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I. ABSTRACT 

In the event of an emergency due to a fire or other 

crisis, a necessary but time consuming pre-requisite, 

that could delay the real rescue operation, is to establish 

whether the ground or area can be entered safely by 

human emergency workers. The objective of the VIEW-

FINDER research project is to develop robots which 

have the primary task of gathering data. The robots are 

equipped with sensors that detect the presence of 

chemicals and, in parallel, image data is collected and 

forwarded to an advanced Control station (COC).  

One of the problems tackled in this project is the robot 

navigation. The used robot for the outdoor scenario is 

equipped with a set of sensors: stereo-camera, GPS, 

inertial navigation system (INS), wheel encoders, and 

ultrasounds sensors. The robot uses a SLAM approach 

to combine data from different sensors for an accurate 

positioning in geo-referenced images. This paper gives 

an overview on the used algorithms for robot 

positioning. 
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II. Introduction 

Using robotics in an incident scene needs to be with 

high precision. This contribution introduces the increase 

of mobile robot positioning accuracy using a SLAM 

approach. The SLAM algorithm uses data from a single 

monocular camera together with data from other sensors 

(Global Positioning System (GPS), Inertial Navigation 

System (INS) and wheel encoders) for robot 

localization in large-scale environments.  

The SLAM problem is tackled as a stochastic problem 

and it has been addressed with approaches based on 

Bayesian filtering. The main problem of those 

approaches is that the computational complexity growth 

with the size of the mapped space, which limits their 

applicability in large-scale areas. In the case of vision 

based SLAM approaches, other challenges have to be 

tackled, as the high rate of the input data, the inherent 

3D quality of visual data, the lack of direct depth 

measurement and the difficulty in extracting long-term 

features to map.  

The well known vision-based approach is the 

MonoSLAM algorithm of Davison et al. [1]. This is a 

real-time SLAM approach for indoors in room-size 

domains, which recover the 3D trajectory of a 

monocular camera, moving rapidly through an unknown 

scene. Davison's algorithm is not suitable in larger 

environments. 

To be able to use the monoSLAM algorithm in large 

areas, in this project we propose to build several size 

limited local maps and combine them into a global map 

using an 'history memory' which accumulates sensory 

evidence over time to identify places with a stochastic 

model of the correlation between map features. In our 

implementation, the dynamic model of the camera takes 

into account that the camera is on the top of a mobile 

robot which moves on a perfect ground-plane at all 

times and the SIFT feature detector [10] is used instead 

of Shi and Thomasi algorithm as in [1]. The SIFT 

features are proved to remain stable to affine 

distortions, change of viewpoint, noise and change in 

illumination [11]. Using SIFT features allows also a 

more reliable feature matching by using the advantage 

of the space-scale invariance parameters of the SIFT 

features. 

The data from GPS are used to help localizing the robot 

and features in satellite images. But in some cases, the 

vehicle may lose the GPS due to buildings or tree 

canopies, and we seek to maintain an accurate robot 

positioning even in this case.. 

III. System modeling and Feature 

extraction 

In our application, a (stereo-)camera is fixed on the top 

of a mobile car-like robot "ROBUDEM" (figure 1). The 

vehicle travels through the environment using its 

sensors to observe features around it. A world 

coordinate frame  is defined such that its  and  

axes lie in the ground plane, and its  axis point 

vertically upwards. 

mailto:sidahmed.berrabah@rma.ac.be


 
Figure 1: The used robot in the VIEW-FINDER project. 

The system state vector of the stereo-camera  in this 

case is defined with the 3D position vector 

 of the head center in the world frame 

coordinates and the robot's orientations roll, pitch and 

yaw about the Z, X, and Y axes, respectively . 

 

The dynamic model or motion model is the relationship 

between the robot's paste state, , and its current 

state, , given a control input  

 (1) 

 Where  is a function representing the mobility, 

kinematics and dynamics of the robot (transition 

function) and  is a random vector describing the 

unmodelled aspects of the vehicle (process noise such 

as wheel sleep or odometry error). 

The system dynamic model in our case, considering the 

control  as identity, is given by:  

 (2) 

  and  are the linear and the angular velocities, 

respectively.  and  are the Gaussian distributed 

perturbations to the camera's linear and angular 

velocity, respectively. 

