
Visual Servoing for Robot Navigation 
 
P. Hong, H. Sahli, E. Colon, Y. Baudoin  
Royal Military Academy 
Free University of Brussels 
HUDEM Project 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ABSTRACT 
This paper presents an integrated visual servoing system for robot navigation. This system is 
able to pursue a moving object by controlling a camera mounted on a pan/tilt head, so that 
the moving object is maintained in the center of the image. The visual system has four 
capabilities: the target detection, the target motion model online identification, camera 
control for target tracking and target position estimation. In order to minimize the time 
required for the image target detection, the target is made of elementary features: colored 
circular object. The target detection consists of two stages algorithm: (i) a color 
classification stage, and (ii) a knowledge-based shape detection stage. The color 
classification stage utilizes the distribution of the target color in the HSV color space in 
order to obtain an initial set of candidate regions. The second stage of the detection scheme 
uses mathematical morphology operators for circular object detection. The camera control 
exploits the detection in conjunction with an affine fit between 2 consecutive images. After 
the affine fit has been made, the camera control parameters are estimated. Due to the fact 
that the perspective projection is a many to one mapping, we designed the servomotor-
camera-target system as a time variant system. A two phases control strategy is 
implemented. During the first phase (initialization) the target dynamics is estimated. The 
second phase consists of a state feedback control strategy. The target depth is estimated by 
using the appearance similarity between the target and its image. This system runs 
continuously in time and updates the target localization at a frame-rate of 170µs on a 
Pentium 400 MHz PC. 
 
1. INTRODUCTION 
This report summarizes our development in the visual servoing system for robot navigation. 
In our approach a colored target is put on the top of the robot and a fixed camera is used to 
detect and track the target. Then from the camera parameters and the target image we can 
estimate the robot 3D position for robot navigation (see Figure 1).  
 
In the following sections we will discuss the implemented methods for target detection, 
motion model identification, target tracking and target position estimation. A hue method is 

  



used for target detection, and an observer-based-full-state-feedback control is used for target 
tracking. 
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Figure 1. Robot 3D Position Estimation 

 
2. TARGET DETECTION  
In order to detect a given color in an outdoor scene we have to deal with illumination 
changes. We suggest a new approach for colored target detection on which the hue color is 
used to distinguish between different colored objects.  
 
2.1 Color Detection 
In a learning phase a hue interval corresponding to the color of the target object is estimated, 
then this interval is used for (R,G,B) pixels classification. In the RGB space we define two 
planes, which correspond to the estimated hue interval. The target detection is simply 
obtained by scanning the image and testing if a given RGB pixel lies between the two 
defined RGB planes of a given color target object. Figure 2 shows the detected red target 
region. For a real time application speed is vital important. We do this classification in RGB 
space directly. In this method, we first describe the normal of vertical planes in a specified 
RGB value. Then, for each pixel, in RGB space we calculate the dot product of its vector 
and the normal of the vertical plane. By comparing the calculation result with zero we can 
know which hue section this pixel belongs to. With this method we can detect the color 
target, as shown in Figure 2. 
 

  
Figure 2. Detected Red Object Figure 3. After Morphology Filtering 

 
2.2 The Noise Suppression and Image Segmentation 
In an image, the worst case happens for color detection when the pixel is too dark or too 
close to white. For these pixels their hue values that are calculated from their (R,G,B) data 
are very sensitive to noise and these pixels do not have much color information. We use 
threshold to omit them. Figure 2 is obtained after using this method. From Figure 2 we can 
see that the image still contains a lot of noise.  
 

  



To solve this problem, we use morphology filtering. During the color detection we create a 
corresponding binary image. For this binary image we use morphology filtering to do image 
segmentation. A square mask of 5 by 5 pixels is used as the structuring element in our 
application. Figure 3 shows the processed result. The white color shows the detected region 
after image segmentation; and all the pixels in this region are considered as the detected 
pixel. The region is connected and well represents the target shape. 
 
