The project developed a modular and scalable architecture for hybrid manned-unmanned systems in order to address a large range of missions and to enable easy update or modification of assets and functionalities within the system: aerial and ground platforms, command, control and communication equipment, sensors, payloads and algorithms. For demonstrating the features of the project, the iMUGS prototype is based on an existing unmanned ground vehicle and a specific list of payloads.
European Commission
European Defence Industrial Development Programme
2020 – 2023
32,6 M€
Project Publications
2023
- G. De Cubber, E. Le Flécher, A. La Grappe, E. Ghisoni, E. Maroulis, P. Ouendo, D. Hawari, and D. Doroftei, “Dual Use Security Robotics: A Demining, Resupply and Reconnaissance Use Case," in IEEE International Conference on Safety, Security, and Rescue Robotics, 2023.
[BibTeX] [Download PDF]@inproceedings{ssrr2023decubber, title={Dual Use Security Robotics: A Demining, Resupply and Reconnaissance Use Case}, author={De Cubber, Geert and Le Flécher, Emile and La Grappe, Alexandre and Ghisoni, Enzo and Maroulis, Emmanouil and Ouendo, Pierre-Edouard and Hawari, Danial and Doroftei, Daniela}, booktitle={IEEE International Conference on Safety, Security, and Rescue Robotics}, editors ={Kimura, Tetsuya}, publisher = {IEEE}, year = {2023}, vol = {1}, project = {AIDED, iMUGs, CUGS}, location = {Fukushima, Japan}, unit= {meca-ras}, doi = {}, url={https://mecatron.rma.ac.be/pub/2023/SSRR2023-DeCubber.pdf} }
- G. De Cubber, E. Le Flécher, A. Dominicus, and D. Doroftei, “Human-agent teaming between soldiers and unmanned ground systems in a resupply scenario," in Human Factors in Robots, Drones and Unmanned Systems. AHFE (2023) International Conference., 2023.
[BibTeX] [Abstract] [Download PDF] [DOI]
Thanks to advances in embedded computing and robotics, intelligent Unmanned Ground Systems (UGS) are used more and more in our daily lives. Also in the military domain, the use of UGS is highly investigated for applications like force protection of military installations, surveillance, target acquisition, reconnaissance, handling of chemical, biological, radiological, nuclear (CBRN) threats, explosive ordnance disposal, etc. A pivotal research aspect for the integration of these military UGS in the standard operating procedures is the question of how to achieve a seamless collaboration between human and robotic agents in such high-stress and non-structured environments. Indeed, in these kind of operations, it is critical that the human-agent mutual understanding is flawless; hence, the focus on human factors and ergonomic design of the control interfaces.The objective of this paper is to focus on one key military application of UGS, more specifically logistics, and elaborate how efficient human-machine teaming can be achieved in such a scenario. While getting much less attention than other application areas, the domain of logistics is in fact one of the most important for any military operation, as it is an application area that is very well suited for robotic systems. Indeed, military troops are very often burdened by having to haul heavy gear across large distances, which is a problem UGS can solve.The significance of this paper is that it is based on more than two years of field research work on human + multi-agent UGS collaboration in realistic military operating conditions, performed within the scope of the European project iMUGS. In the framework of this project, not less than six large-scale field trial campaigns were organized across Europe. In each field trial campaign, soldiers and UGS had to work together to achieve a set of high-level mission goals that were distributed among them via a planning & scheduling mechanism. This paper will focus on the outcomes of the Belgian field trial, which concentrated on a resupply logistics mission.Within this paper, a description of the iMUGS test setup and operational scenarios is provided. The ergonomic design of the tactical planning system is elaborated, together with the high-level swarming and task scheduling methods that divide the work between robotic and human agents in the fieldThe resupply mission, as described in this paper, was executed in summer 2022 in Belgium by a mixed team of soldiers and UGS for an audience of around 200 people from defence actors from European member states. The results of this field trial were evaluated as highly positive, as all high-level requirements were obtained by the robotic fleet.