Usually the features used in vision-based localization 

algorithms are salient and distinctive objects detected 

from images. Typical features might include regions, 

edges, object contours, corners etc. In our work, the 

map features are obtained using the SIFT feature 

detector [10], which maps an image data into scale-

invariant coordinates relative to local features (e.g for 

detected SIFT features in figure 1) . These features were 

contemplated to be highly distinctive and invariant to 

image scale and rotation. The work of Mikolajczyk and 

Schmid [11] proved that SIFT features remain stable to 

affine distortions, change of viewpoint, noise and 

change in illumination. 

 
 

Figure 1: Features detected using the SIFT algorithm 

To deal with the problem of SLAM in dynamic scenes 

with moving object we use an algorithm for motion 

segmentation [17] to remove the outliers features which 

are associated with moving objects. In other words, the 

detected features which correspond to the moving parts 

in the scene are not considered in the built map. For 

more security we use a bounding box around the 

moving objects (figure 2). Another marge of security is 

used; the newly detected features are not added directly 

to the map but they should be detected and matched in 

at least n consecutive frames (in our application n=5). 

 
 

Figure 2: Features detected in a scene with moving 

objects 

Features are represented in the system state vector by 

their 3D location in the world coordinate system W:  

 

The observation model describes the physics and the 

error model of the robot's sensor.The observations are 

related to the system state according to: 

 (3) 

where  is the observation vector at time  and  is the 

observation model. The vector  is an observation at 



instant  of the 'th landmark location  relative to the 

robot's location . 

Making a measurement of a feature  consists of 

determining its position in the camera image. Using a 

perspective projection, the observation model in the 

robot coordinate system obtained as follows: 

 (4) 

 where  and  are the image center coordinates and  

is the focal length of the camera. 

 are the coordinates of the 

feature  in the robot coordinate frame . They are 

related to  by: 

 (5) 

  is the high of the camera. 

The depth coordinate of the detected features is 

estimated by feature matching and tracking between the 

consecutive camera images. The matching is based on a 

hypothesis 

 (6) 

associating each measurement  with its corresponding 

map feature.  indicates that  does not come 

from any feature in the map. For data association a 

measure of the discrepancy between a predicted 

measurement that each feature would generate and an 

actual sensor measurement is measured by the 

innovation  given by (16). 

The measurement  can be considered corresponding 

to the feature  if the Mahalanobis distance  

satisfies: 

  (7) 

Where the covariance  and the innovation  are 

given by equations (15) and (16), respectively. 

The state of the system at time  can therefore be 

represented by the augmented state vector, , 

consisting of the  states representing the robot, , 

and the  states describing the observed landmarks, , 

. 

The GPS measurement, if existing, and measurement 

from encoders  and inertial sensor  are integrated in 

the measurement block to produce the estimate of the 

state at time  based on measurements up to time . The 

robot position and therefor the features position are 

measured in the universal GPS coordinate system (west-

east, south-north). 

III.1. Extended Kalman Filter for SLAM 

Given a model for the motion and observation, the 

SLAM process consists of generating the best estimate 

for the system states given the information available to 

the system. This can be accomplished using a recursive, 

three stage procedure comprising prediction, 

observation and update of the posterior. This recursive 

update rule, known as filtering for SLAM, is the basis 

for the majority of SLAM algorithms. 

Extended Kalman Filter (EKF) is the most well-known 

Gaussian filter for treating the SLAM problem, where 

the belief is represented by a Gaussian distribution. The 

Kalman Filter is a general statistical tool for the analysis 

of time-varying physical systems in the presence of 

noise. Its main goal is the estimation of the current state 

of a dynamic system by using data provided by the 

sensor measurements. Whenever a landmark is 

observed by the on-board sensors of the robot, the 

system determines whether it has been already 

registered and updates the filter. In addition, when a 

part of the scene is revisited, all the gathered 

information from past observations is used by the 

system to reduce uncertainty in the whole mapping, 

strategy known as closing-the-loop. 

