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Abstract In this work, we present a color target tracking 

algorithm aimed at robot localization in varying 
illumination conditions. In our approach a colored 
target is put on the top of the robot and a fixed 
camera is used to detect and track the target. The 3D 
robot position can be estimated knowing the camera 
parameters after an analysis of the camera image. 
The general setup of this approach is sketched on 
Figure 1: 

 
Many robotic agents use color vision to retrieve 
quality information about the environment. In this 
work, we present a visual servoing technique, where 
vision is the primary sensing modality and sensing is 
based upon the analysis of the perceived visual 
information. We describe how colored targets can be 
identified and how their position and motion can be 
estimated quickly and reliably. The visual servoing 
procedure is essentially a four-stage process, with 
color target identification, motion parameter 
estimation, target tracking and target position 
estimation. These individual parts add up to a global 
vision system enabling precise positioning for a 
demining robot. 
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 The first stage in the target tracking algorithm is the 
color target identification process, where a colored 
object that moves independently of the observer has 
to be found. Common image segmentation and object 
recognition were developed in the past to deal with 
this task. Yet, all of these algorithms have big 
problems as soon as the protected lab environment is 
left and tests are carried out in an outdoor 
environment where harsh and ever-changing 
illumination conditions cause great difficulties for the 
image-processing task, as a change in illumination 
will also change the perceived colors – or more 
generally the perceived image – of the environment. 
Numerous attempts have been made to solve this so-
called “color constancy” problem and promising 
results have been shown before, as summarized in 
[8]. E. H. Land and J. J. McCaan were the first to 
tackle the problem with their retinex theory [7]. 
Others relied on finite-dimensional linear models 
[9][10][11][12][13], while also neural nets have been 
proposed as a solving technique [14]. However, these 
techniques commonly require hours of calculation 
time to process one non-synthetic image, which 
makes them totally unfit for real-time and real-world 
vision tasks, as is the case in the field of robotics. 
Here, we propose a color constancy technique used 

1. Introduction 
 
The research work presented in this article fits in a 
global research effort to develop intelligent 
humanitarian demining robots. One of the tasks set 
up for these robots is to build precise maps of the 
inspected terrain with an indication of all the 
suspicious points where mines could be located. To 
do this, the robot must be equipped with a very 
performant localization system. However, classical 
absolute positioning sensors like GPS do not deliver 
the demanded precision in some cases. In these cases, 
the robot positioning problem can be solved using a 
single external camera as we present here. The use of 
computer vision for solving detection, tracking and 
positioning problems is a major research area in 
robotics [16][17][18][19][20]. Two approaches have 
been considered: (1) a fixed camera configuration, 
that is, the camera is fixed at a certain point in a 
general frame (the world coordinate system) [18], 
and (2) the eye-in-hand configuration, where the 
camera is fixed on the end-effector or mounted on a 
mobile robot [19][20]. For both cases, monocular 
[16][19][21] or stereo [18][22][23][24] vision 
systems have been investigated.  



for real-time target identification under varying 
illumination conditions.  
Once the target object is identified, it can be tracked. 
Target-tracking refers to a method that enables a 
visual system to locate the target in its field of view 
using consecutive images. In our system the target is 
mounted on a mobile robot. The target tracking 
problem is regarded here as a camera control 
problem. We use the parameters estimated during the 
target detection step as well as the camera calibration 
parameters to control the camera’s motion (pan and 
tilt) and try to keep the target center coincident to the 
image center. Moreover, the distance to the target is 
estimated using a proportional scaling, so that a 
precise positioning of this target object, the robot 
system as a whole or just the end-effector can be 
performed. 
The rest of this paper is organized as follows: first, 
we will explain the used color constancy approach to 
achieve an illumination invariant color classification. 
Next, we show the working principles of the actual 
target tracking process. In paragraph 4, we will 
discuss the target localization procedure, which is 
most important for robotic applications. Finally, we 
present some results and conclusions. 
 
