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Abstract — Ship deck landing of Unmanned Aerial Vehicles 
(UAVs/drones) in different kinds of environmental conditions 
remains a bottleneck for the widespread deployment of UAVs 
for maritime operations. For safe operation, the relative motion 
between the UAV and the pitching and rolling deck of a moving 
ship must be estimated accurately and in real-time. This paper 
presents a visual Simultaneous Localization and Mapping 
(SLAM) method for real-time motion estimation of the UAV 
with respect to its confined landing area on a maritime platform 
during landing phase. The visual SLAM algorithm ORB-
SLAM3 [1] was selected after benchmarking with multiple 
state-of-the-art visual SLAM and Visual Odometry (VO) 
algorithms with the EuRoC dataset [2]. It was evaluated for a 
simulated landing scenario of a UAV at 16m height with a 
downward camera in multiple configurations with sufficient 
results in both speed and accuracy for the landing task. 
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I. INTRODUCTION  
Unmanned Aerial Vehicles (UAVs) have become a major 

technological and tactical asset in military applications. They 
allow performing hazardous operations without putting 
human lives at risk. For deployment in maritime operations, 
the capability for these unmanned aerial systems to 
automatically take off and land on vessels in all kinds of 
environmental conditions remains a bottleneck (see Figure 1). 
One of the technical challenges of autonomous landing 
operation is real-time estimation of the relative motion 
between the UAV and the pitching and rolling deck of the 
moving vessel. This is especially true on a small vessel which 
has limited free space on the deck with a lot of obstacles 
surrounding the landing area: the landing requires a robust 
perception of not only relative motion between the UAV and 
the landing area, but also the obstacle-free space for the UAV 
to fly. This paper proposes the visual SLAM method, which 
can estimate the motion of the UAV with respect to its 
confined landing area on a maritime platform during landing 
phase with high accuracy and in a real-time manner. 

Localization: There are few commercial localization 
systems which can support the autonomous landing of UAV 
on a maritime platform, such as: 

• Moving baseline RTK: Accurate GNSS based solution 
suited for the localization with respect to a moving 
platform [3]. However, it relies entirely on the availability 

of GNSS signals and is vulnerable to jamming and 
spoofing. 

• Visual guided with AprilTags [4]: One example of this 
solution is the ACE™ - Autonomous Control Engine 
system commercialized by Planck AeroSystems1 for 
autonomous landing on moving vessel. It consists of a 
large AprilTag mounted on top of the moving platform 
which is tracked by a camera onboard the UAV. 

• Radio and ultra-sound-based solution: for example, 
LoLas system from Internest2 also provides good 
accuracy and even a specific solution for UAV landing 
but they require additional hardware on both the UAV 
and the maritime vessel. Moreover, the system is 
sensitive to the surrounding environment (materials or 
other devices on the vessel). 

Obstacle-free space perception: ultrasonic and laser 
scanner sensors are commonly used for obstacle detection. 
Ultrasonic sensors are mostly included as standard hardware 
in UAV, however due to their limited accuracy and sensing 
area, they could only serve as anti-collision safety hardware. 
The sensor output cannot be used to estimate an obstacle-free 
space for the UAV to fly. Laser scanners, on the other hand,  
achieve a better accuracy and speed, and they can cover large 
surrounding areas. They are commonly used to provide 
obstacle-free space perception for ground mobile robots. 
Nevertheless, laser scanner hardware is heavy and consumes 
a lot of power, therefore it is not suitable for small UAVs and 
long duration operation. 

This research focuses on the estimation of the UAV 
motion with respect to the landing area on the vessel deck 
while perceiving the obstacle-free space for the UAV to fly 
through during the landing phase. A visual SLAM algorithm 
applied on the images from the onboard camera of the UAV 
is proposed. The main advantage of this solution is that it 
doesn’t require additional infrastructure. Sensor hardware is a 
camera system on the UAV – which is a light-weight device 
with low power consumption. All computations are performed 
onboard, therefore, no communication to the UAV is needed. 

 
Figure 1: Autonomous take-off and landing of UAV on moving vessel 

This research was funded by Royal Higher Institute for Defense with 
collaboration between the Royal Military Academy and the Belgian Navy. 

