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Abstract—The paper studies implementation of parallel park-
ing for autonomous vehicles using sensor fusion based on Ex-
tended Kalman Filtering and Particle Filtering. The vehicle is
steered along a reference path while the vehicle’s state vector is
not directly available but is estimated by fusing measurements
coming from distributed sensors. At a second stage the estimated
state vector is used by a nonlinear controller (flatness-based
controller) in-order to track the parking trajectory. It is shown
that sensor fusion can provide reliable estimation of the vehicle’s
motion and can be used for successful completion of the parallel
parking task and fault tolerant control.

I. INTRODUCTION

The parallel parking task has attracted considerable attention
in the area of mobile robotics since it has practical significance
for the automotive industry [1-5]. A rectangular parking area
is considered and a reference frame is defined so as its axes
to coincide with the rectangle’s side (see Fig. 1, Fig. 5 and
Fig. 6). The vehicle starts from an initial position out of the
rectangle and moves backwards. After performing appropriate
maneuvers the vehicle should be found completely inside the
parking area with its longitudinal axis to be aligned with the
horizontal axis of the reference system [6]. Collisions with the
boundaries of the parking area are not allowed, while several
other constraints about the geometry of the vehicle’s trajectory
and the vehicle’s velocity can be imposed. To perform the
parallel parking task usually three stages can be distinguished:
(i) detection of a suitable parking area, (ii) path planning,
i.e. selection of the trajectory to be followed by the vehicle’s
center of wheels axis while moving towards the final position,
(iii) control of the vehicle’s motion. Parallel parking can be
performed (a) in direct motion, i.e. the vehicle moves only
backwards, along a single continuous path, until it reaches its
final position (b) in recursive motion, i.e. the vehicle moves
backwards and forwards and performs sequential maneuvers
along different paths with different velocity sign, before reach-
ing its goal point [1,6].

In this paper state estimation-based nonlinear control for
direct-motion parallel parking will be examined. A robotic
unicycle and a rectangular parking area are considered and
a collision-free path that connects the initial to the final
position of the vehicle is defined (see Fig. 5 and Fig. 6).
The objective is to steer the vehicle along the reference path
when the vehicle’s state vector is not directly available but
is estimated by fusing measurements coming from distributed

sensors (such as odometric sensors, laser trackers and sonars
or even cameras). At a second stage the estimated state vector
is used by a nonlinear controller (flatness-based controller)
in-order to make the mobile robot track the desired trajectory.
Sensor fusion can provide reliable estimation of the vehicle’s
motion and can be used for fault tolerant control, since there
is redundancy in the measurements used by the control loop
[7-11].

The estimation of the robot’s state’s vector from position
measurements can be carried out with the use of filtering
algorithms, such as the Extended Kalman Filter and the
Particle Filter [9-10]. Two different types of measurements will
be considered: (i) measurements of the distance covered by
the robot which are provided by the robot’s encoders and (ii)
measurements of the distance from a reference surface (blue
line in Fig. 5 and Fig. 6) which can be provided by a sonar,
laser tracker or camera. It is well known that the optimal filter
for linear models with Gaussian noise is the Kalman Filter.
State estimation for nonlinear systems with non-Gaussian
noise is a difficult problem and in general the optimal solution
cannot be expressed in closed-form. Suboptimal solutions use
some kind of approximation such as model linearisation in the
Extended Kalman Filter (EKF). The Extended Kalman Filter
(EKF) is an incremental estimation algorithm that performs
optimization in the least mean squares sense and which has
been successfully applied to neural networks training and to
data fusion problems. In the EKF approach the state vector is
approximated by a Gaussian random variable, which is then
propagated analytically through the first order linearization
of the nonlinear system. The series approximation in the
EKF algorithm can, however, lead to poor representations
of the nonlinear functions and of the associated probability
distributions. As a result, sometimes the filter will be divergent
[9-11].

