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Abstract—In order for unmanned maritime systems to provide
added value for maritime law enforcement agencies, they have
to be able to work together as a coordinated team for tasks
such as area surveillance and patrolling. Therefore, this paper
proposes a methodology that optimizes the coverage of a fleet of
unmanned maritime systems, and thereby maximizes the chances
of noticing threats. Unlike traditional approaches for maritime
coverage optimization, which are also used for example in search
and rescue operations when searching for victims at sea, this
approaches takes into consideration the limited seaworthiness of
small unmanned systems, as compared to traditional large ships,
by incorporating the danger level in the design of the optimizer.

Index Terms—unmanned maritime systems, maritime surveil-
lance, distributed coverage optimization

I. INTRODUCTION

An ever-increasing percentage of the world population is
living in coastal areas. As a result, also more and more
criminals are turning to our seas and oceans to carry out
illegal activities, such as drugs smuggling, human trafficking,
illegal fishery, etc. The problem for law enforcement agencies
is that patrolling and surveilling all these vast ocean surfaces
is impossible with traditional means from an economic and
operational point of view.

Unmanned Maritime Systems (UMS) could provide mar-
itime law enforcement agencies with a valuable tool for
increasing their capabilities, certainly when they are incorpo-
rated in a much wider maritime situational awareness toolkit
[1], encompassing also satellite monitoring [2], manned and
unmanned aerial assets [3] with advanced analytics solutions
that can turn the data gathered by all these agents into
information and knowledge.

One of the main capabilities the UMS need to possess is
the capability to operate together as a well-coordinated group
or team, working together towards a higher-level goal such as
maritime surveillance. However, the practical deployment of
these novel smaller-scale UMS requires the careful considera-
tion of several aspects related to the design of the surveillance
architecture. As an example, the classical approaches towards
distributed patrol and surveillance of maritime environments

by manned systems do not take into consideration the effects
of small waves (which are irrelevant for larger ships, but very
important for small UMS).

In this paper, we will therefore propose a novel methodology
for the real-time control of a fleet of two to ten UMS. The
presented methodology is casted as a distributed coverage
optimization problem, with as specificity that the danger-level
for the UMS of turning over is effectively estimated in function
of the potential trajectories and taken into consideration for the
choice of the optimal movement strategy. As a result, optimal
safe trajectories for all the agents of the fleet can be planned.

We validate the proposed approach in simulation in an
application scenario [4] tied to the surveillance of the Belgian
off-shore windmill parks. The Belgian territorial waters are a
very densely populated maritime area, with reserved spaces
for all actors, as presented in Figure 1, and it is important that
all actors stay within the delimited zones. For the windmill
farms (area shaded in red on Figure 1), this often presents a
problem, as other users (fishermen, pleasure yacht sailors, ...)
penetrate this zone without permission. There is thus a need
to patrol this area of around 10km x 30km.

Fig. 1. Maritime Spatial Plan of the Belgian territorial waters (Source: Belgian
Federal public service Health)



II. PREVIOUS WORK

Multi-agent robotic coverage optimization is a research
topic which has received a lot of attention in recent years,
as more and more robotic assets are being deployed and thus
also the need for coordination among these agents increases.

A first distinction to be made between the different method-
ologies is based upon the type of agents that is taken into
consideration. On one hand, there are approaches that tackle
swarms of a high number of less intelligent agents [5]. Swarm
approaches generally make use of some form of ant colony
optimization algorithm [6] for solving the coverage problem.
On the other hand, there are multi-agent approaches that deal
with a lower amount of more intelligent agents, which is the
case in our application.

A second important distinction between methodologies is
based upon the assumption which is made related to the con-
nectivity between the different agents. If continuous broadband
access between the agents is assumed, then all agents can
get perfect localization and sensor data from one another and
then the approaches are often based on some kind of global
optimization approach [7], with the capability to adapt to
a time-dependent environment [8]. Even though it has been
shown that finding a globally optimal solution for the coverage
maximization of a multi-agent fleet is an NP-hard problem [9],
it is possible to come quite close to this solution within real-
time constraints [10], [11].

If, on the other hand, unreliable network connections are
assumed, then the agents cannot rely on a global planner
and a local optimization is required. This also entails that a
distributed approach is required which still allows for timely
coordination between the different agents, as proposed by Xin
et al. in [12].

Our methodology adopts a hybrid approach. Conceptually, it
is based on a global optimization, but which is executed sepa-
rately by each of the agents, taking into consideration the latest
known data from the other agents. We use spatio-temporal
memories to track and predict the localization and sensor data
from the other agents, in order to cover up communication
delays and breakdowns. Obviously, these estimations are not
perfect, but in this way the optimization scheme tries to adopt
the best of both kind of approaches.

