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Abstract—We describe how to model the statistics of
both the visual input selection and gaze orienting be-
haviour of a human observer undertaking a visual ex-
ploration task in a given visual scenario. Evidences from
neuroscience research prove that complex visual systems
have shaped their receptive fields and neural organisation
in a continuous adaptation to the visual environment
stimuli in which they evolved. This ecology is the basis
of our investigation of the human visual behaviour from
a real set of gaze tracked points of fixation acquired from
a custom designed wearable device. By comparing these
set of fovea-centred patches with a randomly chosen set of
image patches, extracted from the entire observed scene,
we aim at characterising the statistical properties and
regularities of the selected visual input. Samples from a
human observers are collected both in free-viewing and
surveillance-like tasks. In this work we suggest that a
generative model of the visual input emerging from the
recorded scan-path can be used to model a set of feature
detectors for the design of an artificial visual system.

I. INTRODUCTION

Modern computer vision science is strongly interested
in biological vision systems, following the assumption
that perceptual (biological) systems in nature are de-
signed through natural selection; evolved optimally in
response to the distribution of natural visual cues per-
ceived from the environment. Thus the knowledge about
the statistical properties of natural images are crucial
when incorporated in computational framework of visual
processing. Visual images bring all the information that
we need to perform a task. Human beings are very
efficient in a lot of visual tasks, thanks to the ability
of focusing those parts of the scene relevant to the task,
ignoring most of the information which is sensed, but
not perceived. Before understanding the nature of visual
processing, one must understand the nature of the visual
environment [6], [10], [11]. Most natural visual tasks

involve selecting a certain amount of locations to fixate.
The spatial distribution and the wavelenght sensitivity
properties of the photo-receptors on the surface of the
retina is highly non uniform. Indeed, the area of finer
spatial resolution is concentrated around a small spot
on the retina called foveola of around 1.2◦, surrounded
by the fovea with an aperture of around 6◦. Despite
the relatively small area occupied by the fovea on the
retinal plane, it is mapped to a disproportionate area
in the visual cortex with respect to peripheral retinal
areas (cortical magnification). The visual scanning of the
world - the scanpath - is performed in a very efficient
way by programming a sequence of saccades on the
visual array.

The strategy followed by humans in deploying the
mechanism of visual attention has been subject of re-
search in neuroscience, cognitive science and lately
computer vision. It has inspired novel biologically based
methods for image compression, visual search, naviga-
tion and all the areas of research in artificial systems
where a preliminary selection of the area of interest, in
a restricted portion of the input, helps in reducing the
complexity of a generic further processing. The princi-
ple, underlying this approach, relies on a generic notion
of visual saliency i.e. that the visual interestingness of the
scene is a measurable entity encoding the task-relevant,
context-based information embedded in the visual world.
In general, the saliency has been modeled as a function
on some feature space computed on the image. Several
approaches have been presented challenging the problem
of quantifying in a biological justified framework a
measure of visual salience. For example, to cite only
a few of the most popular: methods inspired to the
Feature Integration Theory [31] engineered to model
the competition between bottom-up cues such as local
measure of centre-surround contrast on feature channels
(i.e. orientation, color opponency, luminance) [15] [7], or
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tuned to specific visual search tasks [33] or accounting
for a top-down bias towards current task, spatio-temporal
locations or high level cues [32].

II. CONTRIBUTION

The above considerations motivate our approach to
the problem of characterising the visual behaviour of an
observer. The goal of this work, is to investigate into
the statistical nature of the visual environment in terms
of high order statistics, from a set of image patches
extracted at the point of fixation of a human observer
undertaking a surveillance/free-viewing task. The step of
our approach will be separately described in Sec.IV:

a. Sampling the visual context: to build a set of im-
ages carrying the information of the visual content
linked to a specific scenario context, Sec. IV-A;

b. Computing linear ICA from a set of randomly
selected patches samples from the database,
Sec. IV-B;

c. Collect observations. This step realises the actual
observation of the gaze behavior of person inspect-
ing or freely viewing the scene, Sec. IV-C;

d. Scan path projection on the context bases. The
gaze-centred patches computed in the second step
are projected on the global visual environment ICA
decomposition, Sec. IV-D;

e. Scanpath variance Analysis in which a dimen-
sional reduction of the problem is performed
driven by the variance distribution of the scan-path
coefficient projected on the ICA visual context
decomposition, Sec. IV-E .