1. https://www.planckaero.com/ 
2. https://internest.fr/ 
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II. SLAM ALGORITHM SELECTION 

A. Simultaneous Localization and Mapping (SLAM) 
SLAM (Simultaneous Localization and Mapping) is a 

method that allows autonomous mobile robots to build a map 
of its surrounding environment while localizing itself on that 
map at the same time. SLAM can be used on different types 
of sensors such as laser scanner, radar, RGB camera and RGB-
D camera, etc.  Visual SLAM, also known as vSLAM, 
performs SLAM using cameras as input sensors. This 
technique has known an increasing interest from the scientific 
community. Camera sensors provide richer information 
compared to laser scanner; however, it requires more complex 
processing algorithms to extract and handle the amount of 
received data, which can lead to an increased processing time. 
With the recent improvement in CPU and GPU, 
implementation of such algorithms for real-time processing is 
no longer an insurmountable task. For example, recent 
developments in Augmented Reality (AR) require the support 
of robust vSLAM algorithms running on mobile platforms, 
therefore adding importance to this field of research [5]. 

B. Existing 3D visual SLAM Algorithms 
In this section, existing open-source 3D visual SLAM 

algorithms are listed. For each algorithm, the related 
paradigm, type of sensors, relocalization technique, 
development environment, map result and release date are 
given. 

• PTAM (2007): This monocular visual SLAM (vSLAM) 
algorithm was the first to separate the localization and 
mapping tasks into two distinct threads [6]. Before 
PTAM, all graph-based methods were too heavy to run in 
real-time and global optimization had to be performed 
offline [7]. PTAM was originally a C++ camera tracking 
system devoted to AR applications. Later, it has been 
implemented in the Robotics Operating System (ROS)1. 

• MonoSLAM (2007): As indicated in the name, 
MonoSLAM is a monocular visual SLAM algorithm [8]. 
It has been initially developed in C++, then has been 
implemented in ROS. MonoSLAM is based on the 
Extended Kalman Filter (EKF). 

• RTABMAP (2011): ROS package containing monocular, 
stereo, RGBD and LIDAR graph-based SLAM for large-
scale and long-term operation [9]. It is based on an 
incremental appearance-based loop closure detector. 

• LSD-SLAM (2014): A direct monocular visual SLAM 
algorithm [10]. The method is graph-based and allows 
building large semi-dense maps of the environment. A 
novel direct image alignment method was introduced 
leading to better robustness against brightness changes. 
LSD-SLAM has been implemented in ROS and extended 
to stereo cameras. 

• ORB-SLAM (2015): monocular vSLAM method [11] that 
can close large loops and perform global relocalisation in 
real-time and from wide baselines. It includes an 
automatic and robust initialization from planar and non-
planar scenes. A novel survival of the fittest keyframe 
selection allows to maintain a compact map, while 
improving the tracking robustness as keyframes are 
inserted very fast during exploration. 

• ORB-SLAM2 (2016): Extension of the original ORB-
SLAM algorithm. The main improvement is the 
implementation of variants of the method for stereo and 
RGB-D sensors [12]. 

• ORB-SLAM-VI (2017): In this system, IMU data is 
coupled to a monocular visual stream, thus allowing to 
address the scale ambiguity problem related to monocular 
setups [13]. 

• MapLab (2017): MapLab is a graph-based monocular 
visual-inertial SLAM (viSLAM) system allowing multi-
session mapping [14]. It is composed by two mains parts: 
a Visual Inertial Odometry (VIO)/localization Front-End 
(ROVIOLI, based on the ROVIO [15] estimation 
pipeline) and a MapLab console. The first part outputs 
pose estimates and builds a map of the environment 
whereas the second allows the user to perform offline 
global optimization.  

• VINS-Fusion (2018): Graph-based viSLAM algorithm 
developed in ROS and compatible with monocular and 
stereo setups. It constitutes an extension of VINS-Mono 
[16], developed the same year. VINS-Fusion achieved 
results comparable to other state-of-the-art methods. 

