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1. Introduction 
Teams of robotic agents can provide a valuable asset in a military context where hostile conditions can create a 
hazardous working environment. A possible application for these multi-agent robotic systems consists of the 
surveillance of an urban environment. In this case, a team of robots must scan a city for the presence of enemy 
forces and take the appropriate action when enemy forces are detected. The deployment of a team of robotic 
agents described above requires a careful consideration of the autonomous control aspect of the multi-agent 
team, considering both the autonomous control of each individual robot as the global intelligent operation of the 
team of robots. Indeed, in order to fulfill the required tasks, the individual robots must be able to operate totally 
autonomous, and this in possibly hostile terrain. Each robot must seek to fulfill the part of the global task to which 
it was dedicated, while at the same time, the global control strategy must seek to fulfill the global task within the 
given constraints (time, energy…). This research subject has been studied before by a number of researchers 
[1][2][3][5]. In this paper, a novel control strategy is presented for multi-robot coordination. An important aspect 
of the presented control architecture is that it is formulated in a decentralized context. This means that the robots 
cannot rely on traditional global path planning algorithms for navigation. The presented approach casts the multi-
robot control problem as a behavior-based control problem. In the behavior-based spirit a complex control 
problem is divided into a set of simpler control problems that collectively solve the original complex control 
problem [4]. To do this, it is thus necessary to address the problem of coordination of the activities of the 
behaviors so to satisfy the initial complex system's control objectives. This problem is known as the action 
selection or behavior fusion problem. The paper describes how each behavior was designed and how the behavior 
fusion problem was solved. The behavior-based control paradigm was chosen, because it is inherently 
decentralized and because it thus provides a natural and elegant way to combine the different subtasks and 
capabilities of each individual robot and because – unlike more traditional sense-model-plan-act approaches – it 
scales very well when applied to a large number of robots. 

2. Global Strategy 
For the envisaged application the robots must scan a city area for the presence of enemy forces (intruders). The 
urban setting, considered for this scenario, poses an important difficulty for robot navigation. Indeed, the 
complexity of the terrain makes it really hard to perform intelligent navigation from one point to another without 
the knowledge of any map data and use of global path planning algorithms, as is the case here. Another question 
which can be raised is how to react to enemy forces which are detected by a member of the robotic team. The 
scenario description foresees several levels of response: 

1. Report the detected intruder to the base station and take no further actions. 
2. Report the intruder to the base station and start tracking its movements, without following the intruder. 
3. Report the intruder and start tracking its movements, while following the intruder from a distance. 
4. Report the intruder and track its movements, while advancing towards the intruder for an interception. 



An automated expert system chooses between one of these 4 intruder handling modalities, depending on the 
hostility grade and the type of the intruder. For intruders representing a minor security risk, only a report should 
be send. Intruders classified as more dangerous must be tracked and – if they represent an even higher security 
risk – followed too. All these robot actions seek to passively decrease the security risk situation by handling the 
security breach represented by the intruder, by passive observation only. For intruders of the last class, 
representing the most severe security risk, the robot must actively seek to neutralize the security risk, by moving 
towards the intruder position, such that the adequate action can be taken. The implementation of this automated 
expert system is not consisered in the multi robot simulation and control architecture presented in this text; here it 
is considered that the intruder handling modality is chosen a priori. 

 To deal with the issues mentioned above, the control strategy proposed for this scenario considers 4 behaviors: 
1. Intruder Searching: Seek for the presence of enemy forces within the field of view of the robot and 

maximize the terrain coverage such that as much terrain is viewed (cleared) as quickly as possible; 
2. Intruder Tracking: Report the detected intruder to the base station and start tracking its movements, 

without following the intruder; 
3. Intruder Following: Report the detected intruder to the base station and start tracking its movements, 

while following the intruder from a distance; 
4. Intruder Interception: Report the detected intruder to the base station and start tracking its movements, 

while advancing towards the intruder for an interception. 

In the following section, each of these behaviors will be discussed more in detail. The behaviors mentioned above 
are mutually exclusive, meaning that only 1 behavior is active (in 1 robot) at any given time. This means that the 
action selection or behavior fusion is not an issue, as there are no multiple behavior outputs to be combined. In 
the initial state, all robots are in the first - intruder searching - behavior, as no intruders have been found yet. 

