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Abstract — To allow incorporation of autonomous 
Unmanned Aerial Vehicles (UAV’s/drones) into maritime 
military operations, it is critical to be able to accurately localize 
the UAV with respect to the moving maritime vessel during the 
take-off and landing phases. This work addresses the study and 
implementation of a visual detection, tracking and three-
dimensional positioning method for a specific drone from a 
moving maritime vessel. The YOLOv5 detector and the 
OceanPlus tracker have been trained on a custom dataset with 
good performance in accuracy and processing time. The drone’s 
position with respect to the vessel is estimated by applying stereo 
triangulation to the centres of the bounding boxes returned by 
the object detectors and trackers. The performance of the 
proposed positioning method was evaluated in a realistic 
simulated environment in the Unreal Game Engine. The 
proposed method allows detection, tracking, and positioning of 
a target drone at ranges exceeding 100m while achieving 
positioning errors below 10cm during landing phases.    
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I. INTRODUCTION  
Unmanned Aerial Vehicles (UAV’s), also referred to as 

drones, are ever more being employed during maritime 
military operations. They offer advantages for over sea 
reconnaissance, tactical planning and situations in which 
human lives would have to be put at risk. Advances in 
technology have already rendered in flight operation of 
UAV’s fairly easy. Thanks to global navigation satellite 
systems and software aided flight control, pilots can be highly 
assisted during flight maneuvers and under certain conditions 
even be completely replaced, making the system fully 
autonomous during flight. The takeoff and landing phases 
however remain critical, especially for maritime operations in 
which UAV’s are operated from moving platforms 
characterized by complex superstructures. Being able to 
localize the UAV with respect to the platform during these 
phases is necessary to allow development of autonomous 
systems which are able to plan trajectories and avoid collisions 
with surrounding obstacles. This work addresses a visual 
object detection and tracking algorithm for a specific drone 
from a moving maritime vessel and proposes a positioning 
technique using stereo camera triangulation. 

A. Related Methods 
For the task of drone detection and positioning, a multitude 

of techniques involving various types of sensors have been 
addressed in literature. The available methods can be split into 

two categories: Detection and positioning methods not 
requiring the installation of any additional systems on the 
drone itself will further be called “passive” methods, whereas 
detection and positioning methods requiring the installation of 
additional hardware on board of the drone will be called 
“active” methods, as they require the drone to actively 
cooperate with the system to position it. 

Global Navigation Satellite Systems (GNSS) with 
enhanced accuracy by differential technique Real-Time 
Kinematic (RTK) is one of the common “active” positioning 
methods for drone, can achieve position error less than 10cm. 
However, it relies entirely on the availability of GNSS signals 
and is vulnerable to jamming and spoofing. Other active 
methods such as radio frequency and acoustics also provides 
good accuracy and even specific solution for drone landing. 
But they are required additional hardware on both drone and 
maritime vessel which reduce their versatility. 

Passive methods such as RADAR, LIDAR, visual and IR 
optical sensors do not require the drone to be cooperative in 
the positioning process. However, to achieve the accuracy 
level for guiding the drone during landing phase, they require 
improvement in hardware and software for drone detection 
and position estimation or sensor fusion technique for 
multimodal detecting system to provide better performance. 
This paper focuses on visual detecting and tracking method 
for a specific drone during the landing phase on a maritime 
vessel using deep learning algorithms. 