• Kimera (2020): C++ library composed of four 
components: a VIO module, a pose graph optimizer, a 
lightweight 3D mesher and a dense 3D metric-semantic 
reconstruction module [17]. The strength of this method 
relies in its modularity: the different components can be 
run all together or only some of them can be selected. 
Thus, depending on what modules are activated, Kimera 
becomes a VIO or viSLAM method. 

• ORB-SLAM3 (2020): This algorithm is reported to be the 
most accurate vSLAM and viSLAM algorithm available 
nowadays [18]. ORB-SLAM3 integrates monocular, 
stereo, inertial-monocular, inertial-stereo and RGBD 
setups. Additionally, it includes robust IMU initialization 
and allows faster place recognition thanks to its multi-
map system. 

• OV2SLAM (2021): Graph-based visual SLAM algorithm 
supporting both monocular and stereo camera. The 
method separates the SLAM problem in four threads. 
This allows minimizing the drift and saves runtime [19]. 
Results show that comparable accuracy is obtained while 
real time performances are ensured. 

Table 1 provides the summary for all algorithms listed 
above. For each algorithm, the type of method such as: 
vSLAM, viSLAM, Visual Odometry (VO), VIO and the 
related paradigm: EKF, Particle Filters (PF), Graph-based 
(GB) are included. The table also lists up the compatible 
hardware of each algorithm: monocular and stereo camera 
(represented by a X if originally supported and a (X) if it 
corresponds to an extension). Moreover, the type of 
relocalization mechanism such as: Thumbnail, Bag of Words 
(BOW), Bags of Binary Words (DBoW2), etc. and the type of 
map (Dense (D), Sparse (S), Mesh or Occupancy Grid (OG)) 
are provided. 

C. Benchmarking visual SLAM Algorithms 
All listed algorithms were tested on multiple sequences of  

EuRoC dataset [2] and compared in accuracy performance. 

 1. https://ros.org/ 
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EuRoC dataset: The European Robotics Challenge 
(EuRoC) dataset is widely used in the field of visual and visual 
inertial SLAM for benchmarking. It consists in a set of 11 
sequences recorded from a stereo camera mounted on a UAV. 
The UAV’s position ground truth was measured by the Leica 
Nova MS50 laser tracker system in case of machine hall (MH) 
scenarios, and by the Vicon motion capture system in case of 
Vicon room (V) scenarios. 

Metric: Absolute Translational Error (ATE) is the 
accuracy metric commonly used for the evaluation of a 
reconstructed trajectory computed by SLAM based on a 
ground truth trajectory. ATE is computed for each trajectory 
point yielded by the SLAM algorithm. Hence, ATE is a 
function of time. Root-Mean-Square Error (RMSE) of ATE is 
used in this case to benchmark the performance of available 
algorithms on single sequence of the EuRoC dataset. 

Figure 2 and Figure 3 show the accuracy performance of 
vSLAM algorithms using monocular and stereo camera 
respectively on the EuRoC dataset. It is noted that ATE RMSE 
of 0.35m is set as limit here, if some data is missing in the 
graph, it means its ATE exceeded the 0.35m limit. This is the 
reason why no results are displayed for sequence V203 in the 
Figures 2 and 3. ATE RMSE from all compared algorithms 
exceed the 0.35m limit in that specific sequence. 

 ORB-SLAM family performs well while OV2SLAM 
performs acceptably in both camera setups, moreover, 
OV2SLAM was reported to have exceptional computational 
speed. Therefore, we select the most recent version of ORB-
SLAM family (ORB-SLAM3) and OV2SLAM to further 
analyze in both accuracy and speed performance.   

 
Figure 2: Benchmarking accuracy performance of vSLAM algorithms using 

monocular camera on the EuRoC dataset 

 
Figure 3: Benchmarking accuracy performance of vSLAM algorithms using 

stereo camera on the EuRoC dataset 

III. ALGORITHM SELECTION FOR THE LANDING APPLICATION 
The EuRoC dataset and the ATE RMSE are kept being 

used to compare the ORB-SLAM3 and OV2SLAM. In this 
comparison, for each setup (monocular/stereo), sequence (11 
in total) and candidate algorithm (ORB-SLAM3/ OV2SLAM), 
30 estimated trajectories are computed. This allows obtaining 
statistically relevant results. 