To overcome the EKF shortcomings, a new kind of nonlinear
filtering method, the so-called Particle Filter (PF), has been
proposed [12-13]. The Particle Filter is based on Monte-Carlo
sampling from a state vectors distribution. Particle filtering
has improved performance over the the EKF, since it can pro-
vide optimal estimation in nonlinear non-Gaussian state-space
models. In the particle filter a set of weighted particles (state
vector estimates evolving in parallel) is used to approximate
the posterior distribution of the state vector. An iteration of



the particle filter includes particle update and weights update.
To succeed the convergence of the algorithm, resampling
takes place at each iteration through which particles with low
weights are substituted by particles of high weights [14-15].
Particle filters can estimate the system states sufficiently when
the number of particles (estimations of the state vectors which
evolve in parallel) is sufficiently large. However, in terms of
computation time the Particle Filter is more demanding than
the EKF.

The structure of the paper is as follows: In Section II the
Extended Kalman Filter (EKF) for the nonlinear state-
measurement model is presented. In Section III the Particle
Filtering algorithm for state estimation of nonlinear dynamical
systems is introduced. In Section IV simulation experiments
are carried out to evaluate the performance of the Extended
Kalman Filter and the Particle Filter in sensor fusion-based
state estimation and control for automated parallel parking.
Finally, in Section V concluding remarks are stated.

II. EKF-BASED SENSOR FUSION FOR DIRECT-MOTION
PARALLEL PARKING

The kinematic model of an autonomous vehicle (robotic uni-
cycle) is considered (see Fig. 1). This is given by
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where v(t) is the speed of the vehicle, 6 is the angle between
the transversal axis of the vehicle and axis OX, and w is the
angular velocity. Moreover, it holds w = Ftan(¢), where ¢ is
the angle of the steering wheel with respect to the transversal
axis of the vehicle, and L is the length of the vehicle (the sign
of v and ¢ depends on whether the vehicle moves forward or
backwards). Encoders are placed on the driving wheels and
provide a measure of the incremental angles over a sampling
period T'. These odometric sensors cab be used to obtain an
estimation of the speed and of the angular velocity of the
vehicle v(¢) and w(t), respectively. However, the encoders
introduce incremental errors, which results in an erroneous
estimation of the orientation 6. To improve the accuracy of
the vehicle’s localization, measurements from sonars can be
used. The distance measure of sonar i from a neighboring
surface P; is thus taken into account (see Fig. 1 and Fig. 2.
Sonar measurements may be affected by noise (which is not
always white Gaussian) and also by crosstalk interferences and

multiples echoes.

The inertial coordinates system O XY is defined. Furthermore
the coordinates system O'X'Y” is considered (see Fig. 1.
O'X'Y" results from OXY if it is rotated by an angle 6.
The coordinates of the center of the wheels axis with respect
to OXY are (z,y), while the coordinates of the sonar ¢ that
is mounted on the vehicle, with respect to O’ X'Y” are x;, y/-.
The orientation of the sonar with respect to O'X'Y” is 6,.
Thus the coordinates of the sonar with respect to OXY are
(;,y;) and its orientation is 6;, and are given by [7]:
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Fig. 2. Orientation of the i-th sonar
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Each plane (reference surface) P7 in the robot’s environment
can be represented by PJ and PJ (Fig. 2), where (i) P/ is the
normal distance of the plane from the origin O, (ii) P,{ is the
angle between the normal line to the plane and the x-direction.
Sonar i is at position z;(k),y;(k) with respect to the inertial
coordinates system OXY and its orientation is 6;(k). Using
the above notation, the distance of sonar ¢, from plane P is
represented by PJ, PJ (see Fig. 2):

dl (k) = P! — z;(k)cos(P2) — yi(k)sin(Py) (3)

where PJ € [0;(n)—3/2,0;(n)+4/2], and § is the width of the
sonar beam. Assuming a constant sampling period Aty = T
the measurement equation is z(k+1) = y(z(k))+v(k), where
z(k) is the vector containing sonar and odometer measures
and v(k) is a white noise sequence ~ N (0, R(kT)). The



dimension py, of z(k) depends on the number of sonar sensors.
The measure vector z(k) can be decomposed in two subvectors

z1(k +1) = [z(k) +vi(k), y(k) + v2(k), 0(k) + vs (k)] @
z2(k +1) = [d1(k) +va(k), -+, di, (k) + 034, (F)]

with ¢ = 1,2,--- ,n,, where n, is the number of sonars,
d’(k) is the distance measure with respect to the plane P’
provided by the i-th sonar and j = 1,---,n, where n, is
the number of surfaces. By definition of the measurement
vector one has that the output function y(z(k)) is given by
’7(.13(]{3)) = [x(k)a y(k)v o(k)’ d%(k‘)’ d%(k)’ e 7dzZ]T The
mobile robot’s state is [z(k),y(k),0(k)]T and the control
input is denoted by U (k) = [v(k),w(k)]T.