II. DETECTION AND TRACKING 

A. Detection 
Object detection is a computer vision task to locate and 

identify target objects in an image, which has been greatly 
improved in performance with the rapid development of deep 
learning networks. Recent surveys of object detection 
techniques based on deep learned features have been provided 
by [1] and [2]. In [3] and [4], the focus is set especially on the 
task of drone detection. In general, the techniques can be 
divided into two main categories: One-stage and two-stage 
based detectors. The two-stage detector splits the object 
detection task into image classification and object 
localization. Examples are: RCNN, fast-, faster and mask-
RCNN or FPN. These algorithms can produce high detection 
accuracy (bounding box tightness), however at the cost of 
detection speed therefore they are not yet suitable for real-time 
applications. For example, faster-RCNN provides 5 Frames 
Per Second (FPS) on a K40 GPU [5]. 
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One-stage object detectors can generate class probabilities 
and object coordinates by performing a single pass through a 
deep CNN that provides all information at once. Examples for 
one-stage detectors are SSD, RetinaNet, EfficientDet and the 
family of YOLO algorithms [6]. One-stage detector are faster 
and can achieve good accuracy for our application. At the time 
of writing, newly developed YOLOv5 [7] has been reported 
to have best performance in accuracy and framerate [8]. 
Therefore, all network sizes of the YOLOv5 algorithm 
(YOLOv5s, -m, -l, -x) are selected and will be evaluated 
further in section III.   

B. Tracking 
Object tracking is a computer vision task to track the 

movement of target objects in a sequence of images. For drone 
tracking application, only single-target object tracking is 
considered. The Visual Object Tracking (VOT) Challenges 
[9] were introduced in 2013, providing datasets and clearly 
defined evaluation methods with available toolkit for 
researchers to evaluate their trackers. To select tracking 
algorithms for our drone tracking application, the best 
performance algorithms of VOT2020 were listed up, and 
ranked. As the selected tracker will need to operate in real-
time on limited hardware, we focused our comparison on the 
results of short-term trackers in the real-time challenge. 
Providing best performance in accuracy and robustness and 
being able to achieve real-time tracking using limited 
computing resource, the following trackers have been selected 
for further evaluation: GOTURN [10], Ocean, OceanPlus, 
OceanPlus Online [11] and AlphaRefine [12]. 

III. ALGORITHM EVALUATION 

A. Dataset 
A custom dataset of our research subject drone – a DJI 

Matrice M300 – was acquired with the raw dataset taken from 
multiple drone footages from different cameras, from various 
view angles, and different types of background and 
illumination conditions during our field tests at the Damage 
Control Center Military Domain in Beernem (Belgium).  

The raw images then are annotated and processed 
according to the defined format of evaluated algorithms. A 
Python tool for automatic video annotation and processing 
based on video object tracking and manual evaluation is 
developed to generate the annotated images and ground truth 
bounding box data from the recorded videos (see Figure 2). It 
guarantees proper distribution of the bounding box sizes and 
positions in the dataset as shown in Figure 1. This dataset was 
augmented then randomly split into training, validation and 
test sets and used to train and evaluate multiple algorithms for 
object detection and tracking.  

 
Figure 1: Bounding box sizes and positions after processing 

 
Figure 2: Example images from the raw dataset 

B. Performance metrics 
For object detection, the most used metric is the Average 

Precision (AP) which is almost equivalent to Area Under the 
Precision (P) – Recall (R) Curve (AUC). It is a combined 
measure, reflecting the performance of a detector in both 
precision and recall. Intersection over Union (IoU) measures 
the overlap between the predicted and the ground truth 
bounding box. The AP can be evaluated and averaged for 
different levels of IoU (0.5 to 0.95 with steps of 0.05 for 
instance which is indicated as AP@50:5:95) or for a single 
value (e.g., AP50). The mean Average Precision (mAP) is 
obtained by averaging all AP values obtained for different 
object classes. 

For object tracking, [13] suggests using these metrics: 
Accuracy (A), Robustness (R) and Expected Average Overlap 
(EAO) to evaluate the performance of visual object tracking 
algorithms. Accuracy (A) is defined as the average overlap 
between the predicted and ground truth bounding boxes 
during successful tracking periods. Robustness (R) is defined 
as the number of times the tracker failed, i.e., drifted from the 
target, and had to be reinitialized. A failure is detected when 
IoU drops to zero. And EOA is an estimator of the average 
overlap a tracker is expected to attain on a large collection of 
short- term sequences with the same visual properties as the 
given dataset [13]. 