In EKF-based SLAM approaches, the environment is 

represented by a stochastic map , where is 

the estimated state vector (mean), containing the 

location of the vehicle R and the features of the 

environment $F1 … Fn$, and is the estimated error 

covariance matrix, where all the correlations between 

the elements of the state vector are defined. All data is 

represented in the same reference system. The map 

is built incrementally, using the set of measurements 

zk obtained by the camera. For each new acquisition, 

data association process is carried out with the aim of 

detecting correspondences between the new acquired 

features and the previously perceived ones. 

 

 

The sub-matrices, , and are, respectively, the 

robot to robot, robot to feature and feature to feature 

covariances. The sub-matrices are the feature to 

feature cross-correlations. and  will change in 

dimension as features are added or delated from the 

map. 

The Extended Kalm Filter consists in two steps:  



a) prediction step, which estimates the system state 

according to the state transition function  and the 

covariance matrix  to reflect the increase in 

uncertainty in the state du to noise  (unmodelled 

aspects of the system) :  

 (8) 

  (9) 

 where  

 (10) 

is the Jacobian of  with respect to the state vector  and 

 is the process noise covariance. 

Considering a constant velocity model for the smooth 

camera motion: 

 

 (11) 

b) The Update step uses the current measurement to  

improve the estimated state, and therefor the uncertainty 

represented by  is reduced.  

 (12) 

 (13) 

Where 

 (14) 

  (15) 

      (16) 

  and  are block-diagonal matrices ( obtained 

empirically) defining the error covariance matrices 

characterizing the noise in the model and the 

observations, respectively. 

 is the Jacobian of the measurement model  with 

respect to the state vector. A measurement of feature  

is not related to the measurement of any other feature so 

 (17) 

where  is the measurement model for the 'th feature. 

III.2. SLAM in Large-scale areas 

The main open problem of the current state of the art 

SLAM approaches and particularly vision based 

approaches is mapping large-scale areas. Relevant 

shortcomings of this problem are, on the one hand, the 

computational burden, which limits the applicability of 

the EKF-based SLAM in large-scale real time 

applications and, on the other hand, the use of linearized 

solutions which compromises the consistency of the 

estimation process. The computational complexity of 

the EKF stems from the fact that covariance matrix  

represents every pairwise correlation between the state 

variables. Incorporating an observation of a single 

landmark will necessarily have an effect on every other 

state variable. This make the EKF computationally 

infeasible for SLAM in large environment. 

To solve the problem of SLAM in large spaces, in our 

study, we propose a procedure to break the global map 

into submaps by building a global representation of the 

environment based on several size limited local maps 

built using the previously described approach. The 

global map is a set of robot positions where new local 

maps started (i.e. the base references of the local maps). 

The base frame for the global map is the robot position 

at instant t0. Each local map is built as follows: at a 

given instant tk, a new map is initialized using the 

current vehicle location, , as base reference Bk= , 

$k=1, 2,... being the local map order. Then, the vehicle 

performs a limited motion acquiring sensor information 

about the Li neighboring environment features.  

The ' 'th local map is defined by: 

 

where  is the state vector in the base reference  of 

the  detected features and  is their covariance 

matrix estimated in . 

The decision to start building a new local map at an 

instant tk is based on two criteria: the number of 

features in the current local map and the scene cut 

detection result. The instant tk is called a key-instant. In 

our application we defined two thresholds for the 

number of features in the local maps: a lower Th
-
 and a 

higher Th
+
 thresholds. A key-instant is selected if the 

number of features  nl
k
 in the current local map k is 

bigger then the lower threshold and a scene cut has been 

detected or the number of features has reached the 

higher threshold. This allows kipping reasonable 

dimensions of the local maps and avoids building too 

small maps. 

The global map is:  

 (18) 

where  are the robot coordinates in , where it 

decides to build the local map  at instant . 

 (19) 

 and . 

The transformation matrix  is obtained by 

successive transformations: 



 (20) 

where  is the transformation matrix 

corresponding to rotation  and translation  of frame 

 regarding to frame : 

 (21) 

In this case, for feature matching at instant , the robot 

uses the local map with the closest base frame to its 

current location:  

 (22) 

where  is the robot position at instant  in . 

Figure 3 shows an example for the use of our algorithm 

for ROBUDEM localization in a real environment. 

 
Figure 3: ROBUDEM localization in a real 

environment. 