2. Illumination invariant color classification 
 
Our approach is directly based upon the physical 
characteristics of color reflection. The main problem 
for the correct interpretation of a camera image is 
that the measured intensities are function of a huge 
number of parameters and most of them cannot be 
retrieved in any possible way due to their strong 
interconnectivity. The color of an object in the image 
is therefore more an appearance than a real material 
property. Nevertheless, color can be used to identify 
objects as long as the parameters which influence the 
formation of the perceived color are taken into 
account. To do this, we make use of the dichromatic 
reflection model, which was first introduced by 
Shafer in [1]: 
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With: 
ρc: the measured intensity of channel c 
e(λ): the normalized light spectrum 
fc(λ): the cth channel sensor response function 
r(λ): the surface reflectance function 
kb: attenuation factor for the body reflectance 
ks: surface reflectance attenuation factor  
n : the normal to the surface patch 

i : the direction of the illumination 

v : the viewing direction 
 
Among the different color spaces, our choice went 
out to the l1-l2-l3-space, a color space which was 
originally introduced by Gevers and Smeulders in [6] 

as a space that uniquely determines the direction of 
the triangular color in the RGB space. It poses an 
attractive alternative to the HSI space due to its 
computational simplicity. The space can be 
formulated as follows: 
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In [15], Gevers and Smeulders prove that according 
to the dichromatic reflection theory, this space is 
invariant to highlights, viewing direction, surface 
orientation and illumination direction. This means 
that we can work with a simplified form of equation 1: 
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Equation 3 can be discretized by sampling over a 
number of wavelength bands. We chose to use a 
finite dimensional linear model with a limited 
amount of parameters and using 10 basis functions: 
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The columns of the N x Ne Be matrix and those of the 
N x Nr Br matrix represent the basis functions for the 
light spectrum and the reflectance spectrum 
respectively. The Ne element qe vector and the Nr 
element qr describe respectively the illuminant and 
the body reflectance spectrum. 
The problem with this representation is that the basis 
and sensor sensitivity functions are not well known. 
To avoid this difficulty, we use an approach similar 
to the one described in [4], which introduced a 
lighting and reflectance matrix, parameterized using 
4 x Ne variables in a manner that is independent of 
basis functions and sensitivity functions. This leads 
to a general equation: 

.
T T

eh q σ=   (5) 
With: 

hT = (h1 h2 h3) 
σ = (σ1 σ2 σ3) a Ne x 3 matrix holding all the 

reflection characteristics for a specific 
image point 

 

In a learning phase, the algorithm learns the 
reflection characteristics of the object to be tracked. 
Small patches of images are accumulated over time 
while the material in question is subjected to a 
varying illumination. All intensity measurements are 
combined in an f x 3.p color measurement matrix H, 
while p is the number of pixels in the scene patch and 
f the number of frames sampled. If we sample for 
long enough, then eventually f will grow larger than p 
and the light spectrum matrix Q and the reflection 



characteristics matrix S can be recovered by applying 
singular value decomposition on H. Thus, all factors 
in equation 6 can be calculated: 

.H Q S=   (6) 

At this moment, the light spectrum distribution if the 
illuminant l is known p(qe|l) can be calculated. This 
can be done because Q is independent of the material. 
We use an Expectation Maximization (EM) 
clustering method [3] to derive the reflection 
distributions. This algorithm applies multivariate 
Gaussian mixture modeling with an unknown 
number of mixture components, so the number of 
clusters isn’t fixed on beforehand, which makes the 
classification very flexible. The result of this 
calculation is an NLS x Ne light spectrum matrix L and 
an Ne x 3 reflectance spectrum matrix R, with NLS the 
number of illuminant spectra distinguished by the 
EM algorithm. 
Now that we have estimates of the reflectance 
spectrum of the target object and now that we’ve 
obtained illuminant spectra corresponding to 
different lighting conditions, we want to correctly 
classify newly presented pixels as belonging to the 
target object or not, while keeping track of newly 
arising lighting conditions. We present a Bayesian 
solution to solve these problems. New scene 
properties are brought into the model based upon the 
Maximum A Posteriori (MAP) estimate of these 
parameters given the color measurements. When 
applying this classification, we search for the 
conditions that maximize p(o=oTarget, l, qe, σ|h) for 
any values of the lighting condition l, the illuminant 
spectrum qe and the reflectance spectrum of the target 
object σ, given the color measurement triplet h. The 
equation we want to solve is: 
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Using Bayes’ rule, it can be shown that: 
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The pixel classification procedure calculates the 
probability  for each pixel and labels 
the pixel as belonging to the target object or not 
based upon the result. Using this theorem, the pixel 
classification is no longer performed directly based 
upon the pixels color value, as is classically done, but 
based upon the derived reflection characteristics. 
This method makes the detection process very robust 
and recovers the target shape, which enables the 
estimation of the target image size. 