2.3 Hue Adaptation 
The two hue limitations are regularly adapted to cope with illumination variations. 
 
2.4 Position and Size Estimation  
The target position in an image is estimated by calculating the geometry center ( x , y ) of the 
detected pixels. The geometry center is shown as a short blue line in Figure 3. We use two 
kinds of definition to define the detected target size: one is the radium of the target image 
and it is used for target depth estimation; the other is the second order moment of the 
detected target boundary pixels and it is used for window (Region Of Interest) tracking, that 
is 
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where 
-( , ) the second order moment in x and y direction respectively. 2
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~ ~-( ix , iy ) the coordinates of i th pixel which is on the boundary. 
-   the total number of pixels which are on the boundary. N
 
3. TARGET TRACKING  
In fact, the target-tracking problem can be regarded as a visual servoing problem. In our 
system the target is mounted on a mobile robot. A calibrated camera fixed at the origin of 
the world frame is controlled through its pan ( )α  and tilt ( )β  angles to bring the target 
image center onto the image plane center. Figure 4 depicts the camera platform and Figure 5 
shows the defined camera control parameters. 
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Figure 4. Camera Platform Control System 
 

Figure 5. The Camera Control Parameters: 
1ocx∠=α  and 1ocy∠=β . 

 
Due to the fact that the robot moves with an unknown model, the servomotor-camera-target 
system is a time variant system. The target motion model has to be identified in real time.  
 

  



In order to meet the system dynamic characteristic requirements we developed a two phases 
control strategy. An initialization phase, in which the mobile dynamics is estimated, is used 
to track the target with a PI regulator.  The block diagram of this phase is given in Figure 6.  
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u : image plane center. 
v : target movement. 
n : the noise caused by the target  
            movement. 
( )F v : transfer function, which represents  

            the relationship between v  and . n
m : the movement of the camera optical  
            axis. 
o : target image center.  

Figure 6.  Initialization System Block Diagram 
 
The second phase control consists of a feedback control strategy shown in Figure 7. The 
plant is modeled as a dynamic system shown in Figure 8.  
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Figure 7. Observer Based State Feedback 

Control 
Figure 8. Dynamic System Model 

 
 
In our implementation a second order difference model is considered. The system functions 
are 
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where   
-  is the state vector corresponding to the camera angles (pan or tilt) and angular 
velocity.  
( 21, xx )

)-  are the system parameters to be estimated.  ( 1010 ,,, bbaa
 
These parameters are estimated using LSM method from a set of input image frames and 
camera control parameters. 

 
The feedback control strategy is implemented with system state vector estimation using 
Kalman Filtering. The detail of the observer-based-full-state-feedback-control system 
configuration is shown in Figure 9. 
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Figure 9.  The Observer Based Full State Feedback Control System 
 
where  
A the plant system matrix given by [ ]10 ,aa   
B the plant input matrix   [ ]1,0
C the plant output matrix given by [ ]10 ,bb   
G the Kalman filter gain matrix   
K the control gain matrix defined as the difference between the required and identified  
            system parameters of characteristic functions (the pole-assignment method).  
 
4. WINDOW’S POSITION AND SIZE ESTIMATION 
For a good target detection and tracking we need to use high sampling speed and to increase 
the signal-to-noise ratio. To achieve these purposes one way is to reduce the image size. 
Instead of using the whole image for target detection and tracking we create an image 
window (a Region Of Interest) and let its size only be a little bigger than enough to contain 
the target image. Only the image inside of the window will be processed for target detection 
and tracking. First, this will be of benefit to the target tracking process, because this will 
increase the sampling speed of the system. Second, with this kind of window the target has 
almost occupied the whole window area, the signal to noise (which is caused by the 
environment, for instance the color of other objects) ratio will be very high. From this point 
of view, this will make the detection and tracking methods much more robustness.  
 