3. Behavior Design 
3.1.  Intruder Searching 
In intruder searching mode, the robots should seek for the presence of enemy forces in the entire designated area. 
This is a complicated task, as the robots have no prior knowledge whatsoever about the nature of this 
environment. As such, it is impossible to rely on classic path planning approaches. It is also impossible to calculate 
a globally optimal multi-robot coverage strategy. Traditional approaches towards multi-robot coverage rely on the 
solution of the so-called “multi-agent travelling salesman”. The travelling salesman problem is a combinatorial 
optimization problem where the goal is to find the shortest path linking a number of cities/points of interest. In the 
case of intruder searching the places to be visited are related to the sensor range of the robot. The visited places 
are chosen such that the detection range of enemy forces is maximized as quickly as possible. In a multi-agent 
context, the task of optimizing the global detection range is subdivided between a number of agents, each solving 
a subpart of the travelling salesman problem for the designated area. As stated above, these traditional 
approaches are not applicable for the presented decentralized scenario, as the robots have no global 
environmental model. To deal with these issues, the robots employ a local information maximization approach. 
The basis for this approach is the construction of a local coverage map. With each scan of its enemy detection 
sensors, each robot stores the returned sensor data in such a local coverage model, by storing the value ”1” in all 
cells which have been “viewed” by the robot sensors.  
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The visibility model employed here takes into consideration possible occlusions due to obstacles, as shown on  
Figure 1 which shows on the right side an integrated view of 10 local coverage maps for all of the 10 simulated 
robots indicated in the urban area, as shown on the left figure.  

At each iteration of the simulation, the information in the coverage model is “aged” by multiplying all entries of 
the local coverage map with a value between 0 and 1 (in practice: 0.99). The purpose of this approach is to 
represent the unreliability of “old” data. Indeed, it is very well possible that there was no intruder present in a 
certain cell at time t=tk, but that does not mean that this situation will necessarily stay like this eternally. Intruders 



can move and can hide in buildings where the robots cannot detect them, such that it is very well possible that at 
time t=tk+1, there will be an intruder present in the same cell. Therefore, the coverage data recorded in the 
coverage map cannot stay static as well; it must be decreased at each iteration. Figure 1 shows the effect of the 
coverage map ageing, by showing on the right the integrated coverage map after a number of iterations. The gray-
value areas on this figure represent zones which have been viewed by a robot in the past, but which are currently 
not in the visibility field of any robot. As such the information which was gathered there some time ago cannot be 
trusted completely and – as the data becomes older – it becomes more and more likely that a robot will return 
there to re-check the gathered data. 

For navigation, each robot then analyzes its local coverage map and calculates for each possible move to be made, 
leading to a new position x, the amount of cells already covered, taken into account the visibility model at x:
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point where the most new information can be possibly gained when advancing to this location. Otherwise put, the 
point x maximizes the information gain and is thus the best place to go to detect intruders. However, the 
information maximization cannot be the only movement criterion within the intruder searching behavior. There 
are other constraints to be taken into account such as: 

 Resistance to turning: A mobile robot – like any mobile object – prefers to continue its current status. It is 
inefficient to make a robot change directions at every iteration; therefore it should be preferred not to change 
the turning angle too much. 

 Terrain traversability: Different types of terrain feature different degrees of traversability. Mobile robots 
prefer to drive on streets and cannot drive through obstacles (buildings, road blocks). Between these 
extremes, all intermediate levels of traversability are possible: grass is easily traversable, while mud is harder. 

These constraints can be integrated in the intruder searching behavior by defining a ( )TurningScore x and a 

( )TraversabilityScore x . For the resistance to turning, it is straightforward to express this score as the angular 

difference between the current robot orientation and the envisaged orientation: 

( ) ( , ( ))Turning robotScore AngleDifference  x x  

For the expression of the terrain traversability constraint, the map data is employed. From the example urban map 
used in this simulation, as shown on Figure 1, it is clear that obstacles are marked as black areas (numerical value 
0) and streets are labeled white (numerical value 1). All intermediate values, corresponding to gray areas, are 
possible. As such the traversability properties of the terrain are expressed on the map and a movement constraint 

can be directly derived from these values: ( ) ( )TraversabilityScore MapValuex x  

Finally, the total score for each possible new location is calculated by computing a weighted sum of all the 
different constraints explained above: 

( ) ( ) ( ) ( )Coverage Coverage Turning Turning Traversability TraversabilityScore w Score w Score w Score  x x x x