 For speed performance, another metric: Tracking Time is 
introduced. Tracking Time is the time (in seconds) required to 
process a single frame. It is calculated by taking the mean 
value of the processing time of each frame in each sequence. 
All computations were run on an Intel® Core™ i7-10510U 
CPU of 8 cores clocked at 1.8 GHz and 16GB RAM. 

 
Figure 4: Accuracy performances of ORB-SLAM3 and OV2SLAM on 

Machine Hall scenarios of EuRoC dataset for Stereo camera 

TABLE 1: SUMMARY OF  OPEN-SOURCE VISUAL SLAM ALGORITHMS 

Algorithm Type Paradigm Mono Stereo Relocation Map ROS Release year Publication 
PTAM vSLAM GB X  Thumbnail S (Y) 2007 [6] 

MonoSLAM vSLAM EKF X  / S Y 2007 [8] 
RTABMAP v(i)SLAM GB X X BOW OG Y 2011 [9] 
LSD-SLAM vSLAM GB X (X) / D Y 2014 [10] 
ORB-SLAM vSLAM GB X  DBoW2 S / 2015 [11] 

ORB-SLAM 2 vSLAM GB X X DBoW2 S/D (Y) 2016 [12] 
ORB-SLAM-VI viSLAM GB X  DBoW2 S / 2017 [13] 

MapLab viSLAM EKF/GB X  Binary Descriptors S Y 2017 [14] 
VINS-Fusion v(i)SLAM GB X X DBoW2 S Y 2018 [16] 

Kimera VIO GB X (X) DBoW2 Mesh (Y) 2020 [17] 
ORB-SLAM 3 v(i)SLAM GB X X DBoW2/Multi-Maps S (Y) 2021 [18] 

OV2SLAM vSLAM GB X X iBoW-LCD S Y 2021 [19] 
 



 
Figure 5: Computational performances of ORB-SLAM3 and OV2SLAM on 

Machine Hall scenarios of EuRoC dataset for Stereo camera 

Figure 4 presents the box chart of the ATE RMSE 
distribution over 30 runs of ORB-SLAM3 and OV2SLAM for 
each sequence of the Machine Hall scenarios in EuRoC 
dataset using a stereo camera. The median ATE RMSE of the 
ORB-SLAM3 is lower than the OV2SLAM in all scenarios. 
Similar result can be seen in the Vicon room scenarios and 
with monocular camera setup. 

On the other hand, the computational speed performances 
of the ORB-SLAM3 are found significantly worse than those 
of the OV2SLAM for all Machine Hall scenarios with stereo 
camera setup in the Figure 5. Again, similar result can be seen 
in the Vicon room scenarios and with monocular camera 
setup. 

OV2SLAM performed worse in the accuracy aspect and 
failed to recover the trajectory in some scenarios, such as: 
V202 and V203 for monocular camera setup and V203 for 
stereo camera setup. Therefore, even it achieves low tracking 
time, and can handle up to 50-60 Frames Per Second (FPS), it 
cannot be selected for our application over ORB-SLAM3. 
With a tracking time lower than 0.06 second per frame, ORB-
SLAM3 on our system can handle up to 16-17 frame per 
second, which is sufficient for the UAV landing application 
since the UAV must be in low speed during the landing phase. 
Therefore, ORB-SLAM3 is chosen as best suited vSLAM 
algorithm for our application.  

IV. IMPLEMENTATION AND EVALUATION 
ORB-SLAM3 must be implemented and evaluated for the 

UAV landing scenario. However, getting the UAV’s pose 
ground truth data during the landing with cm accuracy requires 
hardware investment which couldn’t be done at that time. A 
simulation approach was used to overcome that situation.  

 

 

 

A. UAV landing scenario in Unreal Game Engine 
A realistic simulated environment was created in Unreal 

Engine to gather synthetic dataset for evaluation of the ORB-
SLAM3 for the landing scenario of the UAV with downward 
camera on a replica vessel. The simulation, based on the work 
of [20], includes: 

• Approximation of UAV model: the 3D model of a DJI 
Matrice 300 is used. The latter corresponds to the type 
of drone used in the context of this research project. 

• Approximation of UAV dynamics: UAV trajectory is 
pre-programmed and a simple descent towards the 
landing pad at the speed 1 m/s. The UAV starts at 16 
meters height right above the landing pad. 