Within the robotics community, most attention has been
focused on providing solutions to the multi-agent coverage
optimization problem for unmanned ground vehicles, but there
are certainly also approaches that consider unmanned aerial
vehicles [13]. However, for maritime systems, the research
domain is less developed. Fabbri et al presented in [14] a path
and decision support system for maritime surveillance vessels,
based on multi-objective optimization algorithms that see to
find an optimal trade-off among several mission objectives.
While the concepts are similar, this paper focuses on a high-
level decision support system for large manned vessels. In
our application, we are interested in developing a solution for
small-scale unmanned patrol vessels, which means that the
requirements and constraints are very different.

III. METHODOLOGY

A. Overall framework

The proposed methodology methodology draws inspiration
from behaviour-based control frameworks [15], where multiple
behaviours actively work together to control the robot, or
in this case the UMS. The main problem in behaviour-
based control is how to synergize the different individual
behaviours into a consistent and optimal global behaviour of
the robotic agent. Therefore, we propose in this paper to use an
optimization scheme to find the optimal weights, taking into
consideration two objectives: increasing the global coverage
(and thereby increasing the acquisition of new knowledge
about the environment), and also minimizing the danger level
(and thereby minimizing the chance for the vessel to capsize).

A major design issue for the development of such an opti-
mization scheme is that the weight parameters to be optimized
are subject to a large amount of environmental factors, such
as the visibility, the wave height, etc. Therefore, we adopted
a dual approach.

• In an offline learning stage, depicted by Algorithm
1, we repeatedly run an optimization process in order
to find the optimal weight parameters wopt for multiple
environmental conditions:

wopt = argmin
w

φ(w,α, x, y, θ, ν, γ, vmax, θmax, wh, wθ, om, λ)

(1)
with:

– w the weight parameters to be optimized
– α the number of agents
– (x, y) the position of the agents in a metric grid
– θ[rad] the orientation of the agents
– ν[m] the visibility, which is a function of the senso-

rial visibility (which is considered to be static, as
the sensor package of the UMS does not change
throughout a mission) and the meteorological visi-
bility (which is dynamic, as the weather conditions
may change throughout a mission).

– γ[rad] the field of view of the sensors on board of the
UMS. The sensors are always assumed to be front-
facing.

– vmax[m/s] the maximum velocity that can be ob-
tained by the UMS

– wh[m] the wave height
– xθ[rad] the wave orientation
– om an obstacle map which is expressed as a proba-

bility density function
– λ a parameter regulating the relative importance of

coverage maximisation and danger minimisation
The parameters of the optimization function φ are further
explained in section III.C. For this optimization process,
we used a quite classic Nelder-Mead simplex algorithm
[16]. This process typically takes a very long time (a few
days, depending on the granularity / resolution requested)
and the resulting data is stored in a database for later
retrieval.



• In an online stage, we retrieve the correct weight param-
eters for the environmental conditions at hand from the
database and apply these directly to the same optimization
function used before, as depicted by Algorithm 2.

In the following section, we will discuss in detail both parts
of the optimization scheme.

B. Off-line optimization

Algorithm 1 depicts the off-line optimization scheme. As
explained, its objective is to fill a database containing for each
possible combination of environmental factors the optimal
weight parameters.

Here, we focus on 4 main factors that have (experimentally)
shown to have an important impact on the choice of the weight
parameters: the Number of Assets (α), the visibility (ν), the
wave height (wh) and the wave direction (wθ).

Concerning the Number of Assets (α), we consider fleets
of 2 to 10 unmanned systems. The reason why this does not
scale up further is that the methodology relies on an analysis
of the localization and sensor data from all other assets. The
methodology aims to predict the outcome of moving in a
number of directions for each of these assets with is an O(N2)
problem. As a result, increasing the number of assets above
10 would lead to prohibitively long computation times.

Concerning the visibility, due to the fact that we consider
the use of small (and thus low) vessels, the maximum visibility
range is set to be 1000 meters.

In terms of wave height, the database considers wave heights
up to 10 meters, even though the simulations show that the
danger level for such big wave heights is very high and thus
the seaworthiness is not really assured.

Algorithm 1 Off-line optimization
1: for α← 2 to 10 do
2: for nu← 100 to 1000 do
3: for wh ← 0 to 10 do
4: for wθ ← 0 to 2π do
5: w ← OPTIMIZATION(φ)
6: WeightsDatabase← w
7: end for
8: end for
9: end for

10: end for

C. On-line optimization

Algorithm 2 depicts the on-line localisation scheme, which
coincides with the optimization function φ of Algorithm 1.
Each step of the pseudo-code algorithm is here explained:

1) In a first step, the relevant weights are extracted from
the database. In case no exact match can be found, an
interpolation is performed taking into consideration the
closest matching conditions in the database.