@inproceedings{ahfe20203decubber, title={Human-agent teaming between soldiers and unmanned ground systems in a resupply scenario}, author={De Cubber, G. and Le Flécher, E. and Dominicus, A. and Doroftei, D.}, booktitle={Human Factors in Robots, Drones and Unmanned Systems. AHFE (2023) International Conference.}, editors ={Tareq Ahram and Waldemar Karwowski}, publisher = {AHFE Open Access, AHFE International, USA}, year = {2023}, vol = {93}, project = {iMUGs}, location = {San Francisco, USA}, unit= {meca-ras}, doi = {http://doi.org/10.54941/ahfe1003746}, url={https://openaccess.cms-conferences.org/publications/book/978-1-958651-69-8/article/978-1-958651-69-8_5}, abstract = {Thanks to advances in embedded computing and robotics, intelligent Unmanned Ground Systems (UGS) are used more and more in our daily lives. Also in the military domain, the use of UGS is highly investigated for applications like force protection of military installations, surveillance, target acquisition, reconnaissance, handling of chemical, biological, radiological, nuclear (CBRN) threats, explosive ordnance disposal, etc. A pivotal research aspect for the integration of these military UGS in the standard operating procedures is the question of how to achieve a seamless collaboration between human and robotic agents in such high-stress and non-structured environments. Indeed, in these kind of operations, it is critical that the human-agent mutual understanding is flawless; hence, the focus on human factors and ergonomic design of the control interfaces.The objective of this paper is to focus on one key military application of UGS, more specifically logistics, and elaborate how efficient human-machine teaming can be achieved in such a scenario. While getting much less attention than other application areas, the domain of logistics is in fact one of the most important for any military operation, as it is an application area that is very well suited for robotic systems. Indeed, military troops are very often burdened by having to haul heavy gear across large distances, which is a problem UGS can solve.The significance of this paper is that it is based on more than two years of field research work on human + multi-agent UGS collaboration in realistic military operating conditions, performed within the scope of the European project iMUGS. In the framework of this project, not less than six large-scale field trial campaigns were organized across Europe. In each field trial campaign, soldiers and UGS had to work together to achieve a set of high-level mission goals that were distributed among them via a planning & scheduling mechanism. This paper will focus on the outcomes of the Belgian field trial, which concentrated on a resupply logistics mission.Within this paper, a description of the iMUGS test setup and operational scenarios is provided. The ergonomic design of the tactical planning system is elaborated, together with the high-level swarming and task scheduling methods that divide the work between robotic and human agents in the fieldThe resupply mission, as described in this paper, was executed in summer 2022 in Belgium by a mixed team of soldiers and UGS for an audience of around 200 people from defence actors from European member states. The results of this field trial were evaluated as highly positive, as all high-level requirements were obtained by the robotic fleet.} }
2022
- G. De Cubber and F. E. Schneider, “Military Robotics," in Encyclopedia of Robotics, M. H. Ang, O. Khatib, and B. Siciliano, Eds., Springer, 2022.
[BibTeX] [Download PDF]@InCollection{encyclopedia2022, author = {De Cubber, Geert and Schneider, Frank E.}, title = {Military Robotics}, editor = {Ang, Marcelo H. and Khatib, Oussama and Siciliano, Bruno}, booktitle = {Encyclopedia of Robotics}, publisher = {Springer}, year = {2022}, url = {https://meteor.springer.com/project/dashboard.jsf?id=347}, project = {iMUGs}, unit= {meca-ras} }
- G. De Cubber and F. E. Schneider, “Military Robotics," in Encyclopedia of Robotics, M. H. Ang, O. Khatib, and B. Siciliano, Eds., Springer, 2022.