III. RELATED WORKS

The role that central vision 1 plays in visual processes
is intimately linked to the understanding of the relation-
ships between action, visual environment statistics and
previous knowledge with the actual scan-path performed
(i.e. the sequence of spatio-temporal fixations). Early
experiment conducted by Yarbus [35] highlighted the
influence of task on the pattern generated by an observer.
Rothkopf and Ballard in [23] study the statistics at the
point of gaze of human subjects involved in natural
behaviours. The interesting novelty in their work is
the choice of using data from a real observer, even
if performing actions in a virtual visual environment.
The authors argue that the active selection principle
(depending on the ongoing task) is part of the process
in shaping the regularities in the visual inputs. Saliency

1The high detailed visual information as projected on the neigh-
bourhood of the centre of gaze during a fixation.

is therefore a measure of task-dependent importance.
Bruce and Tsotsos [2], [3] propose a bottom up strategy
relying on a definition of saliency aimed at maximising
Shannon’s information measure after ICA decomposi-
tion. They use a database of patches randomly sampled
from a set of natural images. The saliency model is
then validated against eye tracked data captured from
laboratory experiment (recorded video and still images).
In [21] the root mean square contrast is evaluated on a
set of fixation points preformed by an observer looking
at static natural (in this case natural landscapes) images.
They derive a saliency model based on the minimisation
of the total contrast entropy. Reinagel and Zador in
[22] study the effect of visual sampling by analysing
the correlations of contrast and grey-level correlation in
the fovea and para-fovea2 regions. In [34], the authors
model the distribution of contrast and edges on gaze-
centred image patches with a Weibull probability density
function under the assumption that in a free-viewing
context our gaze is drawn toward image regions which
local statistics differs from the rest of the image. Tatler
and Baddeley in [1] go through a deep discussion on
determining what are the characteristics that most are
likely influence the choice of the regions to fixate.
They focus on local statistics on luminance, contrast and
edges. The derived model, highlights a preference for
high frequency edges. In [27] the authors observe the
generic characteristic of the point of fixation conditioned
to the magnitude of the saccade performed. Second order
statistics regularities emerging in categories of natural
images can be exploited as descriptors for classifying
the kind of environment depicted [30].

IV. EXPERIMENTAL SCENARIO

Our work is closely related to the natural image
statistics domain [13]. In literature, natural images or
images of natural scenes are defined as: “those that are
likely to have similar statistical structure to that the
visual system is adapted to during its evolution” [8],
[9], [18]. The term natural in our context may sound
misleading as it generally refers to collection of images
of natural landscapes. In our scope we consider natural
images as those characterising the visual context of the
observer. For example a collection of pictures of the
internals of a building, or the visual landscape of a
surveillance inspector.

2Parafovea is the area sensed at minor resolution surrounding the
fovea
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Figure 1. A collection of images sampled from the internals of the
building hosting our department.

A. Sampling the visual context

The experimental setup differs from other relevant
works in the field in the method of collecting data
from the observer. To our best knowledge the closest
methodology to our approach can be read in [24] where
the fixations are collected from a real moving observer
but immersed in a virtual environment which second
order statistics resemble the one that can be measured
in real environments3. The first step that we followed
in order to model the experimental visual environment
was to collect a set of views taken from the internals
of a building. In this work we have chosen to take
pictures of the Department of Computer and System
Sciences building in Rome. We collected a set of 126
images representing the global content of visual infor-
mation that people visiting or working in the building
are likely to sense. The views contains sample images
of different sub-contexts: corridors, rooms, laboratories,
closets, doors. Pictures depicting the same sub-context
were taken at different scales (i.e. from a closer or farest
point of view) and different angles. Fig. 1 shows a subset
of pictures selected from the database.