The best way is to use x  and y  of the next target image as the window’s center and to use 
the second order moments as the estimator of window’s size, that is, 
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where 
l   window’s length 
h   window’s height 

21,CC   scale factors 
ε   tolerance  
 

  



Due to the camera’s tracking activities, it is more difficult for the window’s parameter 
prediction; and the system is a time variant one. We use Least-Mean-Square (LMS) adaptive 
filter as the predictor. In the following, we only use the position prediction in X direction as 
an example to describe the method; the same principle holds for both direction and 
window’s size prediction. 
 
In our application, we define the real position estimation output as the desired system output, 
that is,  

)()( kxkd =                                                             (4-3) 
 
We also define the difference of the real position output and the control command as the 
filter input, that is,   

)()()( kxkxku co−=                                                      (4-4) 
where  

)(kx :  the estimated target position in X direction at instant k  
)(kxco :  the control signal of X direction at instant  k

 
The filter’s output is used as the position prediction of X direction.  
 
5. TARGET POSITION ESTIMATION 
The origin of world frame is set at the center of the camera. The camera platform is kept 
horizontal. Then, the position of the target can be described by 3 parameters: the horizontal 
angle, the vertical angle and the distance between camera and target. Angles are calculated 
using the pose of the camera and the orientation angles of the target image in the camera 
coordinate system. The distance between camera and target is estimated by simple similar 
triangle relationship of real target size, detected target image size and effective camera focal 
length.  
 
6. THE EXPERIMENTAL RESULTS 
In our experiments, the task of image acquisition and processing is done by a PC with a 
image grabber. The image processing time is associated with image size. We use the 
zooming function of the camera to keep the target image in the same size. For a good target 
image size, say 76 pixels in diameter, in a 384x288 image, the tasks of image processing, 
system model identification, system state observation, full state feedback control and 
window’s position and size prediction are done by a personal computer (with 400 MHz 
Pentium microprocessor) within 0.17 second. 
 
The following figures show a test result of the observer-based-full-state-feedback-control 
phase. The target moved (with an angle, not directly) first towards the camera and then went 
away from the camera. All the units of magnitude used in the following target tracking 
discussions are in pixels. All data are recorded under the condition that both camera tracking 
and window prediction function are active, but without zooming. 
 
Figure 10 shows the target tracking error in X direction. This error shows the tracking ability 
of this system. The error shows a little increment when the target moves closer to the 
camera; and it decreases when the target moves away from the camera. The window position 
prediction error in X direction is shown in Figure 11. From the error chart we can see that 

  



the prediction is good, even if there is an influence of the tracking activity. The time variant 
property has been removed by LMS filter. 
 

Target Tracking Error in X Direction
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Figure 10. The Tracking Error in X Direction 
 

Figure 11. The Window Position Prediction 
Error in X Direction 

 
The properties of window’s position prediction error are summarized in Table 1. 
 

 Mean STDVar. Maxi. Mini. 
Predict. Error X 0.4795 1.1058 4 -3 
Predict. Error Y 0.4599 0.4988 1 0 

Table 1. Prediction Error Properties 
 

Figure 12 and Figure 13 show the prediction results of window height and length, 
respectively. From the figures we can see that the window’s size becomes larger when the 
target is closer to the camera and it becomes smaller when the target goes away from the 
camera. Obviously, there are four, nearly symmetric, noise pulses in these two figures. They 
are caused by the background of the test scene. 
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Figure 12. The Prediction of Window Height 
 

Figure 13. The Prediction of the Window 
Length 

 
We also made some indoors, outdoors static and dynamic target position estimation trials 
with this system. Figure 14 shows one scene of an outdoors static trial. The target detection 
function works well (detected pixels are painted white). 
 