( , , , | )ep o l q hσ

During the actual tracking phase, the illumination 
model is continually updated using Bayesian 
reasoning. In this model updating stage, estimates for 
new lighting conditions and their corresponding 
illuminant spectra are calculated. It is this procedure 
that ensures the adaptive nature of the pixel 
classification process within the general target-

tracking program. The philosophy of this procedure 
is that we take a small patch from the target object, 
try to recover the spectrum of the illuminant shining 
on this part of the target object and update our model 
if necessary. This algorithm doesn’t need to run 
completely at every iteration, since there won’t be a 
new illumination condition with every new frame and 
only noteworthy changes in illumination will result in 
the model being updated, so there are a lot of exit 
conditions built into the process. The calculation of 
the new illumination condition itself can happen very 
rapidly, since we already know the reflectance 
spectrum matrix. After acquiring a nominal color 
triplet measurement hN, we can write: 

1( ) .e new Nq N h R−=   (9) 

With Nnew the index of the rarest illumination 
condition within the L matrix, which will thus be 
replaced by the new lighting condition. 
After the pixel classification process, the target object 
will never be completely recognized, there will 
always be outlier pixels. This is shown on figure 6 in 
the results paragraph. To solve this problem, we use 
morphology filtering. During the color detection we 
create a corresponding binary image. For this binary 
image we use morphology filtering to do image 
segmentation. A square mask of 5 by 5 pixels is used 
as the structuring element in our application. Figures 
7 and 8 show processed results. The white color 
shows the detected region after image segmentation 
and all the pixels in this region are considered as the 
detected pixel. The region is connected and 
represents the target shape very well. 
 
3. Target tracking 
 
In fact, the target-tracking problem can be regarded 
as a visual servoing problem. In our system the target 
is mounted on a mobile robot. A calibrated camera 
fixed at the origin of the world frame is controlled 
through its pan (α) and tilt (β) angles to bring the 
target image center onto the image plane center. The 
camera zoom is also controlled to maintain a high 
signal-to-noise level. Figure 2 shows the camera 
control parameters which were defined. 
 

Camera

Platform

Control

System

u

t

1α

1β

  
  
  

  
  

  

  

                                               y1
                           y                                y’                                                     P
                                      x                       p      x’

                        c                                 o
                                                                             x1

                                                                      h

                                         f  
 

Figure 2: Camera control parameters 
 

The proposed camera control method consists of two 
parallel processes: one process controls the pan/tilt 
camera platform in order to track the target; the other 
process uses a predictor to track the target in the 
image plane. Due to the fact that the robot moves 
with an unknown model, the servomotor-camera-
target system is a time variant system. The target 



motion model has to be identified in real time. 
Motion parameter estimation uses the visual input to 
estimate the dynamic properties of the target object. 
Initially, we set up a computational model based 
upon the theoretical aspects of the different 
components of the visual servoing system. This step 
comes basically down to perform a parameter 
identification for this theoretical model. In order to 
meet the system dynamic characteristic requirements 
we developed a two-phase control strategy. The first 
one is an initialization phase, in which the motion 
dynamics are estimated and during which the target is 
tracked with a PI regulator. The more interesting 
second phase control consists of a feedback control 
strategy shown in Figure 3. The plant is modeled as a 
dynamic system as shown in Figure 4. 
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Figure 5: The Observer Based Full State Feedback Control 

System 
 

With: 
A: the plant system matrix given by   [ ]10 ,aa
B: the plant input matrix [0,1] 
C: the plant output matrix given by   [ ]10,bb

