
paper, we just want to show a proof-of-concept for the load
balancing approach for a fleet of heterogeneous unmanned
maritime systems. Therefore, we just adopted linear
scalarization with unitary weights to select the agent with the
lowest cost.

This is a rather simplistic (and presumably not the best)
approach, but with this approach we wanted to test the
applicability of the presented load-balancing technique, with
the prospect of improving the optimization algorithm later on.

Line 15:

Finally, the transfer of the chosen process to the identified
optimal agent is executed. This procedure involves not only the
launch of the process on the remote agent, but also the
termination of the process on the current agent and the setup of
new connections between agents.

III. VALIDATION

A. Validation methodology

In order to validate the presented methodology, we have
chosen to develop a simulation tool. This tool allows for the
simulation of multiple interconnected cloud, fog and edge
agents with a range of processes running on them.

In order to evaluate how the approach scales with the
number of agents involved, we present two different validation
tests: one with a relatively low number of agents and one with
a relatively high number of agents.

For each of the experiments, a number of agents was
released inside an area of 1000 x 1000 km. At each iteration,
the mobile agents move, using a randomized motion pattern.
This movement obviously also influences the communication
parameters between the agents, which are distance-dependent.

At every few iterations (a random number), a new process
is spawned, with random values and requirements with respect
to each of the 9 above-mentioned parameters. As such, the
load on the network gradually increases over time. For this
paper, we consider simulations with 1000 iterations.

As there are quite some random parameters (all following a
uniform distribution) in the simulation process in order to test
all kinds of eventualities, it is required to perform a large
amount of iterations to acquire consistent data about the load-

balancing performance. Therefore, the simulations are repeated
typically 100 times.

In order to assess the performance of the presented load-
balancing technique, a comparison is made to a standard
situation, where this technique is not used.

B. Results for a low number of agents

Here we present results as they were obtained with the
presented load-balancing technique for

• 1 cloud agent (a powerful on-shore cloud
infrastructure),

• 2 fog agents (typically 2 motherships with
important computing infrastructure)

• 4 edge agents (unmanned vessels acting as sensor
platforms with important needs in terms of
computing power, but with limited on-board
computing power)

On all the figures, the blue line represents the result of the
presented load-balancing technique, whereas the red line
represents the result of the standard situation for
benchmarking.

Note that all the figures represent results as relative
(unitless) data, following the definition of the optimization
parameters given above. Therefore, the Y-axis has been left
blank for reasons of clarity of the figures.

The results that are displayed here below show averaged

results over 100 simulations and over all agents in the

simulation.

Fig. 1 shows the relative bandwidth usage both for the

proposed and the baseline approach. As can be noticed, the

proposed algorithm clearly succeeds in limiting the overall

bandwidth usage considerably, notwithstanding the ever

increasing number of processes. Over a few iterations, the

bandwidth usage of the proposed approach is actually higher

than with the baseline approach. This is due to the

algorithmic communication overhead required for

exchanging the data.

Fig. 1. Relative bandwidth usage for small number of agents (blue: proposed

approach; red: baseline aproach)

Fig. 2 shows the relative latency compared to the user

requirements both for the proposed and the baseline

approach, whereas fig. 3 shows the evolution of the

framerate across the iterations.

From Fig. 2, it can be noted that the presented

approach obtains in a consistant manner a significantly

lower latency, which is really important in real-time

applications.

Fig. 3 shows that the proposed algorthm generally

succeeds in achieving higher framerates than the baseline

approach. The spikes in the red baseline curve on Fig. 3

are probably due to outliers values that are not sufficiently

averaged out. This indicates that we should probably

record even more than 100 simulations.

Fig. 2. Relative latency compared to user requirements for small number

of agents (blue: proposed approach; red: baseline aproach)

Fig. 3. Relative framerate compared to user requirements for small

number of agents (blue: proposed approach; red: baseline aproach)

The connection cost for the presented approach is lower

than the baseline connection cost, as indicated by Fig. 4.

