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Abstract— Due to the increase in embedded computing 

power, modern robotic systems are capable of running a wide 

range of perception and control algorithms simultaneously. This 

raises the question where to optimally allocate each robotic 

cognition process. In this paper, we present a concept for a novel 

load distribution approach. The proposed methodology adopts a 

decentralised approach towards the allocation of perception and 

control processes to different agents (unmanned vessels, fog or 

cloud services) based on an estimation of the communication 

parameters (bandwidth, latency, cost), the agent capabilities in 

terms of processing hardware (not only focusing on the CPU, but 

also taking into consideration the GPU, disk & memory speed 

and size) and the requirements in terms of timely delivery of 

quality output data. The presented approach is extensively 

validated in a simulation environment and shows promising 

properties. 

Keywords—heterogeneous systems, multi-robot systems, cloud 

robotics, load balancing 

 

I. INTRODUCTION 

As robotic systems are becoming more and more 
intelligent, their perception, modeling, reasoning and actuation  
control architecture relies more and more upon a complex 
network of tightly interrelated processes. Moreover, these 
robotic systems are also more and more being deployed not in 
isolation, but as a part of a heterogeneous team, working 
towards a common higher-level goal [1]. The robotic agents 
thus become “edge” devices in an Internet-Of-Things 
framework with supporting computational infrastructure at fog 
and cloud level [2]. In such a collaboration scenario, the 
robotic agents can not only communicate between them to 
share information or to offload processes, but also to fog or 
cloud services.  

This evolution paves the way for new research questions, as 
the question arises for each perception & control process where 
to optimally allocate it: on the robot that generates the input 
data or requires the output data, on another robot, on a fog 
device or on a cloud service? This question of process load 
distribution has been studied for decades in computer science 
[3], however focusing heavily on optimizing the load 
distribution within computing stations in function of the 
processing time and the communication time. These kinds of 

approaches cannot be easily ported to the domain of mobile 
robotics and especially unmanned maritime systems due to the 
following reasons: 

• The performance of robotic perception and control 
algorithms is not only dependent on the CPU, but 
more and more also on the GPU, disk & memory 
speed and size. 

• For robotic perception and control processes both the 
update frequency and the latency are important 
parameters to ensure the usefulness of the data 
produced by a process. 

• Mobile robotic systems move, meaning that existing 
communication paths will improve or degrade over 
time or may even totally disappear. 

• Unmanned maritime systems cover great distances, 
switching between communication technologies as 
satellite, radio, Wi-Fi or even cellular, meaning that 
communication parameters vary widely and also that 
the cost of communication needs to be considered. 

In response to all these challenges, we propose in this paper a 
methodology that aims to optimally distribute the load of 
different processes over the different agents that are present in 
a robotic cloud architecture. The following assumptions are 
made: 

• The presence of at least one remote cloud architecture 
with very high computing capabilities 

• The presence of at least one remote fog architecture 
with high computing capabilities 

• The presence of at least two maritime robotic agents 
with moderate computing capabilities 

• The user defines for each process a number of 
requirements in terms of minimum framerate and 
maximum latency. 

• Unreliable communication means between the 
different assets. We consider six different 
communication technologies for data transfer, each 
with their own connection parameters with respect to 



bandwidth, latency, connection distance, quality of 
service, etc.: 

1. Satellite communication 

2. Radio telecommunication 

3. Mobile broadband (cellular) 

4. Wi-Fi 

5. Ethernet  

6. Fiber-optic communication 

 

The methodology proposed in this paper is based on a local 
optimization process where each agent communicates to the 
agents it is connected with in the network (which is a subset of 
all the agents) in order to find the best distribution of processes. 
As the agents only transfer data on a local level and no load-
balancing data is transferred across multiple hops, the result is 
‘only’ a local optimization of the process load, which may 
(very likely) still be sub-optimal in a global sense. With this 
regard, the presented approach differs from global load 
balancing techniques [4] that distribute the processing charges 
across a whole network, based upon an exact knowledge of all 
properties of all agents in the network. While capable of 
providing a more optimal solution, such a global approach 
towards load balancing is not convenient for the case studied in 
this research paper, being a fleet of heterogeneous unmanned 
systems. Indeed, as the unmanned systems are not all directly 
interconnected, it would require a considerable amount of 
networking overhead to share the information about all the 
agents with each other in some sort of central database, as 
performed by [5]. Moreover, in maritime operations one needs 
to consider that agents can get totally disconnected from the 
network for some time, which means that critical processes 
must be executed locally in any case and that on other 
occasions, when limited communication is possible, it will 
likely not be possible to connect to such a central database 
server. For these reasons, it was decided to develop the load 
balancing mechanism as presented in this paper as a 
decentralized approach, running independently on each agent 
in the network and only relying on existing agent-to-agent 
communication. 