[BibTeX] [Download PDF]@InCollection{encyclopedia2022, author = {De Cubber, Geert and Schneider, Frank E.}, title = {Military Robotics}, editor = {Ang, Marcelo H. and Khatib, Oussama and Siciliano, Bruno}, booktitle = {Encyclopedia of Robotics}, publisher = {Springer}, year = {2022}, url = {https://meteor.springer.com/project/dashboard.jsf?id=347}, project = {iMUGs}, unit= {meca-ras} }
- E. Le Flécher, A. La Grappe, and G. De Cubber, “iMUGS – A ground multi-robot architecture for military Manned-Unmanned Teaming," in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2022.
[BibTeX]@inbook{imugs_le_flecher_la_grappe_de_cubber, place={Kyoto}, title={iMUGS - A ground multi-robot architecture for military Manned-Unmanned Teaming}, booktitle={2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)}, publisher={IEEE}, year={2022}, author={Le Flécher, Emile and La Grappe, Alexandre and De Cubber, Geert}, project = {iMUGs}, unit= {meca-ras} }
2021
- K. Mathiassen, F. E. Schneider, P. Bounker, A. Tiderko, G. D. Cubber, M. Baksaas, J. Główka, R. Kozik, T. Nussbaumer, J. Röning, J. Pellenz, and A. Volk, “Demonstrating interoperability between unmanned ground systems and command and control systems," International Journal of Intelligent Defence Support Systems, vol. 6, iss. 2, pp. 100-129, 2021.
[BibTeX] [Download PDF] [DOI]@article{doi:10.1504/IJIDSS.2021.115236, author = {Mathiassen, Kim and Schneider, Frank E. and Bounker, Paul and Tiderko, Alexander and Cubber, Geert De and Baksaas, Magnus and Główka, Jakub and Kozik, Rafał and Nussbaumer, Thomas and Röning, Juha and Pellenz, Johannes and Volk, André}, title = {Demonstrating interoperability between unmanned ground systems and command and control systems}, journal = {International Journal of Intelligent Defence Support Systems}, volume = {6}, number = {2}, pages = {100-129}, year = {2021}, doi = {10.1504/IJIDSS.2021.115236}, url = {https://www.inderscienceonline.com/doi/abs/10.1504/IJIDSS.2021.115236}, eprint = {https://www.inderscienceonline.com/doi/pdf/10.1504/IJIDSS.2021.115236}, project = {ICARUS, iMUGs}, doi = {10.1504/ijidss.2021.115236}, unit= {meca-ras} }
- Y. Baudoin, G. De Cubber, and E. Cepolina, “Mobile Robots Supporting Risky Interventions, Humanitarian actions and Demining, in particular the promising DISARMADILLO Tool," in Proceedings of TC17-VRISE2021 – A VIRTUAL Topical Event of Technical Committee on Measurement and Control of Robotics (TC17), International Measurement Confederation (IMEKO), Theme: “Robotics for Risky Interventions and Environmental Surveillance", Houston, TX, USA, 2021, pp. 5-6.
[BibTeX] [Download PDF]@INPROCEEDINGS{knvrise, author={Baudoin, Yvan and De Cubber, Geert and Cepolina, Emanuela}, booktitle={Proceedings of TC17-VRISE2021 - A VIRTUAL Topical Event of Technical Committee on Measurement and Control of Robotics (TC17), International Measurement Confederation (IMEKO), Theme: "Robotics for Risky Interventions and Environmental Surveillance"}, title={Mobile Robots Supporting Risky Interventions, Humanitarian actions and Demining, in particular the promising DISARMADILLO Tool}, year={2021}, volume={}, number={}, pages={5-6}, url={https://mecatron.rma.ac.be/pub/2021/TC17-VRISE2021-Abstract%20Proceedings.pdf}, project={AIDED, Alphonse, MarSur, SSAVE, MarLand, iMUGs, ICARUS, TIRAMISU}, publisher={IMEKO}, address={Houston, TX, USA}, month=oct, unit= {meca-ras} }