IV.  References 

[1] J. Davison, Y. G. Cid, N. Kita, Real-time 3D 

SLAM with wide-angle vision, In Intelligent 

Autonomous Vehicles, Lisboa-Portugal, July 2004. 

[2] J. Folkesson, P. Jensfelt, H. Christensen, 

Graphical SLAM using vision and the measurement 

subspace, In IEEE/JRS -Intl Conf. on Intelligent 

Robotics and Systems (IROS), Edmundton-Canada, 

August, 2005. 

[3] D. Wolf, G.S. Sukhatme, Online Simultaneous 

Localization and Mapping in Dynamic Environments, 

Proceedings of the Intl. Conf. on Robotics and 

Automation ICRA New Orleans, Louisiana, April, 

2004. 

[4] S. Se, D. Lowe, J. Little, Local and Global 

Localization for Mobile Robots using Visual 

Landmarks, Proceedings of the International 

Conference on Intelligent Robots and Systems, Maui, 

Hawaii, USA, Oct. 29 - Nov. 03, 2001, pp.414-420. 

[5] J. A. Castellanos, J. Neira, J. D. Tards, 

Multisensor fusion for simultaneous localization and 

map building, IEEE Trans on Robotics and Automation, 

December 2001, Vol.17, N.6, pp.908-914. 

[6] F. Andrade-Cetto, A. Sanfelin, Concurrent 

Map Building and Localization with landmark 

validation, 16th Intenational Conference on Pattern 

Recognition ICPR'02, 2002, vol.2. 

[7] J. W. Fenwick, P. M. Newman, J. J. Leonard, 

Cooperative Concurrent Mapping and Localization, 

Proceedings of the 2002 IEEE International Conference 

on Robotics and Automation, May 2002, Washington, 

USA, pp.1810-1817. 

[8] S. Thrun, D. Fox, W. Burgard, A probabilistic 

approach to concurrent Mapping and Localization for 

Mobile Robots , Machine Learning, 1998, Vol.31, N.1-

3, pp.29-53. 

[9] J. Davison, I. D. Reid, N. D. Molton, O. Stasse, 

MonoSLAM: Real-Time Single Camera SLAM, IEEE 

Transaction on Pattern Analysis and Machine 

Intelligence, JUNE 2007, Vol.29, N.6.  

[10]  D. G. Lowe, "Distinctive image features from 

scale-invariant keypoints," International Journal of 

Computer Vision, 60, 2 (2004), pp. 91-110. 

[11]  J. A. Castellanos, J. Neira, J. D. Tardos, Map 

Building and SLAM Algorithms, in S. S. Ge and F. L. 

Lewis (Eds), Autonomous Mobile Robots: Sensing, 

Control, Decision-Making, and Applications, Series in 

Control Engineering, CRC, Taylor & Francis Group, 

May 2006, pp.335-371. 

[12] K. Mikolajczyk, C. Schmid. A performance 

evaluation of local descriptors, Proceedings of 

Computer Vision and Pattern Recognition, 2003 

[13] I. Bailey, Mobile robot localisation and maping 

in extensive outdoor environments. PhD thesis, 

Australian Centre for Field Robotics, University of 

Sydney, Australia, August 2002. 

[14]  J.D. Trados, J. Neira, P. Newman, J. Leonard, 

Robust mapping and localization in indoor 

environments using sonar data, International Journal of 

Robotics Research, 2002, N. 21, pp.311-330. 

[15]  S. B. Williams, Efficient Solutions to 

Autonomous Mapping and Navigation Problems, PhD 

thesis, Australian Centre for Field Robotics, University 

of Sydney, Australia, September 2001. 

[16]  C. Estrada, J. Neira, J. D. Tardos, Hierarchical 

SLAM: real-time accurate mapping of large 

environments, IEEE Transactions on Robotics, 2005, 

Vol.21, N.4, pp.588-596. 

[17] S. A. Berrabah, G. De Cubber, V. Enescu, H. 

Sahli, “MRF-based foreground detection in image 

sequences from a moving camera”, Accepted for the 

Thirteenth International Conference on Image 

Processing (ICIP 2006), which will be held in Atlanta, 

GA USA, in October 2006. 