B. Sparse Coding and ICA

A large amount of literature deals with the concepts of
sparseness, efficient coding and blind source separation.
These three aspects are intimately related to each other
[20]. Optimal coding is equivalent to the problem of
finding a set of independent (thus uncorrelated) sources.
Sparseness is a statistical property meaning that a ran-
dom variable takes both small and large values more
often than a normal density with the same variance.
A sparse code, then represents data with a minimum
number of active units. The typical shape of a sparse

3The so called 1/f noise.

probability density distribution shows a peaked profile
around zero and long heavy tails. The sparseness of
the response of the cortical cells to the visual input [5]
, suggests the adoption of a computational framework
suitable to discover the latent factors that represent the
basis of an alternative space for encoding properly the
visual data. The aim is to use a generative model of the
data. A generative model of observed data (the visual
input) is thus generated as transformation of some simple
original variables. The original variables are called latent
or hidden since they cannot be observed directly. The
generative model we use in this work is the linear
independent component analysis or ICA [14]. The linear
independent component analysis models linear relations
between pixels. In this model, any (greylevel) image
patch I(x, y) can be expressed as a linear combination of
a basis vector Bi (sometimes called the mixing matrix):

I(x, y) =

n∑
i=1

Bi(x, y)si (1)

where the si are called the ICA coefficients that vary
from patch to patch. The si can be computed from the
image by inverting the mixing matrix:

si =
∑
x,y

Wi(x, y) I(x, y) (2)

The Wi are called features or coefficients (because of
the simple linear operation between coefficients si and
features Wi). An example of computed ICA bases and
features can be seen in Fig.2 and Fig.3 respectively. The
si are scalar values sparsely distributed (non Gaussian).

The coefficients Wi resemble the organisation of the
simple cells in the primary visual cortex V1 [17], [19]
(i.e. a set of oriented, localised, bandpass filters). The
linear ICA computations presented in this work were
realised with the FastICA package [12].

C. Sampling the Gaze

The sampling of the gaze is realised through a custom
device that we here briefly introduce. A longer and
detailed description may be found in [16]. The Gaze-
Machine Fig. 5 is made of a helmet upon which sensors
are embedded. A stereo rig and an inertial platform
are aligned along a stripe mounted on the helmet. Two
more cameras, that is, two microcameras C-mos are
mounted on a stiff prop and point at the pupils. Each eye-
camera provides two infrared LEDs. All cameras were
pre-calibrated using the well known Zhang camera cali-
bration algorithm for intrinsic parameters determination
and lens distortion correction. Extrinsic and rectification
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Figure 2. The set of linear ICA bases computed from a set of 25000
random patches sampled from the global visual context database.

Figure 3. The set of linear ICA features computed from a set
of 25000 random patches sampled from the global visual context
database.

parameters for stereo camera were computed too, and
standard stereo correlation and triangulation algorithms
used for scene depth estimation. An inertial sensor is
attached to the system, to correct errors due to invol-
untary movements occurred during the calibration stage.
The scene camera frames are suitably paired with the
eye-camera frames for pupil tracking. The data stream
acquired from these instruments is collected at a frame
rate of 15 Hz and it includes the right and left images of
the scene, the cumulative time, the right and left images

Figure 4. A subset of patches belonging the scan-path performed.

of the eyes, and the head angles, in degrees, accounting
for the three rotations: the pitch (the chin up and down),
the roll (the head inclined towards the shoulders) and
the yaw (the head rotation left and right), obtained by
the inertial system. In order to correctly locate the point
of regard of the user, an eye-camera calibration phase,
for each of the two camera-eye system, is required to
estimate the multi-view relationships between the real
and virtual (modeling the eye) image planes.