tests, the number of sonar is
taken to be ng = 1, and the number of planes
n, = 1, thus the measurement vector becomes
v(z(k)) = [z(k),y(k),0(k),d}]T. To obtain the Extended
Kalman Filter (EKF), the kinematic model of the vehicle
given in Eq. (1) is linearized about the estimates #(k) and
2~ (k), and the control input U (k) is applied. It is noted that
27 (k) is the estimation of the state vector before the k-th
measurement to become available and Z(k) is the estimation
of the state vector after the k-th measurement has been
obtained.

In the simulation

The measurement update of the EKF is
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The time update of the EKF is
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Assuming one sonar n; = 1, and one plane P, n, =1
in the mobile robot’s neighborhood one gets J7 (27 (k)) =

[Ty 1 (&7 (k) T (27 (k)T 5 (&7 (K)), T (27 (R)], dee.
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Fig. 3. Schematic diagram of the Extended Kalman Filter loop

The stages of EKF are depicted in Fig. 3. The vehicle is steered
by a flatness-based controller. In the case of the autonomous
vehicle of Eq. (1) the flat output is the cartesian position 1 =
(z,y) of the center of the wheels axis (see Fig. 1). The state
variables of the vehicle’s model as well as the control input can
be expressed as functions of the flat output and its derivatives
[4-5, 10].

UL = Iq+ Kp1 (.’L‘d - x) + Kd1 (i’d - x)
Uy = fa + Kp, (Ya — y) + Ka, (90 — 9)
€ = uycos(0) + uzsin(0) ®)
v = 5, W= ugcos(@)gulsin(e)
III. PF-BASED SENSOR FUSION FOR DIRECT-MOTION
PARALLEL PARKING

As in the case of the Extended Kalman Filter the Particle Filter
consists of the measurement update (correction stage) and the
time update (prediction stage) [12-13]
1) The prediction stage: The prediction stage calculates
(x(k)|Z~) where Z— = {2(1),---,z(k — 1)}, using:

pla(k —1)|Z27) Zwk e (z(k—1))  (10)
while from Bayes formula it holds p(z(k)|Z~) =
Jp(a( — 1))p(z(k — 1)|Z~ )dz. This finally gives
pa(k)|Z7) = i wi_yber_ (x(k))
an
with &~ p(z(k)|z(k —1) =& )



The meaning of Eq. (11) is as follows: the state equation
of the nonlinear system of Eq. (1) is executed NN times,
starting from the N previous values of the state vectors
z(k—1) = & _,. This means that the value of the state vector
which is calculated in the prediction stage is the result of the
weighted averaging of the state vectors which were calculated
after running the state equation, starting from the N previous
values of the state vectors 5};71.

2) The correction stage: The a-posteriori probability den-
sity is performed using Eq. (11). Now a new position mea-
surement z(k) is obtained and the objective is to calculate
the corrected probability density p(z(k)|Z), where Z =
{z(1), 2(22, , 2(k)}. From Bayes law it holds that p(z(k)|Z) =
P (le(pk()% (k) " which finally results into

N
p(a(k)|1Z) = 207 wide: _(a(k))
_ _ (12)
w;, - p(z(k)|z(k)=¢, )
S w] _p(z(R)|e(k)=€] )

Eq. (12) denotes the corrected value for the state vector.
According to above, the recursion of the Particle Filter can
be formulated in a way similar to the update of the Kalman
Filter or the Extended Kalman Filter, i.e.:

where w}, =

Measurement update: Acquire z(k) and compute the new value
of the state vector

(k)| 2) = XL wide_(a(k))

wi_p(z(k)|z(k)=€L_)

with corrected weights wj, = TP

and &, =&
(13)
Finally, resampling is performed for substitution of the
degenerated particles (substitution of particles of low
importance with those of higher importance).