• Approximation of vessel model: a 3D model of a 
similar vessel (in terms of dimensions and structure) is 
taken from Unreal Engine  Marketplace1 and modified 
to get as similar as possible to the real patrol vessel. A 
visual comparison between the real vessel and its 3D 
replica can be seen in Figure 6. 

• Approximation of ship dynamics: The dynamics of the 
vessel are simulated via the Unreal Engine plugin 
Physical Water Surface2. 

• Other aspects in the simulation: environment: water 
waves, sky, lighting condition, reflection, etc. and 
camera is simulated without any distortion and with a 
global shutter. 

• The simulation is used to generate synthetic dataset 
with the recorded position of the UAV as ground truth 
data for evaluation. Several scenarios are simulated 
and recorded with different virtual camera setups: 
stereo/monocular, 720p/376p resolution. These setups 
correspond to some of the possible configurations of a 
ZED Mini camera, the camera sensor initially planned 
to be mounted on the UAV. 

The same metrics: ATE RMSE and Tracking Time are 
used to evaluate the performance of the algorithm. 
However, in this case, all computations were 
conducted on an NVIDIA Jetson TX2 which is also the 
onboard computer of the UAV.  

B. Evaluation Results 
The accuracy and computational speed performance of 

different camera setups: stereo/monocular, 720p/376p 
resolution are shown in the Table 2. The values shown in the 
Table 2 are the mean values over 10 runs.  

a) Computational speed: 

For stereo camera at 720p resolution, we obtain a tracking 
time of 163 ± 0.9ms with a 95% confidence interval. This 
corresponds to a frame rate of about 6 FPS. Regarding stereo 
camera at 376p resolution, we obtain a 95% confidence 
interval of 110 ± 0.8ms. This corresponds to a frame rate of 
about 9 FPS. The frame rate for stereo camera which ORB-
SLAM3 can handle is quite limited.  

For a monocular camera at 720p resolution, we obtain a 
tracking time of 118 ± 3.5ms with a 95% confidence interval. 

Figure 6: Real vessel (left) and its simulated version on Unreal Game 
Engine (right) 

1. https://www.unrealengine.com/marketplace 
2. https://github.com/Theokoles/PhysicalWaterSurface 
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This corresponds to a frame rate of about 8 FPS. For a 
monocular camera at 376p resolution, we get as 95% 
confidence interval 54 ± 1.1ms, which corresponds to a frame 
rate of about 19 FPS. Compared to results obtained in stereo 
camera setup, we have higher frame rates in the monocular 
camera setup. The reason is that in stereo setup, processes 
such as feature extraction and matching must be conducted not 
only over successive frames in time but also between each 
image of the stereo pair. Therefore, in terms of speed, the 
monocular vSLAM is more suitable for the application. 

TABLE 2: PERFORMANCE RESULT OF DIFFERENT SETUP OF ORB-SLAM3 
DURING LANDING PHASE OF THE UAV 

Camera 
setup 

Resolution Mean ATE 
RMSE (cm) 

Tracking 
Time (ms) 

Stereo 720p 8.55 163 
376p 20.61 110 

Mono 720p 13.38 118 
376p 34.28 54 

 

 
Figure 7: One sample of trajectory estimation and its ground truth 

(stereo camera setup at 720p resolution). 

b) Accuracy: 

 From Table 2, the best mean ATE RMSE over 10 runs 
(8.55 ± 2.4cm) is achieved with stereo camera setup at 720p 
resolution. The mean ATE RMSE of the stereo camera are 
much better than monocular camera. Better accuracy can be 
achieved with higher camera resolution. All of these come 
with a trade-off in computational speed. 

Figure 8: Accuracy performance with stereo camera setup with different 
camera resolution: 720p – 376p 

 

 
Figure 9: Accuracy performance with monocular camera setup with 

different camera resolution: 720p – 376p 

 The mean ATE over 10 runs for stereo camera setup with 
720p and 376p resolution in different axes in function height 
to the landing pad of are shown in Figure 8 and for monocular 
setup are shown in Figure 9. Noted that in case of monocular 
setup, the tracking could not initiate above 10 meters, although 
the sequence begins at 16 meters height. Furthermore, all the 
values computed in monocular setup are corrected in scale, 
offline. That could be the reason the smallest error of the 
monocular setup is achieved in z-axis, on which the scale 
correction is based. 