Each gaze tracked sample g(i) are acquired on each
frame. The ith gaze sample is defined as the n-uple:

g(i) = 〈p(i), t (i), f (i)〉 (3)

where p(i) are the (x(i), y(i)) image plane coordinates
of the gaze point, t (i) is the timestamp (in milliseconds)
and f (i) the frame index. The full set of gaze samples
defined as:

G = {g(1), g(2), . . . , g(k)} (4)

being k the number of samples taken. As we are inter-
ested in analysing the information sampled at the centre
of gaze during a fixation we proceed to filter out from the
set G all those samples that are likely to belongs to a sac-
cade (the rapid eye movement between two consecutive
fixations). We realise this filtering as a non-parametric
clustering problem. We borrow from Duchowski the
definition of fixation as a sustained persistence of the
line of sight in time and space [4]. In practice, a fixation
is the centre of a spatial and temporal aggregation of
samples in a given neighbourhood. We use the mean shift
algorithm on the feature space spanned by the vectors
in G (except the frame index information which is not
useful to cluster together samples belonging to the same
fixation). A similar approach has been presented in [26].
The output of the mean shift is set of samples described
by the tuple f = 〈c, V 〉 where the c are the centres
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Figure 5. The gaze-machine used to acquire the scanpath.

Figure 6. In the figure the mean-shift clustered fixation points (in
red) superimposed on the plot of the full gaze track (continuous
line). X,Y axes refers to the spatial image coordinates. The T axis
represents the timestamp in milliseconds of the gaze sample.

(x, y, t) resulting from the mean shift and V is the patch
centred in c. Therefore the full scanpath sequence:

F = {f (1), f (2), . . . , f (l)} (5)

contains only samples classified as fixation points. Re-
sults are shown in Fig.6 and Fig.7.

Fig. 4 shows a subset of gaze-centred patches from a
scan-path.

D. Scan path projection on the context bases

We have now a model of the visual context C,
defined as C = 〈B,W〉 and the scanpath F . In our
experiment we are using (16 × 16) greylevel patches,

Figure 7. Same data as shown in Fig. 6 projected on the X,Y
plane, discarding the time dimension.

Figure 8. Observing the variance of the ICA channels coefficients.
The first row, we show 3 of the 256 W (Fig.3). The second and third
rows show the histograms of the coefficients (of the corresponding
features) computed respectively on the context and the scan-path. The
profile of the ML estimated Laplacian distribution is superimposed
on the normalised histograms.

B,W ∈ R256×256 containing on the ith column the
vectorised base Bi and feature W i patches.

We have sampled the scan path with N ≥ 300 highly
foveated images (size 16×16), from this set we obtain a
new feature vector of size N × 256. That is, the feature
vector is defined as follows. Let Vj(x, y) be the j scan-
path patch and Wi(x, y) the i-th inverted mixing matrix,
i = 1, . . . , 256 and j = 1, . . . , N , then

spij =
∑
xy

Wi(x, y)Vj(x, y) spij ∈ R (6)

The spij are the scan-path coefficients which are the
weights of the bases obtained from the dot product of
Wi and Vj . The resulting matrix Sp is thus a RN×256
matrix formed by N observations (the scan-path patches)
encoded in the ICA R256 feature space .
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Figure 9. Average context variance distribution: σ2

C = 0.4193

Fig. 8 shows the plot of three feature channels4 and the
corresponding distribution of the coefficients encoding
the context (2nd row) and the scan-path (3rd row). The
coefficient distribution are then modeled with a Laplacian
distribution:

P(u|λ) = exp

(∣∣∣∣uλ
∣∣∣∣) (7)

with λ being the variance. The examples shown in
Fig. 8 highlight a different distribution of the variance
between the context and the scan-path. The measured
mean of the 256 context coefficients variance is around
σ2C = 0.4193 while the mean of the scan-path coeffi-
cients variance is σ2Sp

= 1.3923 (see figures Fig. 9 and
Fig. 10). The scan-path distribution has still a sparse
activation, but with higher variances w.r.t. the context.
We will describe in the next section our proposal for
achieving both a dimension reduction of the feature
space and the estimation of the probability density func-
tion characterising the scan-path.