 G: the Kalman filter gain matrix   
  

           Plant 

 
Observer 

 
Control Strategy 

yu 

q 

 
Identifier 

 

K: the control gain matrix defined as the 
difference between the required and 
identified system parameters of 
characteristic functions 

 
Using this Kalman-filter-based camera control 
strategy, it is possible to achieve smooth and stable 
camera movement, even when the target object 
undergoes shaky movements. The ability to estimate 
the target motion and to perform very rapid 
processing makes window-tracking possible. The 
proposed window tracking method reduces the image 
processing time and increases the signal-to-noise 
ratio significantly. 

Figure 3: Feedback control strategy 
 

 

 
4. Target size & distance estimation 
 
The visual servoing system presented here involves a 
method for estimating the target position, i.e. the 
quantitative description of where the target is with 
respect to the observer’s view. For our application, 
the similarity of the target shape and its projected 
image is used to estimate the camera/target distance. 

Figure 4: Model of the plant 
 

In our implementation a second order difference 
model is considered. The system functions are 
 

The origin of world frame is set at the center of the 
camera. The camera platform is kept horizontal. Then, 
the position of the target can be described by 3 
parameters: the horizontal angle, the vertical angle 
and the distance between camera and target. Angles 
are calculated using the pose of the camera and the 
orientation angles of the target image in the camera 
coordinate system. The distance between camera and 
target is estimated by simple similar triangle 
relationship of the real target size, the detected target 
image size and the effective camera focal length. The 
size of the target is estimated using circle and ellipse 
fitting procedures to more accurately measure the 
radius of the target object in the image plane. For the 
ellipse fitting, we used a very fast algorithm 
described in [5], whereas the circle fitting procedure 
is a much slower, but slightly more precise 
homemade algorithm. 
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Where: 
- (  is the state vector corresponding to 
the camera angles and angular velocity.  

)

)

21, xx

- (  are the system parameters to 
be estimated.  
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These parameters are estimated using LSM method 
from a set of input image frames and camera control 
parameters. 
The feedback control strategy is implemented with 
system state vector estimation using Kalman filtering. 
The detail of the observer-based full-state-feedback 
control system configuration is shown in Figure 5.  

 



5. Results  
 Figure 9 shows the distance measurement errors 

during indoor tests. As you can see, the errors do not 
exceed 0,12 meters. 

Showing the results of the presented color target 
tracking approach and its illumination invariant 
features is kind of hard if the use of color is not 
allowed. Figure 6 shows a result of the pixel 
classification procedure. Remember this is still 
before the morphology filtering. 
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Figure 9: Distance measurement error 
 

Concerning the real-time capabilities, the 
classification algorithm takes about 60 ms to 
complete on a PC equipped with an Intel PIV 
1.7GHz processor. When adding the 30 ms needed 
for morphology filtering and 10 ms for other tasks, 
we see the target-tracking program running at about 
10 fps. This is adequate for every-day target tracking 
tasks, but not for high performance applications, so 
we still might want to improve the implementation a 
bit. The most processor-intensive process here is the 
management of the illumination maps. 

 

Figure 6: Pixel classification 
 

Figure 7 shows one scene of an outdoors static trial. 
The target detection function works well (detected 
pixels are painted white). 
 

 

 
6. Conclusions 
 
We have shown a powerful set of algorithms, which 
were combined to form a universally useable system 
for automated target detection, tracking and position 
estimation, using a single and fairly simple pan/tilt 
camera. The Bayesian-based color constancy 
approach which was used ensures that this system 
can keep working, even in harsh illumination 
conditions. This research was specifically aimed at 
applicability in the field of robotics and due to its 
general structure it can also be used for a very wide 
range of applications. To conclude, we show a picture 
of the demining robot used for testing. 

 

Figure 7: Outdoor trial 
Figure 8 shows an indoor scene during a trial on 
varying illumination. You can see that the image is 
very dark, because the lights were turned off, yet the 
target object is still detected almost entirely. 

 

 

 

 Figure 10: Demining robot  

Figure 8: Extreme dark illumination conditions  
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