Compared to other decentralized multi-agent collaboration 
frameworks [6], the presented approach differs in terms of 
objectives. Whereas classical decentralized multi-agent 
collaboration frameworks generally aim to optimize the 
successful completion of some higher or lower-level task 
(while generally ignoring how these tasks are decomposed into 
processes that need to run on the different agents), the 
presented approach aims to optimize the successful ‘outcome’ 
of each process (providing quality data on time with minimal 
strain on computing infrastructure), while it ignores the higher 
or lower-level tasks these processes belong to. As a result, it is 
perfectly possible to combine the approach presented in this 
paper with a classical decentralized multi-agent collaboration 
framework in order to combine both optimization objectives 
simultaneously. 

II. METHODOLOGY 

A. Overview of the approach 

The global strategy of the presented load balancing 
methodology is summarized by the pseudo-code of Algorithm 
1.  

The main idea is to interrogate each of the connected agents 
(other systems of the maritime fleet where the agent in subject 
is in contact with) whether they have computing resources 
available that would be better suited to offload one or more 
processes to. Performing such an interrogation and a transfer of 
processes is a procedure that consumes valuable computing 
resources and communication bandwidth by itself. Therefore, a 
primordial check is made whether it is at all necessary to apply 
any changes.  

The presented algorithm seeks to optimize 9 different 
parameters simultaneously for each agent in the network: 

• The relative load on the incoming communication 
channel, expressed as the current  bandwidth 
usage compared to the maximum bandwidth 
capacity of the incoming communication channel. 
[%] 

• The relative load on the outgoing communication 
channel, expressed as the current  bandwidth 
usage compared to the maximum bandwidth 
capacity of the outgoing communication channel. 
[%] 

• The framerate, expressed as the current framerate 
of the process compared to the required minimal 
framerate, as defined by the user. [%] 

• The latency expressed as the current latency (in 
seconds) of the process compared to the required 
maximal latency, as defined by the user. [%] 

• The communication cost in euro or dollar. 

• The relative load on the Central Processing Unit 
(CPU), expressed as the current CPU usage 
compared to the total CPU capacity. [%] 

• The relative load on the Graphics Processing Unit 
(GPU), expressed as the current GPU usage 
compared to the total GPU capacity. [%] 

• The relative disk usage, expressed as the current 
disk usage compared to the total disk capacity. 
[%] 

• The relative memory usage, expressed as the 
current RAM memory usage compared to the total 
RAM memory capacity. [%] 

Note that all of the above-mentioned parameters need to be 
minimized, except for the framerate, that needs to be 
maximized. 

In the following paragraphs, we will further discuss how 
these parameters are calculated and how they fit into the 
framework of Algorithm 1. 

The research presented in this paper has been funded by the Belgian 
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01 FOR each Agent 

02   IF CheckProblems(Agent) = TRUE 

03     FOR each Process 

04       FOR each ConnectedAgent 

05         L_Comm = Calculate_Relative_Load_On_Communication 

06         L_FPS = 1 / Calculate_Projected_Framerate 

07         L_LAT = Calculate_Projected_Latency 

08         L_Cost  = Calculate_Projected_Communication_Cost 

09         L_CPU = Calculate_ Projected_Relative_Load_On_CPU 

10         L_GPU = Calculate_ Projected_Relative_Load_On_GPU 

11         L_DISK = Calculate_ Projected_Relative_Load_On_Disk 

12         L_RAM = Calculate_ Projected_Relative_Load_On_RAM 

13         STORE ConnectedAgent with lowest L_Comm, L_FPS, L_LAT,  

                              L_Cost, L_CPU, L_GPU, L_DISK, L_RAM 

14       ENDFOR    

15       TRANSFER Process to optimal ConnectedAgent 

16     ENDFOR 

17   ENDIF 

18 ENDFOR 

 

Algorithm 1.   Pseudo-code for the multi-agent load-balancing algorithm 

 

B. Detailed discussion 

Lines 01-02: 

For each agent in the fleet, a check is made whether there 
are any problems that would necessitate a transfer of a process 
running on that agent. Identified problems can be: 

• The combined processes running on the agent 
demand more bandwidth from the incoming or 
outgoing communication channel than is 
available. 