However, it is also clear that the connection cost for the

proposed approach follows a more or less linear model,

whereas the baseline approach shows a more asymptotic

behavior, which would mean that the proposed approach

would probably be costlier at higher iterations. The reason

for this behavior is still under investigation, but it is probably

due to the fact that the connection cost is currently no factor

in deciding whether to transfer a process (in step 01-02).

Fig. 4. Connection cost for small number of agents (blue: proposed approach;

red: baseline aproach)

Fig. 5 compares the (averaged) relative load on the CPU,

GPU, disk and memory. As it can be clearly noted, the

proposed approach achieves better results in all cases, putting

less cumulative strain on the computing hardware and still

reaching a better performance in the end (as indicated by Fig.

3). However, it should be noted that for the GPU, the curves

of the proposed and baseline approach are quite close to one

another, indicating that the methodology doesn’t really

generate great benefits here. This is probably due to the fact

that it is very difficult to model the scaling of the GPU load

and performance (see discussion at line 10-12).

Fig. 5. Relative load on the CPU, GPU disk and memory for small number of

agents (blue: proposed approach; red: baseline aproach)

C. Results for a high number of agents

Here we present results as they were obtained with the

presented load-balancing technique for

• 2 cloud agents (powerful on-shore cloud
infrastructures)

• 5 fog agents (typically motherships with
important computing infrastructure)

• 50 edge agents (unmanned vessels acting as
sensor platforms with important needs in terms
of computing power, but with limited on-board
computing power)

Fig. 6 shows the same graphs as Fig. 1-4, but now for

this much higher amount of agents. Compared to the

previous results with a low number of agents, the relative

bandwidth usage is now consistently lower with the

proposed method, while also the latency is lower and the

framerate is higher. The connection cost now shows for

both instances an asymptotic behavior, with only a

marginally lower cost for the proposed method.

The results of Fig. 6 show that the proposed

methodology

scales very well with the number of agents,

as the three most important parameters (bandwidth usage,

average relative latency and average relative framerate)

are clearly better with the proposed approach. It may be

noted that the relative bandwidth usage is significantly

lower, while the connection cost changes only moderately.

This implies that the algorithm does seem to favor more

powerful, but also costlier, connection means.

In terms of processing time, that the simulation

presented in section C with 57 agents is about 30 times

slower than the one in section B with 7 agents, indicating

that the order of the algorithm is around ½O(n²).

Fig. 6. Top Left: Relative bandwidth usage; Top Right: Relative latency

compared to user requirements; Bottom Left: Relative framerate

compared to user requirements; Bottom Right: Connection cost. All

results given for a high number of agents (blue: proposed approach; red:

baseline aproach)

Fig. 7 shows the same graphs as Fig. 5, but for the high

amount of agents. As can be noted, Fig. 5 and Fig. 7 show

very similar behavior for the relative CPU, memory and disk

load. However, for the relative GPU load, we now see a

worse behavior with the proposed approach after 400

iterations. The reason for this lies again in the fact that our

linear load estimation model is not adequate for the GPU and

that we thus fail to optimize this parameter.

Fig. 7. Relative load on the CPU, GPU disk and RAM memory for high

number of agents (blue: proposed approach; red: baseline aproach)

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new methodology

towards load balancing. The method is specifically geared

towards managing processes across a fleet of heterogeneous

unmanned maritime systems. The algorithm employs a

decentralized approach where each agent in the system

communicates with its connected agents to determine which

process could best be offloaded to what other agent, in terms

of available computing resources, but also in terms of

network capabilities, connection cost and requirements in

terms of latency and framerate imposed by the end user.

The proposed methodology has been validated in a

simulation environment, first with a small number of agents

to understand the dynamics of the system and then with a

larger amount of agents to validate the capability of the

algorithm to upscale towards more complex problems with

dozens of interconnected agents. These simulations have

shown that the presented approach achieves significantly

better results than a baseline approach without load

scheduling.