The speed evaluation of both detectors and trackers was 
done in limited computing power hardware: ThinkPad P50 
with an Intel i7-6700HQ CPU, 2GB VRAM Quadro M1000M 
GPU and CUDA 10.2. Inference time and Non-max 
suppression process (NMS) time were used for evaluating 
YOLOv5 detectors. Frame rate (FPS) was considered for 
evaluating the speed of different trackers 

C. Detection Algorithms Evaluation 
Four network sizes of the YOLOv5 algorithm (YOLOv5s, 

-m, -l, -x) are compared in both accuracy performance and 
speed on our custom dataset. Table 1 shows that Precision 
equals almost 100% for all models, while Recall varies 
between 89% and 98%. Increasing the network size doesn’t 
increase the performance mAP50 or mAP@50:5:95 much.  

On other hand, Table 2 shows that the inference time is 
significantly increased when using larger network sizes. 



 

TABLE 1:COMPARISION OF PERFORMANCE OF DIFFERENT YOLOV5 
NETWORK SIZES ON OUR CUSTOM DRONE DETECTION DATASET 

Model 
size 

F1-
score 

Precision Recall mAP * 
@50%IoU 

mAP 
@50:5:95%IoU 

S 0.97 1 0.89 0.90 0.65 
M 0.99 1 0.97 0.97 0.69 
L 0.99 0.98 0.95 0.95 0.70 
X 0.97 0.99 0.98 0.99 0.68 

Because of the insignificant improvement in performance 
and significantly longer inference time of the large network 
sizes (L and X), the smaller size networks (S and M) are 
selected for the drone detection task. 

TABLE 2: COMPARISON OF MODEL SPEED OF DIFFERENT YOLOV5 
NETWORK SIZES ON OUR CUSTOM DRONE DETECTION DATASET (IMAGE 

RESOLUTION = 640X640, BATCH SIZE = 1 ON THE M1000M GPU) 

Model 
size 

Inference 
Time (ms) 

NMS 
Time (ms) 

Total 
FPS 

S 41.1 0.7 23.9 
M 103.7 0.8 9.6 
L 195.2 0.8 5.1 
X 362.2 2.1 2.7 

D. Tracking Algorithms Evaluation 
To identify the most suited tracking algorithm for our 

application, five tracking algorithms (GOTURN, Ocean, 
OceanPlus, OceanPlus Online and AlphaRefine) have been 
evaluated in performance and speed. On performance, Table 
3 presents the evaluation results on the VOT2022 dataset of 
the five trackers in both baseline and real-time tracking 
evaluation. The real-time evaluation assumes an image stream 
at 30 FPS. Since our application focus more on real-time 
aspect, Figure 3 shows the real-time evaluation of the 
accuracy-robustness plot and Figure 4 shows the EAO curve 
in function of tracked frames for each tracker. OceanPlus 
tracker achieves in overall best result in real-time performance 
evaluation. 

On the speed aspect, shown in Table 4, OceanPlus and its 
online version achieved second best in speed with 10.77 and 
10.49 FPS respectively, after Ocean with 14.02 FPS.  

With good result in both tracking performance and speed, 
OceanPlus was chosen as the tracking algorithm to be further 
implemented for our application. Figure 5 illustrates an 
example of a tracking sequence using OceanPlus tracker. 

TABLE 3: TRACKER EVALUATION RESULTS ON THE VOT2020 DATASET. 
THE FIRST, SECOND AND THIRD BEST SCORES PER METRIC ARE 

RESPECTIVELY COLORED IN RED, GREEN, AND BLUE. 

 

TABLE 4: TRACKING SPEED RESULTS (ON THINKPAD P50 & QUADRO 
M1000M GPU) 

Tracker Frame Rate (FPS) 
GOTURN 13.67 

Ocean 14.02 
OceanPlus 10.77 

OceanPlus Online 10.49 
AlphaRefine 5.48 

 

 
Figure 3: Real-time evaluation accuracy-robustness plot. 

 

 
Figure 4: Real-time evaluation EAO curve in function of tracked frames 

 

 
Figure 5: Example of a tracking sequence 

IV. IMPLEMENTATION AND VALIDATION 
This Section discusses the integration of YOLOv5 and 

OceanPlus as one detection and tracking pipeline. A simple 
position estimation method is also introduced and validated 
using realistic Maritime Environment Simulation. The 
simulation, based on the work of [14], created using Unreal 
Game Engine. It was used to acquire the ground truth position 
data of the simulated drone with respect to the stereo camera. 