2) The assets perform an initial communication to get to
know each other’s position. An empty coverage map
(cm) is constructed. Note that we assume no a priori

Algorithm 2 On-line optimization
1: w ←WeightsDatabase
2: INITIALIZEASSETS()
3: for Iterations← 1 toMaxIterations do
4: for all Assets do
5: [xc, yc]← SELECTCANDIDATEPOS(x0, y0, vmax, θ)
6: for all [x, y] ∈ [xc, yc] do
7: p1 ← EVALUATENEWINFO(x, y, x0, y0, cm, ν, γ)
8: p2 ← EVALUATEBOATSPEED(x, y, x0, y0)
9: p3 ← EVALUATEBOATORIENTATION(x, y, x0, y0, θ)

10: p4 ← EVALUATEWAVES(x, y, x0, y0, wh, wθ)
11: p5 ← EVALUATEOBSTACLES(x, y, om)
12: p6 ← SWARMOPTIMIZATION(x, y, xi, yi)
13: p← FUSE(w, p1, p2, p3, p4, p5, p6)
14: p← CONSTRAINTOBOUNDARIES(p, x, y, v, xl, yl)
15: p← REMOVEVISITED(p, x, y, T rajectory)
16: [xb, yb]← CHOOSEMAXIMAL(p)
17: end for
18: [x, y, v, θ]← MOVEUMS(xb, yb, x0, y0)
19: danger ← ESTIMATEDANGER(φw, v, wh, wθ, θ)
20: cm← SENSE(x, y, ν, θ, γ)
21: end for
22: fc ← cm
23: fd ←

∑
danger/α

24: end for
25: f ← 1/fc + λfd

knowledge whatsoever. The robotic assets collectively
build up a world model (a coverage map indicating areas
they have visited and an obstacle map showing areas
where they have found obstacles), that is maintained in
memory by each of them (in order to be able to cope
with network outages). This world model is empty at the
start. The only information the assets have at the start
is the position of each other and the boundaries of the
working area.

3) Main loop for the simulation timer
4) Interrogate all UMS in the fleet
5) Choose a set of candidate positions (xc, yc) where the

UMS can possibly move to. This depends on the starting
position (x0, y0) and orientation θ and on the maximum
velocity vmax of the UMS.

6) Explore all possible candidate positions
7) Assess the new information that can be retrieved by

moving from the starting position (x0, y0) to the new
position (x, y). This is achieved by adopting a visibility
model, indicating, in function of the visibility ν and the
sensor field of view γ, the probability of detecting an
object in function of the vessel orientation. Figure 2
shows as an example a visibility model for a vessel that
is oriented at a 45° angle at (0, 0). This visibility model
is compared to the coverage map (cm), which results
in a local map p1, which can be regarded as a heat
map indicating what locations would be best to move to



Fig. 2. Visibility model for a vessel that is oriented at a 45° angle at (0, 0).

in order to obtain a maximum amount of new data (or
otherwise said, to maximally increase the total value of
the coverage map).

8) In order to maximize the chances of finding threats, it’s
better to move fast. However, the vessel should also
not move too fast as this would not be fuel-efficient
and could lead to incidents. Therefore, another function
generates a local heat map favouring a good compromise
vessel velocity v.

9) Vessels cannot change their orientation θ instantly.
Therefore, another ’behaviour’ generates a local heat
map, avoiding these sharp turns.

10) Small vessels are extremely susceptible to waves. Both
the wave height (wh) and the wave direction (wθ) play
an important role and these need to be carefully aligned
with the vessel speed and orientation. In order to assess
this, we compiled on the basis of sailor knowledge in
literature an empirical ”wave-function” that expresses
the danger level related to sea waves. This wave function
is expressed as:

φwave = (1− y) ∗ v ∗ wh (2)

with y defined as:

y = 0.35x6 − 3.5x5 + 12.74x4 − 20.75x3

+14.36x2 − 2.9x+ 0.1;

and with x defined as x = ‖θ − wθ‖.
Figure 3 shows an example of a wave function equation
for a vessel at location (0, 0) and with incoming waves
from the north side. As you can notice, the most ideal
orientantion for the vessel would be slightly inclined,
but near head on to the waves. Orientations that are to

Fig. 3. Wave function for a vessel at location (0, 0) and with incoming waves
from the north side.

be avoided are waves coming from the side or from the
back.