E. Scanpath variance Analysis

As shown in the previous section, the scan path seems
to be generated by less sparse data with higher variance,
with respect to the context. A natural question is how
the hidden context emerges from the scan path, what is
the contribution of unexpressed dependences in the scan
path image formation.

A latent variable model more oriented to variance,
like the PCA would allow to verify the effective impact

4The number of the feature channel chosen is due exclusively to
visualisation limits.

Figure 10. Average scanpath variance distribution: σ2
Sp

= 1.3923

of the directions of maximal variance of the scan-path
projection on the context. In particular probabilistic PCA
is very suitable to study data structure by a combination
of local linear principal component projection. The real
difficulty is to determine the number of latent compo-
nents and the number of possible mixtures.

Probabilistic PCA [28], [29] is here used to build
the mixtures of principal component analysers in which,
however, the number of components are randomly cho-
sen. PPCA defines a probability model relating two sets
of variables a D-dimensional vector of observations and
a ρ-dimensional vector of unobserved variables. It is
particular suited for high dimensional data whenever,
as in our case, we need to study the variance of the
projection of the scan-path. To visualise the data we have
chosen a three dimensional projection for the observa-
tions Ytt = 1T ⊂ RD, of the whole generated dataset
Sp, and thus the remaining dimensions, say ρ are left to
the latent variables ztt = 1T ⊂ Rρ.

Given a Gaussian noise model N (0, σ2Iρ) for the
latent variable z, the marginal distribution of Y is
Gaussian, namely:

P (z) = N (z|0, σ2Iρ),
P (Y|z) = N (Y|Az + µ, σ2Iρ),
p(Y) = N (Y|µ,AA>σ2Iρ).

(8)

Here Iρ is the identity ρ × ρ matrix. The maximum-
likelihood estimation of the ρ×ρ matrix A relating latent
variables and observations is [28]:

AML = Uiρ(Λiρ − σ2i Iρ)1/2Iρ. (9)

Here Uiρ is the D×ρ vector formed by the eigenvectors
corresponding to the greatest eigenvalue λi1, . . . λiρ, of
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the original sample variance of Sp, Λρ is the ρ × ρ
diagonal matrix of the eigenvalues and σ is the average
variance per discarded dimension. The ML estimation of
the variance is [28]:

σ2ML =
1

D − q

D∑
j=q+1

λj . (10)

The mixture of PPCA is thus defined for the model
(Ak, ck, µk, σ2k), k = 1, . . . ,M , and M the number of
possible components:

f(Yt) =

M∑
k=1

ckN (Yt|µk,AkA>k +σ2kIρ), t = 1, . . . , T ;

(11)
Here ck is the mixture proportion. The parameters of the
mixture of PPCA can be approximated by the reestima-
tion procedure given in [25], [28], [29], in which the EM
approach is taken to maximise the log-likelihood of the
complete-data LC =

∑T
t=1

∑M
k=1wtk ln{ckp(Yt, ztk)}

and the reestimation steps are given in [29]. Given that
the search for an opimal number of components is still
to be concluded, the mixture of PPCA allows to compute
the variance of the latent variables and of the model:

C = σ2I +AA>

and the posterior covariance is

σ2(σ2I +A>A)−1

From this, which is the variance of the latent data,
given the observed, we have been able to evaluate the
dependency of the scanpath from the context.

V. CONCLUSION

We showed an approach aimed at modeling the visual
selection of an generic observer from a real scan-path
performed in a given environment. The rich information
content from the visual environment is encoded in a set
of feature bases which capture the linear correlations
between the images. Then we project the actual scan-
path onto the feature space representing the context.
The last step is to estimate a reduced problem in which
the subspace spanned by the scan-path is modeled as
a mixture of latent factors by PPCA. This approach
is appealing, because puts together the visual context
surrounding the observer and the learning of a selection
scheme from a recorded scan-path. This approach seems
valid, though a clear way for determining the number of
mixtures according to the generated scan-path is still to
be defined..
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