A. Detection and Tracking Fusion Implementation 
The full detection and tracking pipeline starts by 

initializing a series of parameters for the two algorithms and 
their networks are loaded into computer memory. First, 
YOLOv5 detector attempts on an entire frame of which the 
resolution has been scaled down to fit the specified YOLO 
input image size. This allows to detect the drone if it is very 
close to the camera. If no drone is detected, the detection 
process in the following frames is continued in a smaller 
window, keeping original resolution, and sliding over the 
entire image. Performing detection on small images allows to 
limit detection delay, which provides more recent bounding 
boxes to the tracker. If a drone is detected, the tracker is 
initialized on the current frame and given bounding box. The 
system state is switched to tracking. During tracking process, 
the detection continues to run in the background on the 
window contains the current tracking bounding box to double 
check the result of the tracking algorithm. In case of tracking 
failure, the detector will attempt to re-detect the drone and re-
initiate the tracking process. A flowchart of the detection and 
tracking pipeline is illustrated in the Figure 6. 

B. Position Estimation Methodology 
To estimate the position of the target drone, 3D 

triangulation method is used with a stereo camera set-up. Once 
the drone’s center has been detected in both video feeds of the 
stereo camera (see Figure 9), a maximum likelihood 3D 

position can be triangulated using the camera projection 
matrices and the 2D point correspondence in both images. 

A MATLAB script was written which will take the 
bounding boxes result of the detection and tracking pipeline 
on two images of the stereo camera and their intrinsic and 
extrinsic parameters to calculate the 3D location of the target 
drone with respect to the stereo camera.  

C. Maritime Environment Simulation 
 A realistic maritime environment simulation was created 

using Unreal Game Engine, which includes an accurate 3D 
model of the DJI Matrice 300 drone, a ship model with 
buoyancy movement, realistic sea environment with waves 
and sky containing clouds. One simulated stereo camera is 
placed on the afterdeck of the ship, with a baseline of 2m long. 
The camera resolution can be selected between 4K 
(4096x3072) and HD (1280x960), this option is used to 
analyze the relation between resolution and detection range. 
The origin of the coordinate system is the optical center of the 
right camera (Figure 7). The position of the drone with respect 
to this origin is recorded as the ground truth for the position 
estimation evaluation. 

The simulation includes two programmed drone 
trajectories (see Figure 8) and at two velocities: 5m/s and 
1m/s. Figure 7 and 9 show the field of view of both cameras 
of the stereo setup, and the bounding box result of the 
detection and tracking pipeline. 

Figure 6: Flowchart illustrating the detector and tracker fusion methodology 



 

 
Figure 7: Afterdeck area of the ship model, with stereo camera (blue - on 

the top image) and their respective images (bottom left and right) 

 
Figure 8: Two programmed drone trajectories in the simulated 

environment – the origin of the coordinate system is the optical center of 
the right camera 

 
Figure 9: Example of the drone center estimation 

D. Position Estimation Results 
Absolute Trajectory Errors (ATE) is the accuracy metric 

commonly used in SLAM (Simultaneous Localization and 
Mapping) for the evaluation of a reconstructed trajectory 
based on a ground truth trajectory [15]. The ATE computes 
for every triangulated point the Euclidean distance to the 
corresponding ground truth point (see Figure 10). The mean 
and standard deviation of the ATE over all points of the 
trajectory are used as performance metrics to evaluate the 
quality of the reconstructed trajectory. 

Comparison between different trajectories and drone 
velocities: Mean and Standard Deviation of the ATE for 
trajectory 1 and 2 in two different drone velocities (1m/s and 
5m/s) using HD stereo camera is shown in Table 5. The ATE 
does not change much from different trajectories, however, 
the drone speed is found to have direct impact on the systems 
accuracy due to tracking failure at higher drone velocity.  