• The combined processes running on the agent 
demand more CPU, GPU, disk or memory 
capacity than available on the agent. 

• The required minimal framerate, as defined by the 
user, is not reached. This can be for example due 
to a slow CPU that cannot process the data in real-
time. 

• The required maximal latency, as defined by the 
user, is not reached. This can be for example due 
to a slow CPU that cannot process the data in real-
time, but also due to a communication channel 
that is too slow. 

 

Lines 3-4: 

For each process pi running on the agent, check whether it 
is possible and interesting to transfer that process to one of the 
other systems aj the agent is connected to.  

For evaluating this, we calculate one by one the 9 
optimization parameters defined above for a virtual situation 
where pi is running on aj. This calculation is performed in lines 
5-12. 

 

 

 

Line 5: 

The relative load on the communication channels is 
calculated (both incoming and outgoing) by comparing the 
used bandwidth of the communication channel to the 
maximum bandwidth of that channel. Two problems need to be 
solved for enabling this calculation: the best communication 
channel needs to be chosen and the new bandwidth of this 
communication channel needs to be estimated. 

The algorithm does this by evaluating for each of the 6 
communication methodologies their availability (e.g. wired 
communications will not work between mobile agents, WiFi or 
cellular will likely not work well far at sea) and choosing the 
communication technology with the highest available 
bandwidth. As it concerns a virtual situation (process pi is not 
yet actually running on aj), these communication parameters 
need to be estimated using a model. In order to do this, we use: 

• For satellite communications, a constant service 
model 

• For radio communications (both generic radio and 
WiFi), the two-ray propagation model [7]. This 
model is known to be well-suited for maritime 
applications. 

• For mobile broadband communications, we use 
the same two-ray propagation model, but then not 
between agents, but between the agent and the cell 
tower. 

• For ethernet and fiber-optic communication, we 
use the standard wired communication models [8]. 

This calculation is made once for the incoming and once 
for the outgoing communication channel and the respective 
loads on the communication channels are summed to provide a 
final ‘cost’ for the transfer with respect to communication. 



Line 06: 

 The projected framerate of process pi running on agent aj is 
estimated, based upon - the computational load of process  pi 
on the current agent and the relative performance between the 
compute capabilities of the current agent and agent aj, as 
indicated in [9]. The transfer cost with respect to the framerate 
is then defined as the inverse of the estimated framerate 
divided by the minimum requested framerate. Taking the 
inverse is applied in order to come to a cost function to be 
minimized, whereas the framerate needs to be maximized. 

 

Line 07: 

The projected latency of process pi running on agent aj is 
estimated based upon: 

• the estimation of the latency due to the delayed 
arrival of the data on the incoming communication 
channel (see line 05) 

• the estimation of the latency due to the processing 
time taken to process the data, which is the inverse 
of the framerate (see line 06) 

• the estimation of the latency due to the delayed 
transfer of the data on the outgoing 
communication channel (see line 05) 

 

Line 08: 

The projected communication cost is estimated using a 
fixed price per Megabyte accorded to each of the 6 
communication channels. This may not always be a perfect 
representation, due to subscription plans that are somewhat 
bandwidth-independent, but in most usage scenarios, it 
provides a ‘good enough’ means for estimating the 
communication costs. The communication bandwidth is 
estimated as explained in line 05. 

 

Line 09: 

The projected relative load on the CPU is estimated by 
adding the relative CPU load of the process pi to agent aj and 
dividing this by the CPU capabilities of agent aj. Obviously, 
this approach is only correct in a single-core and non-
hyperthreading scenario. Modern multi-threaded CPU’s do 
scale differently, but the differences are not so big that they 
make the use of this model impossible for estimating the CPU 
load of processes in the context of this load-balancing 
approach. 

 

Line 10-12: 

A similar approach to the CPU (line 09) is followed for the 
GPU load and the load on the disk and the RAM memory. 
Whereas this works quite well for the disk and RAM memory 
(which follow a linear model of filling up), this doesn’t really 
hold true anymore for the GPU. Indeed, due to the highly 

parallelized architecture, GPU’s scale very non-linearly under 
load. As it is very difficult to model this behavior [10], we have 
not developed this any further and have applied the same linear 
model, but we will see in the results section that this has some 
repercussions. 

 

Line 13: 

The connected agent with the lowest total cost is selected. 
As we are dealing here with a multi-objective optimization 
process, ideally  an intelligent multiple criteria decision making 
algorithm  should be adopted to come to an optimal solution. 
However, this is not the focus of this research paper. With this 
paper, we just want to show a proof-of-concept for the load 
balancing approach for a fleet of heterogeneous unmanned 
maritime systems. Therefore, we just adopted linear 
scalarization with unitary weights to select the agent with the 
lowest cost.  