The presented paper and results must be seen as a proof of

concept for the methodology. Based on the conclusions of

this work, future work is now identified to improve the

algorithm further.

In the first place, it was shown that a better methodology

is required for modeling the load of processes on a GPU.

Secondly, the naive multi-objective optimization function

that was used for this work should be clearly replaced by a

better methodology that allows for more fine-tuning and a

better optimization. Finally, it is the idea to implement this

methodology on a real fleet of unmanned maritime systems,

such that experiments in a realistic environment can be

performed.

REFERENCES
[1] M. Marques, R. Parreira, V. Lobo, A. Martins, A. Matos, N. Cruz, J.

Almeida, J. Alves, E. Silva, J. Będkowski, K. Majek, M. Pełka, P.
Musialik, H. Ferreira, A. Dias, B. Ferreira, G. Amaral, A. Figueiredo, R.
Almeida, F. Silva, D. Serrano, G. Moreno, G. De Cubber, H. Balta, H.
Beglerović, S. Govindaraj, J. Sanchez, M. Tosa, "Use of multi-domain
robots in search and rescue operations – Contributions of the ICARUS
team to the euRathlon 2015 challenge", OCEANS, China (2016)

[2] P. Simoens, M. Dragone, A. Saffiotti, “The Internet of Robotic Things:
A review of concept, added value and applications”, Int. Journal of
Advanced Robotic Systems, Vol 15, (2018)

[3] D.G. Feitelson, “Workload Modeling for Computer Systems
Performance Evaluation”, Cambridge University Press (2015)

[4] A.M. Alakeel, “A Guide to Dynamic Load Balancing in Distributed
Computer Systems”, IJCSNS International Journal of Computer Science
and Network Security, Vol.10 No.6, 2010

[5] V. Thakur, S. Kumar, “Load Balancing Approaches: Recent Computing
Trends”, International Journal of Computer Applications, Vol. 131 –
No.14, 2015

[6] F. Ali1, R. Z. Khan, “The study on load balancing strateges in
distributed computing system”, International Journal of Computer
Science & Engineering Survey (IJCSES) Vol.3, No.2, 2012

[7] P. Srinivasa Rao, V.P.C. Rao, A. Govardhan, “Dynamic Load Balancing
With Central Monitoring of Distributed Job Processing System”,
International Journal of Computer Applications, Vol. 65– No.21, 2013

[8] D. Doroftei, G. De Cubber, E. Colon, Y. Baudoin, “Behavior based
control for an outdoor crisis management robot”, Proceedings of the
IARP International Workshop on Robotics for Risky Interventions and
Environmental Surveillance, 2009

[9] D. Serrano López, G. Moreno, J. Cordero, J. Sanchez, S. Govindaraj, M.
M. Marques, V. Lobo, S. Fioravanti, A. Grati, K. Rudin, M. Tosa, A.
Matos, A. Dias, A. Martins, J. Bedkowski, H. Balta, G. De Cubber,
“Interoperability in a heterogeneous team of search and rescue robots”,
In: Search and Rescue Robotics-From Theory to Practice, InTech Open,
2017

[10] H. Balta, J. Bedkowski, S. Govindaraj, K. Majek, P. Musialik, D.
Serrano, K. Alexis, R. Siegwart, G. De Cubber, “ Integrated Data
Management for a Fleet of Search‐and‐rescue Robots”, In: Journal
of Field Robotics, Vol. 34, No. 3, pp. 539-582, 2017

[11] A. Habib, S. Moh, “Wireless Channel Models for Over-the-Sea
Communication: A Comparative Study”, A Applied Science, Vol. 9, No.
443, 2019

[12] D. Hulens, T. Goedemé, J. Verbeke, “How to choose the best embedded
processing platform for on-board UAV image processing?”, in:
proceedings International conference on computer vision theory and
applications - VISAPP 2015.

[13] M.T. Amaris Gonzalez, “Performance prediction of applications
executed on GPU’s using simple analytical model and machine learning
techniques”, PhD. Thesis, University of Sao Paulo, 2018