 

TABLE 5: MEAN AND STANDARD DEVIATION OF THE ATE FOR DIFFERENT 
TRAJECTORIES AND DRONE VELOCITIES. 

 Trajectory 1 Trajectory 2 

 v = 5m/s v = 1m/s v = 5m/s v = 1m/s 

ATE Mean (cm) 17.20 4.57 14.44 4.03 

ATE Standard 
Deviation (cm) 5.26 1.71 5.14 1.86 

 Detection range: the resolution of the camera and the size 
of the sliding window used during the detection phase can 
affect the detection range. Using HD camera with large sliding 
window of 640x640 pixels provides the detection range 
around 9.5m. Reducing the sliding window to 384x384 pixels 
increases the detection range to 21m. Using 4K camera with 
sliding window of 640x640 pixels can achieve the detection 
range above 100m. 

Tracking failure: in the simulation scenarios, tracking 
failure occurs during the end of the trajectory, just before 
touchdown on the deck. Lighting and background conditions 
make it difficult to distinguish between the drone and the 
background. (See Figure 10). This can be improved by 
improving lighting condition, background contrast. 

 
Figure 10: The triangulated and corresponding ground truth points for 

trajectory 1. Accuracy decreases at the end of the trajectory because 
tracking failure occurs due to difficulty in distinguishing drone and 

background 

Accuracy of Position Estimation: depends on the camera 
resolution, distance of the target drone with respect to the 
camera, the relative velocity of the drone and the ship and 
configuration of the detection algorithm. In our analysis, the 
trajectory 1 with drone velocity (v = 1m/s), HD camera, and 
sliding window of 384x384 pixels during the detection phase 
are used. Figure 11 shows the histogram and Cumulative 
Distribution Function of the ATE of drone’s position 
estimation during the approach and touchdown phase – less 
than 10m away from the camera. The largest error found in 
this case is below 22cm with over 90% below 10cm. The main 
contribution to the ATE are the estimation error in the x-axis, 
in which the drone performs its main movement, and is the 
optical axis of the right camera (see Figure 7). It follows by 
the errors in the z-axis. The errors in the y-axis are very low 
(see Figure 12). Figure 13 presents the total ATE and ATE 
from different axes in function of tracking frame number with 
the drone from far distance till touchdown on the ship deck. 
At the large distance, the ATE is high. And it will drop down 



significantly when it gets closer to the camera, which is the 
most critical part of the landing phase.   

 
Figure 11: Absolute Trajectory Error histogram and Cumulative 

Distribution Function during landing phase in trajectory 1 

 
Figure 12: Box plots of total ATE and ATE in different axes during landing 

phase in trajectory 1 

 

V.  DISCUSSION AND CONCLUSION 
The study and implementation of deep learning method for 

visual detection and tracking of a subject drone in maritime 
environment are introduced in this paper. A video data set of 
the subject drone was acquired during our field tests. The 
image data was extracted, processed, and annotated. Multiple 
state of the art detection and tracking algorithms were 
evaluated to select the most suitable detector and tracker to be 

used in the task, taking into count the limited computing 
resource. The selected algorithms: YOLOv5 detector and 
OceanPlus tracker were trained with our custom dataset and 
integrated as one single detection and tracking pipeline. A 
simple and effective method to estimate the position of the 
subject drone with respect to the tracking camera was 
introduced and validated in maritime environment simulation 
on Unreal Game Engine with ground truth data for 
quantitative analysis. Our proposed method can detect and 
track the target drone from up to 100m with 4K stereo camera 
and can estimate the position of the drone with less than 10cm 
error during the critical landing phase.  

Due to the nature of visual system, our method depends on 
lighting conditions and visibility of the target drone, therefore, 
can’t be used in all conditions. However, because of its cost-
effective solution, it offers possibilities to combine with other 
positioning methods to increase the accuracy and reliability of 
the drone positioning system. 

Future work will focus on implementation of our method 
on the real-life tests, integration with other methods to provide 
better positioning estimation accuracy and redundancy, and 
establishing a communication channel with the drone to guide 
it during its autonomous landing task.      
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