Rihab Lahouli

Senior Researcher

Robotics & Autonomous Systems,
Royal Military Academy

Address

Avenue De La Renaissance 30, 1000 Brussels, Belgium

Contact Information

Call: +32(0)2-44-14117

Email: rihab.lahouli@rma.ac.be

Rihab Lahouli is a senior researcher at the Robotics & Autonomous Systems unit of the department of Mechanics of the Belgian Royal Military Academy. Her research focuses on the fields of connected objects, internet-of-things (IoT), location tracking, situational awareness and data management.

In May 2016, she received her Ph.D in Electronics from the University of Bordeaux (France), and in Information and Communication Technologies from the Engineering School of Communications (Tunisia).

Hereafter, Rihab worked as a postdoctoral researcher at IM2NP laboratory (Institute of Materials Microelectronics Nanosciences of Province) of Marseille (France). During this experience her activities were related to real-time computing of applied forces on the sport shoes soles and location tracking of cyclists.

Since February 2018, she is participating in European and regional research projects at the Belgian Royal Military Academy: H2020-AIOSAT (Autonomous Indoor & Outdoor Safety Tracking System) project, which is about the development of location tracking and alerting system of firefighters during rescue interventions. Positions and alert messages are sent using long-range and narrow-band LoRa and NB-IoT communication links.

Currently, Rihab is participating in a collaborative research project SSAVE that aims to enable shared situational awareness and interoperability between multi-agent maritime robotic systems, with a focus on various forms of autonomy, secure interconnectivity, and interoperability between assets in the maritime and inland waterway environment.

Publications

2019

  • R. Lahouli, M. H. Chaudhary, S. Basak, and B. Scheers, “Tracking of Rescue Workers in Harsh Indoor and Outdoor Environments," in Ad-Hoc, Mobile, and Wireless Networks – 18th International Conference on Ad-Hoc Networks and Wireless, ADHOC-NOW 2019, Luxembourg, Luxembourg, October 1-3, 2019, Proceedings, 2019, p. 48–61.
    [BibTeX] [Abstract] [Download PDF] [DOI]

    Making use of reliable and precise location and tracking sys-tems is essential to save firefighters lives during fire operations and tospeed up the rescue intervention. The issue is that Global NavigationSatellite System (GNSS) (e.g., GPS and Galileo) is not always availableespecially in harsh wireless environments such as inside buildings andin dense forests. This is why GNSS technology needs to be combinedwith auxiliary sensors like inertial measurement units (IMU) and ultra-wideband (UWB) radios for ranging to enhance the availability and theaccuracy of the positioning system. In this paper, we report our work inthe scope of the AIOSAT (Autonomous Indoor/Outdoor Safety Track-ing System) project, funded under the EU H2020 framework. In thisproject, the Royal Military Academy (RMA) is responsible for develop-ing a solution to measure inter-distances between firefighters, based onIEEE Std 802.15.4 compliant UWB radios. For these inter-distance mea-surements, accuracy better than 50 cm is obtained with high availabilityand robustness. Medium access control based on time division multipleaccess (TDMA) mechanism is also implemented to solve the conflict toaccess the UWB channel. As a result, each node in a network can per-form range measurements to its neighbors in less than 84 ms. In addition,in this project, we are in charge of developing a long-range narrow-bandcommunication solution based on LoRa and Nb-IoT to report updatedpositions to the brigade leader and the command center.

    @inproceedings{DBLP:conf/adhoc-now/LahouliCBS19,
    author = {Rihab Lahouli and
    Muhammad Hafeez Chaudhary and
    Sanjoy Basak and
    Bart Scheers},
    editor = {Maria Rita Palattella and
    Stefano Scanzio and
    Sinem Coleri Ergen},
    title = {Tracking of Rescue Workers in Harsh Indoor and Outdoor Environments},
    booktitle = {Ad-Hoc, Mobile, and Wireless Networks - 18th International Conference
    on Ad-Hoc Networks and Wireless, {ADHOC-NOW} 2019, Luxembourg, Luxembourg,
    October 1-3, 2019, Proceedings},
    series = {Lecture Notes in Computer Science},
    volume = {11803},
    pages = {48--61},
    publisher = {Springer},
    year = {2019},
    url = {https://doi.org/10.1007/978-3-030-31831-4\_4},
    doi = {10.1007/978-3-030-31831-4\_4},
    timestamp = {Thu, 26 Sep 2019 14:42:25 +0200},
    biburl = {https://dblp.org/rec/conf/adhoc-now/LahouliCBS19.bib},
    bibsource = {dblp computer science bibliography, https://dblp.org},
    abstract = {Making use of reliable and precise location and tracking sys-tems is essential to save firefighters lives during fire operations and tospeed up the rescue intervention. The issue is that Global NavigationSatellite System (GNSS) (e.g., GPS and Galileo) is not always availableespecially in harsh wireless environments such as inside buildings andin dense forests. This is why GNSS technology needs to be combinedwith auxiliary sensors like inertial measurement units (IMU) and ultra-wideband (UWB) radios for ranging to enhance the availability and theaccuracy of the positioning system. In this paper, we report our work inthe scope of the AIOSAT (Autonomous Indoor/Outdoor Safety Track-ing System) project, funded under the EU H2020 framework. In thisproject, the Royal Military Academy (RMA) is responsible for develop-ing a solution to measure inter-distances between firefighters, based onIEEE Std 802.15.4 compliant UWB radios. For these inter-distance mea-surements, accuracy better than 50 cm is obtained with high availabilityand robustness. Medium access control based on time division multipleaccess (TDMA) mechanism is also implemented to solve the conflict toaccess the UWB channel. As a result, each node in a network can per-form range measurements to its neighbors in less than 84 ms. In addition,in this project, we are in charge of developing a long-range narrow-bandcommunication solution based on LoRa and Nb-IoT to report updatedpositions to the brigade leader and the command center.},
    url = {https://www.researchgate.net/publication/336050955_Tracking_of_Rescue_Workers_in_Harsh_Indoor_and_Outdoor_Environments},
    }