The different weights express the importance which is given to each of the different constraints. This depends 
largely on the capabilities of the different robots. For example, for simple road vehicles, high values will be 

required for 
Turningw  to keep the robot from turning too much and for 

Traversabilityw  to force the robot to stay on 

the street. For vehicles with more off-road capabilities, it is possible to lower the value of
Traversabilityw . The 

minimization of the total score over all possible new locations to go for a robot then decides on the robot motion, 
for the intruder searching behavior. 
When an intruder is detected by a robot, the intruder searching behavior is abandoned by that robot and the 
appropriate other behavior (intruder tracking, following or interception, depending on the automated expert 
system) is triggered. The intruder handling behavior is initially triggered only for the robot who detected the 
intruder, but depending on the intruder handling strategy, the robot can ask for assistance of other robots in the 
area to help with the intruder handling. If the intruder handling strategy consists only of tracking the intruder, then 
it is not necessary to call for help from other robots: indeed, if these other robots do not see the intruder, then a 
switch of behavior has no purpose in this case. In the other 2 cases, the robot who detects the intruder will alert a 



number of robots in the area to help with the intruder handling task. The robots to be alerted are selected on the 
basis of 2 considerations: the robots must be close, such that they can arrive quickly to help; and the robots must 
not already have another intruder handling task at hand. Following this strategy, the robot detecting the intruder 
thus selects the closest robots free from any other intruder handling duty and sets their behavior accordingly. 

3.2.  Intruder Tracking  
When executing the intruder tracking behavior, the robot must keep the intruder in view, but not take any pursuit 
action. When this situation occurs, the robot simply orients itself into the direction of the detected intruder and 
then stops. When the contact with the intruder is lost, the robot reverts to the intruder searching behavior. 

3.3.  Intruder Following and Intruder Interception 
A robot in the intruder following state moves into the direction of the intruder, but keeps a certain security 
distance 𝑑𝑠𝑒𝑐   in order not to be detected itself. To achieve this, the distance to the intruder is calculated for each 
possible new position x of the robot: 
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This score provides a constraint, which is integrated with the score for turning and for terrain traversability to form 
a new global score for the intruder following behavior:        

 
By minimizing this global score, the robot advances towards the intruder, yet keeps a security distance. However, 
this approach towards intruder following does not guarantee a successful pursuit of the intruder in all cases. 
Indeed, if obstacles are present within the trajectory from the robot to the intruder, then the robot is not capable 
of intelligently avoiding these obstacles, as it has no global environmental model and thus no idea of the specific 
nature of the obstacle.  

The intruder interception behavior can be seen as a form of the intruder following behavior, where the security 
distance is equal to zero. The implementation of the intruder interception behavior is thus just a question of 

applying the intruder following behavior with a security distance 
sec 0d  . 

4. Results 
Figure 1 shows a simulation of the presented multi robot coordination approach. The left image shows an urban 
area (obstacles are black, roads are white) with a team of 10 robots (in blue) operating in search of the 3 intruders 
(red dots). Each robot has a certain angle of view, indicated by a blue triangle, turning green when an intruder is 
detected. The right image shows the integrated coverage map for all 10 robots, with levels of gray indicating the 
validity of the information retrieved by the different robots. Underneath these 2 figures, the current state of the 
multi-robot team is indicated, listing for each robot its position, orientation and speed, its current behavior, 
whether or not an intruder has been detected, and if so, where the intruder has been seen. 
The left map of Figure 1 shows how the team of robots has successfully localized all intruders: all intruders (red 
dots) are kept in view by at least 1 robot and these robots are now following the intruders. The coverage map of 
Figure 1 shows how a large portion of the urban area has been mapped by the team of robots. Indeed, on the 
coverage map, the obstacles where no information could be retrieved are easily discernible. Note also that the 
areas where the robots currently are positioned are marked brighter, as the information in this zone is newer. 
 

5. Conclusions 
In this work, we have presented a decentralized control strategy for multi-robot coordination for urban 
surveillance. Using the presented multi-agent control architecture, it is possible to make teams of robots execute a 
well-defined task in a challenging environment. To achieve this, a behavior based framework was implemented. In 
this context, a novel multi-robot control strategy was proposed, which considers the optimal placement of the 
robotic team members to provide an optimal field-of-view coverage for intruder detection, through the 

( ) ( ) ( ) ( )GoToIntruder GoToIntruder Turning Turning Traversability TraversabilityScore w Score w Score w Score  x x x x



information maximization approach. The algorithm presented here for multi-robot coordination was shown to 
achieve good results and to scale well with increasing the number of robots. The implementation of the presented 
technologies on real-world robots provides interesting applications in the domain of risky interventions. 

 
Figure 1: Robot Map and Integrated Coverage Map, together with the Robot Team Status 
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