This is a rather simplistic (and presumably not the best) 
approach, but with this approach we wanted to test the 
applicability of the presented load-balancing technique, with 
the prospect of improving the optimization algorithm later on. 

 

Line 15: 

Finally, the transfer of the chosen process to the identified 
optimal agent is executed. This procedure involves not only the 
launch of the process on the remote agent, but also the 
termination of the process on the current agent and the setup of 
new connections between agents. 

 

III. VALIDATION 

A. Validation methodology  

In order to validate the presented methodology, we have 
chosen to develop a simulation tool. This tool allows for the 
simulation of multiple interconnected cloud, fog and edge 
agents with a range of processes running on them.  

In order to evaluate how the approach scales with the 
number of agents involved, we present two different validation 
tests: one with a relatively low number of agents and one with 
a relatively high number of agents. 

For each of the experiments, a number of agents was 
released inside an area of 1000 x 1000 km. At each iteration, 
the mobile agents move, using a randomized motion pattern. 
This movement obviously also influences the communication 
parameters between the agents, which are distance-dependent. 

At every few iterations (a random number), a new process 
is spawned, with random values and requirements with respect 
to  each of the 9 above-mentioned parameters. As such, the 
load on the network gradually increases over time. For this 
paper, we consider simulations with 1000 iterations. 

As there are quite some random parameters (all following a 
uniform distribution) in the simulation process in order to test 
all kinds of eventualities, it is required to perform a large 
amount of iterations to acquire consistent data about the load-



balancing performance. Therefore, the simulations are repeated 
typically 100 times.  

In order to assess the performance of the presented load-
balancing technique, a comparison is made to a standard 
situation, where this technique is not used. 

 

B. Results for a low number of agents 

Here we present results as they were obtained with the 
presented load-balancing technique for  

• 1 cloud agent (a powerful on-shore cloud 
infrastructure),  

• 2 fog agents (typically 2 motherships with 
important computing infrastructure)  

• 4 edge agents (unmanned vessels acting as sensor 
platforms with important needs in terms of 
computing power, but with limited on-board 
computing power) 

On all the figures, the blue line represents the result of the 
presented load-balancing technique, whereas the red line 
represents the result of the standard situation for 
benchmarking.  

Note that all the figures represent results as relative 
(unitless) data, following the definition of the optimization 
parameters given above. Therefore, the Y-axis has been left 
blank for reasons of clarity of the figures. 

The results that are displayed here below show averaged 

results over 100 simulations and over all agents in the 

simulation.  

Fig. 1 shows the relative bandwidth usage both for the 

proposed and the baseline approach. As can be noticed, the 

proposed algorithm clearly succeeds in limiting the overall 

bandwidth usage considerably, notwithstanding the ever 

increasing number of processes. Over a few iterations, the 

bandwidth usage of the proposed approach is actually higher 

than with the baseline approach. This is due to the 

algorithmic communication overhead required for 

exchanging the data.  

 

Fig. 1. Relative bandwidth usage for small number of agents (blue: proposed 

approach; red: baseline aproach)  

Fig. 2 shows the relative latency compared to the user 

requirements both for the proposed and the baseline 

approach, whereas fig. 3 shows the evolution of the 

framerate across the iterations.   

From Fig. 2, it can be noted that the presented 

approach obtains in a consistant manner a significantly 

lower latency, which is really important in real-time 

applications.   

Fig. 3 shows that the proposed algorthm generally 

succeeds in achieving higher framerates than the baseline 

approach. The spikes in the red baseline curve on Fig. 3 

are probably due to outliers values that are not sufficiently 

averaged out. This indicates that we should probably 

record even more than 100 simulations.   

 

  
Fig. 2. Relative latency compared to user requirements for small number 

of agents (blue: proposed approach; red: baseline aproach)  

  

 

  
Fig. 3. Relative framerate compared to user requirements for small 

number of agents (blue: proposed approach; red: baseline aproach)  
  



The connection cost for the presented approach is lower 

than the baseline connection cost, as indicated by Fig. 4. 

However, it is also clear that the connection cost for the 

proposed approach follows a more or less linear model, 

whereas the baseline approach shows a more asymptotic 

behavior, which would mean that the proposed approach 

would probably be costlier at higher iterations. The reason 

for this behavior is still under investigation, but it is probably 

due to the fact that the connection cost is currently no factor 

in deciding whether to transfer a process (in step 01-02).  