  



 
Figure 14. Target Detection under Outdoor 

Environment 
 

 
Figure 15 shows the estimated position errors caused by distance estimation error (assumed 
that the angle estimations are perfect) and by angle estimation error (assumed that the 
distance estimations are perfect), respectively. For a target that is about 8.4 meters away, the 
maximum position error caused by distance estimation error is less than 0.2 meter (the upper 
curve). The lower curve shows the value and variation of position estimation error caused by 
angle estimation error only. The maximum position error caused by angle estimation error is 
less than 0.03 meter, for the same target position. The variation caused by angle estimation 
is much less than that caused by distance estimation. It is obvious that the position error 
caused by distance estimation error is much bigger than the position error caused by angle 
estimation error. 
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Figure 15. The Position Error Caused by Distance Estimation Error 

and by Angle Estimation Error 
 
After the static position estimation trials, we put the target on the mobile robot and did some 
indoor and outdoor dynamic position estimation trials. 
 
Figure 16 shows the indoor position estimation results compared with the real ones. Curves 
indicated by vision are estimated by our vision system. In the chart, we can see that the 
estimated robot positions are very close to its real positions. 
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Figure 16. The Position Estimation Result (indoor) 

 
Figure 17 shows the outdoor position estimation results compared with the real ones. We 
also can see that the estimated robot positions are very close to the real ones. 
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Figure 17. The Position Estimation Result (outdoor) 

 
Improvement 
To improve the position estimation accuracy further, we should solve the problems caused 
by the change of illumination. Under direct sunshine, the target cannot be fully detected and 
there are much more noises due to the illumination and the environment. Figure 18 shows an 
example of one of these situations.  

 
Figure 18: Detection results Under Direct Sunshine 

  



 
 
 

 
From this figure, it can be seen that, even with an umbrella to avoid direct sunshine on the 
target, the upper part of the ball is not detected. The reason for this result is that the upper 
part of the target becomes brighter and the lower part of the target becomes darker. Due to 
the strong sunlight, the saturation values of the pixels on the upper part of the target are 
reduced. For these pixels, under the fixed saturation threshold, the program can no longer 
detect them. However, this picture also gives us the cue of solution of this problem-it likes a 
circle cut by a line. Therefore, instead of using the detected target area to estimate the 
radium of our target image, we let an ellipse fit the edge points of the detected target image 
region using Least Square method, as shown in Figure 19.  
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Figure 19. The Ellipse Fitting Method 
 

Where R  is the radium of the target image (a circle), α⋅2  is the angle spanned by the line 
,  is the long semi-axis of the ellipse and b  is the short semi-axis of the ellipse. The 

long semi-axis of the ellipse is used as the estimate of the radium of the target image, and 
Figure 20 shows the computer simulation results for different angle 

21 ll − a

α . Figure 20(a) shows 
the Ratio of  over a R . Figure 20(b) shows the Relative Error between  and a R . Figure 
20(c) shows the comparison between the ellipse method (red-cross curve) and the area 
method (green curve). The ellipse method gives very good estimation results.  
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(a): Ratio of a  over R  (b): Relative Error between  and a R  
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(c): Comparison of the Relative Estimation Error between the two Methods 

Figure 20. Computer Simulation Results 
 
From Figure 20(b) we can see that if we shift the calibration point (the image used for 
calibration has already been deformed, as shown in Figure 21) when we calibrate the visual 
system, we can make the relative estimation error less than 0.5% for vary large region of α . 
Figure 21 is used for visual system calibration and Figure 22 is used for target depth 
estimation. The estimation results are given in Table 2. From these two images, we can see 
that the detected target image regions are quite different from each other, but the estimation 
results are very good, as shown in Table 2.   
 

  
Figure 21: Image Used for Calibration Figure 22: Target at Estimated Point 

 
Real Distance 

(m) 
Measurement Mean 

(m) 
Standard Variance 

(m) 
Relative Error 

4.532 4.534 0.0464 0.054% 
Table 2. Estimation Results of Ellipse Method 

 
7. CONCLUSIONS  
Because the parameters of the system model are estimated in real time, it is enough to use 
only a linear second order difference model to approximate the real model of the system in 
our application. The functions of target tracking and target position estimation worked very 
well in indoor and outdoor trials. We also developed a simple, but very robust ellipse fitting 
method for distance measurement to improve the accuracy of our system and received good 
results. 
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