11) Vessels should not run into detected obstacles. There-
fore, the UMS create an obstacle map om and steer
away from items on this map.

12) It is of no use that multiple agents of the fleet inves-
tigate the same area. Therefore the swarm optimization
behaviour seeks to keep adequate distances between all
of the agents.

13) The different local heat maps are combined into a single
map p using the weights as calculated before.

14) An extra check is performed in order to ensure that the
UMS do not stray away from the designated surveillance
area xl, yl.

15) An extra check is made in order to avoid revisiting recent
locations. Therefore, a trajectory memory is maintained
and checked for pruning the local heat map p.

16) On the local heat map p, the optimal position xb, yb is
located.

17) All possible positions are now checked.
18) The vessel is steered towards the optimal position.
19) The danger level for moving to this new position is

estimated, based upon the wave function. The danger
level is here defined as: danger = 1− φwave

20) The UMS performs an update of its sensing cycle, which
will lead to an update of the coverage map, as new
information is obtained.

21) End of the iteration over all agents.
22) The mean coverage score fc is recorded
23) The total (summed) danger score fd is recorded. For

reasons of normalisation, it is divided by the number of



assets α.
24) End of the temporal loop.
25) We need to maximize the coverage, while minimizing

the danger level. Therefore, the objective function to be
minimized is defined as f = 1/fc + λfd. The first term
ensures that the coverage is maximized, while the second
term ensures that the danger level is minimized. The
parameter λ regulates the relative importance accorded
to both aspects. This parameter is dependent on the type
of vessel used. For smaller UMS, sea waves present
a much higher risk, so λ should be higher. For larger
vessels, λ can be reduced in order to maximize the
coverage mapping quicker.

IV. VALIDATION

For the validation of the proposed approach, we chose the
application of the surveillance of the Belgian off-shore wind-
mill parks, which means that an area of around 10km x 30km
needs to be patrolled. However, the proposed methodology
would for example also be very useful for a maritime search
and rescue scenario [17] or a fishery control scenario.

In order to validate the methodology, we compared it to 5
state of the art solutions:

• Random search, where each agent adopts a completely
random movement pattern

• Distributed random search, where the search area is
subdivided in equal parts and each agent adopts a random
search pattern within the designated subzone

• Lawnmower search, where each agent uses a movement
pattern typically adopted by robotic lawnmowers: moving
in straight lines and turning a random amount of degrees
when coming near the boundaries

• Distributed lawnmower search, where the search area
is subdivided in equal parts and each agent adopts a
lawnmower search pattern within the designated subzone

• Distributed Greek patterns. This is the search and
surveillance approach typically adopted by manned ves-
sels and it has been proven to be very efficient for rapid
area coverage. Moreover, by subdividing the search area
and distributing the search tasks among multiple agents,
this approach is quite well suited for maritime coverage
optimization.

One disadvantage of all these state of the art approaches is that
they do not take into consideration the danger posed by the

Fig. 4. Example of the Greek pattern

waves on the vessel, which is an integral part of the proposed
solution.

In order to further validate the optimization scheme, we
compared also the results from a non-optimized, nominal
version (static initial guess for the weights parameter w) with
the optimized approach.

Figure 5 presents the results in terms of coverage in a
simulation with 4 agents present. It can be clearly noted that
the presented approach (denoted as optimal and indicated in
dark red) achieves the highest overall coverage. Without using
weight optimization, the Distributed Greek Patterns approach
outperforms our baseline nominal approach here. All other
approaches achieve a performance which is far lower.

These results can be expected, as the random search and
lawnmower search approaches are quite simplistic methodolo-
gies, whereas the Greek Patterns has a proven track record for
these kinds of applications. Still, using weight optimization,
our proposed methodology succeeds in achieving a higher
coverage score.

However, the major strength of our approach can be wit-
nessed by also considering Figure 6, which indicates the dan-
ger level of executing a mission using each of the approaches.
The blue portion of the bar chart indicates the mean danger
level, whereas the red portion indicates the maximum danger
level attained during a particular mission. Obviously, both are
important to assess the risk of incidents. It can be clearly noted
that both the nominal and the optimal proposed methodology
achieve a danger level that is significantly lower than the other
approaches. Moreover, for the optimal approach, there is little
difference between the mean and the maximum danger levels,
indicating that the methodology succeeds in keeping the risk
at a constant and low level.

V. CONCLUSIONS

In this paper, we have presented an approach towards
distributed coverage optimization for a maritime surveillance
application. The approach is based upon a mix of off-line
learning and on-line optimization. The methodology was val-
idated by comparing it in simulation to multiple state of the
art approaches. A next step will be to implement and test the
system on real-life Unmanned Maritime Systems.
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