For the monocular camera setup, we see the reducing trend 
of the ATE RMSE respect to the height to the landing pad. 
However, that trend could not be found in the stereo camera 
setup. The main reason is that the image from the cameras 
contains not only the features from static objects on the deck 
of the vessel, but also the dynamic feature of the water waves. 
While the monocular camera only uses the matching features 
between frames, it hardly sees the matching water waves 
features. On other hand, stereo camera setup also uses 
matching features from both cameras, therefore the water 
waves features can be mistakenly considered as matching 
features to calculate the location of the camera. While landing 
the vessels is getting bigger inside the image, there are less 
water waves features, hence the accuracy increases after the 
height of the UAV to the landing pad is less than 6 meters.  

C. Improvements 

As the result of evaluation, the accuracy performance of 
the monocular camera setup is quite low to be used in our 
application, despite it achieves good performance in speed (up 
to 19 FPS). Moreover, the motion tracking result from the 
monocular camera setup must be corrected in scale factor, 
which can be only done offline. This makes monocular ORB-
SLAM3 not suitable for the application. To improve accuracy 
performance and enable online scaling during the mapping 
with monocular camera, a merging map software feature is 
developed. It allows to scan and save the point cloud map of 
the ship deck as prior non-active map which then will be 
merged with the current active map as soon as enough matches 
between the two maps are found (see Figure 10). This feature 
only improves the accuracy performance, provides online 
scaling for monocular ORB-SLAM3, but also brings new 



relocalisation mechanisms, and sensor fusion potential where 
the prior map can be created with different types of sensors. 

TABLE 3: COMPARISON OF ACCURACY PERFORMANCE OF MONOCULAR 
CAMERA SETUP WITH AND WITHOUT LOADING PRIOR MAP 

Camera 
setup Resolution Mean ATE RMSE (cm) 

No prior map With prior map 

Monocular 720p 13.38 5.00 
376p 34.28 11.61 

Accuracy performance of monocular ORB-SLAM3 is 
improved significantly after loading prior map, comparing 
with original version, as shown in Table 3 and Figure 11. With 
the accuracy of 5cm and 11.61cm in ATE RMSE for 720p and 
376p resolution respectively, while keeping the computational 
speed at 8 FPS and 19 FPS, the improved version of 
monocular ORB-SLAM3 with loading prior map is ideal for 
using in our UAV landing application.  

 
Figure 10: Merging map feature with monocular camera: after merging, the 
scale of map is corrected, red point cloud on the map post marge is the prior 

non-active map 

 
Figure 11: Comparison of ATE profiles of Monocular camera setup at 376p 

resolution with and without loading prior map 

V. CONCLUSION 
In this work, we investigated the use of vSLAM as 

localization system for autonomous landing of a UAV on a 
maritime platform. We benchmarked multiple open source 

vSLAM algorithms in term of accuracy and compatible 
hardware. Two algorithms OV2SLAM and ORB-SLAM3 
were pre-selected for further analysis in both accuracy and 
computational speed performance on the EuRoC dataset. With 
better accuracy and sufficient computational speed, ORB-
SLAM3 is selected as vSLAM algorithm for the target 
application.  A realistic simulated environment was created in 
Unreal Engine to gather synthetic dataset to perform the 
evaluation of the ORB-SLAM3 for the landing scenario of the 
UAV at 16m height with downward camera. The accuracy and 
computational speed performance of different camera setups: 
stereo/monocular, 720p/376p resolution were analyzed. 
Improvement was done with merging prior map feature which 
improves accuracy and enables online scaling for monocular 
configuration while maintaining fast computational speed. It 
makes the improved version of monocular ORB-SLAM3 a 
suitable vSLAM algorithm for our applications. 

Future work will focus on implementation of ORB-
SLAM3 on the real system, integration ORB-SLAM3 output: 
point cloud map and camera pose for motion planning 
framework, and sensor fusion with other sensor hardware to 
improve performance.  
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