Time update: compute state vector x(k 4+ 1) according to

p(a(k+1)|2) = S widg (x(k))
(14)
where &~p(a(k+1)|z(k) = &)

The stages of state vector estimation with the use of the
Particle Filter algorithm are depicted in Fig. 4.

IV. SIMULATION TESTS

The autonomous vehicle described in Eq. (1), and the control
law given in Eq. (9) were considered. The use of EKF for
fusing the data that come from odometric and sonar sensors
provided an estimation of the state vector [z(t),y(t),0(t)]
and enabled the successful application of nonlinear steering
control of Eq. (9). The obtained results are depicted in Fig. 5.
The vehicle was steered along a reference path which assured
avoidance of collisions with obstacles. Direct parallel parking
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Fig. 4. Schematic diagram of the Particle Filter loop

was assumed to be completed when the center of the wheels
axis reached the desirable position and the vehicle is aligned
to the OX axis.

In the case of Particle Filtering the number of particles was
set to N = 1000. At each run of the time update of the PF,
the state vector estimation £~ (k+ 1) was calculated N times,
starting each time from a different value of the state vector
&i. The obtained results are given in Fig. 6.

Fig. 5. Maneuvers performed by the autonomous vehicle for the completion
of parallel parking when the vehicle’s state vector is estimated using Extended
Kalman Filtering

From the simulation experiments it can be observed that
both the EKF and Particle Filter have good performance
in the problem of estimation of the state vector of the
autonomous vehicle. Both approaches enable sensor fusion-
based control and implementation of direct-motion parallel
parking. However, the Particle Filter is not subject to the
constraint of Gaussian distribution for the obtained measure-
ments. The accuracy of the estimation succeeded by the PF
algorithm improves as the number of particles increases. The
initialization of the particles, (state vector estimates) may also
affect the convergence of the PF towards the real value of
the state vector of the monitored system. It should be also
noted that the calculation time is a critical parameter for the



Fig. 6. Maneuvers performed by the autonomous vehicle for the completion
of parallel parking when the vehicle’s state vector is estimated using Particle
Filtering

suitability of the PF algorithm for real-time applications. When
it is necessary to use more particles, avoidance of shorting
in the resampling procedure, improved hardware and parallel
processing a available to embedded systems, enable the PF to
be implemented in real-time systems [9-10,17-18].

V. CONCLUSIONS

The paper has given results on the implementation of parallel
parking for autonomous vehicles using sensor fusion based
on Extended Kalman Filtering and Particle Filtering. The
vehicle’s state vector has been estimated by fusing mea-
surements coming from distributed sensors and a nonlinear
control law (flatness-based control) has been employed to steer
the vehicle along a reference path, thus making possible to
carry out direct-motion parallel parking. A first conclusion
is that sensor fusion can provide reliable estimation of the
vehicle’s motion and can be used for fault tolerant control
of autonomous vehicles, since there is redundancy in the
measurements processed by the control loop.

A second conclusion is about the performance of sensor
fusion-based state estimation using Extended Kalman Filtering
and Particle Filtering. It has been noted that although the
EKF is a fast algorithm, the underlying series expansion can
lead to poor representations of the nonlinear functions and of
the associated probability distributions. As a result, the EKF
can sometimes be divergent. Additionally, the EKF algorithm
assumption that the state distribution is approximated by a
Gaussian random variable, is not always valid. On the other
hand, it has been noted that the Particle Filter makes no
assumptions about the forms of the state vector and the output
measurement p.d.f (probability density functions). Addition-
ally, in contrast to EKF in the Particle Filter there in no need
for analytical calculation of Jacobians.

Simulation tests have shown that the performance of the
particle filter algorithm depends on the number of particles
and their initialization. It has been observed that the PF

algorithm succeeds better estimates of the autonomous vehicle
state vector as the number of particles increases, but at the
same time it requires more computational power. This research
work can be extended towards sensor fusion-based control and
autonomous navigation of several types of AGVs (automatic
guided vehicles) or UAVs (unmanned aerial vehicles).
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