 

Fig. 4. Connection cost for small number of agents (blue: proposed approach; 

red: baseline aproach)  

Fig. 5 compares the (averaged) relative load on the CPU, 

GPU, disk and memory. As it can be clearly noted, the 

proposed approach achieves better results in all cases, putting 

less cumulative strain on the computing hardware and still 

reaching a better performance in the end (as indicated by Fig. 

3). However, it should be noted that for the GPU, the curves 

of the proposed and baseline approach are quite close to one 

another, indicating that the methodology doesn’t really 

generate great benefits here. This is probably due to the fact 

that it is very difficult to model the scaling of the GPU load 

and performance (see discussion at line 10-12).  

 

Fig. 5. Relative load on the CPU, GPU disk and memory for small number of 

agents (blue: proposed approach; red: baseline aproach)  

C. Results for a high number of agents  

Here we present results as they were obtained with the 

presented load-balancing technique for   

• 2 cloud agents (powerful on-shore cloud 
infrastructures) 

• 5 fog agents (typically motherships with 
important computing infrastructure)   

• 50 edge agents (unmanned vessels acting as 
sensor platforms with important needs in terms 
of computing power, but with limited on-board 
computing power)  

Fig. 6 shows the same graphs as Fig. 1-4, but now for 

this much higher amount of agents. Compared to the 

previous results with a low number of agents, the relative 

bandwidth usage is now consistently lower with the 

proposed method, while also the latency is lower and the 

framerate is higher. The connection cost now shows for 

both instances an asymptotic behavior, with only a 

marginally lower cost for the proposed method.  

The results of Fig. 6 show that the proposed 

methodology 
 
scales very well with the number of agents, 

as the three most important parameters (bandwidth usage, 

average relative latency and average relative framerate) 

are clearly better with the proposed approach. It may be 

noted that the relative bandwidth usage is significantly 

lower, while the connection cost changes only moderately. 

This implies that the algorithm does seem to favor more 

powerful, but also costlier, connection means.   

In terms of processing time, that the simulation 

presented in section C with 57 agents is about 30 times 

slower than the one in section B with 7 agents, indicating 

that the order of the algorithm is around ½O(n²).  

 

Fig. 6. Top Left: Relative bandwidth usage; Top Right: Relative latency 

compared to user requirements; Bottom Left: Relative framerate 

compared to user requirements; Bottom Right: Connection cost. All 

results given for a high number of agents (blue: proposed approach; red: 

baseline aproach)  



Fig. 7 shows the same graphs as Fig. 5, but for the high 

amount of agents. As can be noted, Fig. 5 and Fig. 7 show 

very similar behavior for the relative CPU, memory and disk 

load. However, for the relative GPU load, we now see a 

worse behavior with the proposed approach after 400 

iterations. The reason for this lies again in the fact that our 

linear load estimation model is not adequate for the GPU and 

that we thus fail to optimize this parameter.  

 

Fig. 7. Relative load on the CPU, GPU disk and RAM memory for high 

number of agents (blue: proposed approach; red: baseline aproach)  

   

IV. CONCLUSIONS AND FUTURE WORK  

In this paper, we have presented a new methodology 

towards load balancing. The method is specifically geared 

towards managing processes across a fleet of heterogeneous 

unmanned maritime systems. The algorithm employs a 

decentralized approach where each agent in the system 

communicates with its connected agents to determine which 

process could best be offloaded to what other agent, in terms 

of available computing resources, but also in terms of 

network capabilities, connection cost and requirements in 

terms of latency and framerate imposed by the end user.   

The proposed methodology has been validated in a 

simulation environment, first with a small number of agents 

to understand the dynamics of the system and then with a 

larger amount of agents to validate the capability of the 

algorithm to upscale towards more complex problems with 

dozens of interconnected agents. These simulations have 

shown that the presented approach achieves significantly 

better results than a baseline approach without load 

scheduling.   

The presented paper and results must be seen as a proof of 

concept for the methodology. Based on the conclusions of 

this work, future work is now identified to improve the 

algorithm further.   

In the first place, it was shown that a better methodology 

is required for modeling the load of processes on a GPU. 

Secondly, the naive multi-objective optimization function 

that was used for this work should be clearly replaced by a 

better methodology that allows for more fine-tuning and a 

better optimization. Finally, it is the idea to implement this 

methodology on a real fleet of unmanned maritime systems, 

such that experiments in a realistic environment can be 

performed.  
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